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Abstract

We explore the possibility of achieving robust and
efficient peer-to-peer storage by differentiating be-
tween reliable and unreliable nodes. Central to our
technique is the use of a distributed directory (DD)
to provide a level of indirection, thereby permitting
the system to exploit heterogeneity. We compare and
contrast the DD approach to a distributed hash table
(DHT) when constructing reliable storage systems
from components of varying reliability. By compar-
ing these techniques, system architects can design
systems that are more efficient and scalable. For
instance, we conclude with a configuration that is
durable, available, and scalable with a Gnutella-like
distribution of node reliability. Our results show that
a DD uses upto two orders of magnitude less band-
width per node than a DHT to maintain data.

1 Introduction

Maintaining state in a structured P2P overlay net-
work using minimal resources is a non-trivial prob-
lem (e.g., less than 15% of the bandwidth capacity of
each node). While such overlays have been shown to
handle dynamic node membership in both theory and
practice [8, 9, 11, 12, 14, 17], the bandwidth required
to do so can be quite expensive. Several proposed
storage applications [3, 5] leverage the fact that
structured P2P overlays handle churn efficiently and
gracefully by using the overlay maintenance mech-
anisms directly (i.e., the overlay remains connected
under constant or transient change [10]). However,
Blake and Rodrigues [2] showed that tightly cou-
pling the storage and networking in this manner is
prohibitively expensive. The bandwidth required to
maintain data availability and durability in a dynamic
network exceeds the bandwidth capacity, given that
the disks of the participants are well-utilized. In
other words, participants can only contribute an in-
significant amount of disk space to keep the mainte-
nance bandwidth below link capacities.

The fundamental problem with combining net-
working and storage is that the two tasks require sep-
arate policies for efficient use and maintenance. In
this paper, we show that by adding a level of indirec-
tion at the storage level, the separate layers can be
maintained efficiently with different policies using
similar mechanisms. The contribution of this paper

is quantifying the cost and benefit of a layer of indi-
rection and analyzing the tradeoffs, an analysis not
yet seen in the body of P2P literature. Given these
tradeoffs, we show performance comparisons be-
tween coupled and decoupled storage designs. Our
final goal is an efficient self-organizing option.

Section 2 begins by comparing the costs and ben-
efits between distributed hash tables (DHTs), in
which networking and storage are united, and dis-
tributed directories (DDs), in which they are sepa-
rated. After describing our analytical model in Sec-
tion 3, we provide a quantitative evaluation and com-
parison of the two solutions in Section 4. We discuss
these results and their implications in Section 5.

2 Design Comparisons

Storage solutions, such as CFS [3] and PAST [5]
have proposed using DHT mechanisms and policies
directly, and as a result are both simple and elegant.
However, such solutions assume servers have inde-
pendent and identically distributed availability and
failure distributions, use replication or other forms of
redundancy to compensate for server faults and fail-
ures, and argue that random placement of replicas are
sufficient to maintain desired levels of data availabil-
ity. Unfortunately, the bandwidth required to main-
tain the redundancy is the bottleneck [2]. Further-
more, selective placement of data may be desirable
for some systems [7, 16]. In this section we com-
pare and contrast the design points for DHT-based
and DD-based storage solutions.

2.1 Distributed Hash Tables

The distributed hash table (DHT) abstraction [4]
maps a given key in the node/object identifier space
to a particular node in the overlay. An application
can insert data into the DHT, which places that data
on the node responsible for the key of the data; the
data is retrieved by using the DHT to find the re-
sponsible node and asking it for the data. The DHT
maintains this mapping between key and node con-
sistently, even as nodes join and leave the network.

DHT Pros: The DHT abstraction is an elegant so-
lution for maintaining the storage layer because the
mapping function of the DHT inherently decides
who owns the mapping of a key to an object, when to
remap that responsibility, and where the responsible



node is located. This shields the storage layer from
making similar decisions.

DHT Cons: The problem with using the DHT ab-
straction directly for the storage layer is that it pro-
vides no control over data placement, causing main-
tenance bandwidth to become prohibitively expen-
sive under churn. Tightly coupling the storage layer
with the networking layer wastes bandwidth by auto-
matically transferring data each time the key for that
data is remapped; this transfer may take place over
the wide area to a node that may only live for a short
period of time. It also may remap responsibility for
data away from a node experiencing a short transient
failure, potentially wasting wide area bandwidth.

2.2 Distributed Directories

A distributed directory (DD) decouples the storage
layer from the underlying transient network. At its
core, a DD is a level of indirection–utilizing pointers
within the network to achieve flexibility in replica
placement. Since DD functionality does not require
locality, it can be provided by any DHT that can reli-
ably store small pointers to objects. DD functionality
is also provided by Decentralized Object Location
and Routing (DOLR) layers [4]. The DD approach
to storing data is a hybrid technique: it utilizes the
peer-to-peer system to maintain pointers and more
sophisticated methods to maintain data.

DD Pros: Decoupling the storage layer from the
networking layer insulates the data from the transient
network, saving wide area bandwidth. Also, the sep-
aration allows the placement of data to be biased to-
wards more available and reliable nodes, increasing
data availability and durability. Finally, since a DHT
still identifies a root node responsible for the pointer
of each object, the repair of an object can be trig-
gered after a specified threshold has been reached,
further insulating the data layer.

DD Cons: The extra level of indirection must be
maintained. The pointers need to be replicated to
prevent memory leaks (i.e. a live node cannot locate
data that exists). Another issue is outdated point-
ers; namely, dangling pointers that no longer point
to the correct location for data. Additionally, sys-
tem designers need to be careful that the aggregate
storage due to pointers does not increase the main-
tenance bandwidth; that is, is some small percentage
of the total storage. Furthermore, the storage layer
becomes more complex because it requires an inde-
pendent data placement and replication mechanism.

The remainder of this paper analyzes and com-
pares the cost of DHT and DD storage systems. By

Model Description
model(1) DHT spreads data evenly over all nodes
model(2) DD spreads data over reliable nodes

only and pointers over all nodes
model(2.a) Reliable model(2) nodes. Stores all data and

stores � �� fraction of pointers.

model(2.b) Unreliable model(2) nodes. Stores � �� fraction
of pointers (and no data).

model(3) DD spreads data and pointers over
reliable nodes only. (unreliable nodes are not used)

model(3.a) Reliable model(3) nodes. Stores all data and
pointers. (Similar to a DHT of reliable nodes only).

model(3.b) Unreliable model(3) nodes. Not used (i.e. stores no
data or pointers),

���
� ���

�

Table 1: Storage Models. Defines models used to com-
pare different storage solutions, using various combina-
tions of storing pointers and data on (un)reliable nodes.

understanding the tradeoffs, system architects can
design systems that are more efficient and scalable.

3 Model

The goal of this paper is to explore different config-
urations that allow the storage layer to be robust and
bandwidth-efficient. By robust, we mean that data
is durable and available with high probability. The
storage layer also needs to be bandwidth-efficient in
maintaining storage. Finally, the system needs to
recognize and use new resources efficiently, as well
as compensate for absent resources. This section de-
scribes the model we use to quantify these properties.

3.1 Background

The data maintenance bandwidth per node is approx-
imated by the following equation derived by Blake
and Rodrigues [2]:

	�

� 

�����
�����

�
� (1)

Where � is the amount of unique data in the system
and � is the redundancy factor required to achieve
a desired level of data availability. � is the average
lifetime of a node in the system, and � is the total
number of nodes. The number of nodes available to
store data is reduced by the average node availability,� . Given a target data availability (i.e. � �"! , for
some small ! ), Blake and Rodrigues derive equations
for the redundancy factor needed for replication and
coding [1, 15] schemes ( ��# and �%$ respectively).

All values and comparisons throughout the rest of
the paper will be based on extending Equation 1 to
account for different data allocation and heteroge-
neous availability and lifetime.

3.2 Parameter Setting

We use three basic models to compare DHT and DD
based storage solutions. The first model uses a DHT



to distribute data evenly over all nodes. The sec-
ond model uses a DD to distribute indirection point-
ers evenly over all nodes and distributes the data
only over the reliable nodes. The third model uses
a DD to distribute the pointers and data only over
the reliable nodes (similar to a DHT of only reli-
able nodes); unreliable nodes are not used for stor-
age. We refer to the models throughout the rest of
the paper as model(1), (2), and (3), respectively. Ta-
ble 1 summarizes these models. The equations given
for the data maintenance bandwidth per node, given
��� reliable nodes and ��� unreliable nodes (where
� ��� � ��� � ) are as follows:
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The term

 �$&% ��' denotes the average of the inverse

combination of availability and lifetime, for the set
of � nodes. ( is the amount of unique pointers in
the system, corresponding to the amount of unique
data � . The total storage for the DHT (model(1)) is
� # � , but for the DD it is ��# ) � � �+* (-, (the pointers
are replicated �+* times to prevent memory leaks). We
defined the redundancy factor in terms of the replica-
tion factor � # ; for coding, we replace the replication
factor � # with the expansion factor � $ . Note that in
the case of coding �%# �+* (/. � $ �0*213( ; that is for
each unique object, � $ 1 unique fragments are pro-
duced, and a pointer is needed for each fragment.
The result is that pointers could cost more to store
than the data itself, unless the ratio of data to pointers
is greater than ��* (i.e. 4 �&54 ��6 � 5 687 �0* for replica-

tion and 4�9 54 9 6 � 5 6:7 �+*21 for coding). The changes
are summarized below:
 �

� � �
�
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��� A �	�B� ��� ��� � � (for DD replication)��� A � 9 � ��� � ��C � � (for DD coding)

We used the Overnet trace [1] to form a basis for
comparing for models (1), (2), and (3). Table 2 sum-
marizes the values we use for the comparisons1 .

1We do not extract
�

from the trace because
�

is only one

Param Value Description5
1TB unique data'
1469 total nodes' 
136 nodes with D �BE F availability (9.26% of

'
)' �

1333 nodes with G �BE F availability (90.74% of
'

)$ 0.3 average availability of
'$  0.8 average availabilty of
' $ � 0.2 average availabilty of
' �

max %  256 max lifetime (in days) for reliable nodes.
max % � 1 max lifetime (in days) for unreliable nodes.�IHKJ

6 9s data availability4 � 10 replication factor to achieve data availability4�9 2 coding factor to achieve data availability4 � 10 pointer replication factor to avoid memory leaksLNM ��OQP 16 fragments required for reconstruct under coding

Table 2: Baseline Trace and Comparison Parameters.
The parameters R ( RTS and RVU ) and W ( W2S and WXU ) were
extracted from the trace conducted by Bhagwan et al [1].
The rest of the parameters were derived from R and W , or
chosen to be a “reasonable” setting.

4 Quantitative Comparison

In this section, we compare four aspects of the dif-
ferent models, and their impact on data maintenance
bandwidth per node. First, we vary the lifetime of the
reliable nodes in relation to the lifetime of unreliable
nodes. Second, we vary the data to pointer ratio,

5 6 .
Third, we compare replication to coding. Finally, we
explore the effect of varying the network size � . We
use the architecture models summarized in Table 1
and the system parameter values summarized in Ta-
ble 2 to compare DHT and DD storage systems. We
only vary one parameter at a time indicated by the
subsection heading.

4.1 Varying Lifetime, �
In Figure 1.a we hold � � constant at 1 day, and vary
� � from 1 to 256 days. For model(1) (the standard
DHT), the bandwidth used to maintain data avail-
ability in the face of unreliable nodes dominates the
bandwidth cost and holds it steady at 32Mbps. For
model(2), the reliable nodes bandwidth decreases as
� � is increased, but the unreliable nodes bandwidth
stays constant at 4Mbps because pointers are being
maintained across all nodes. For model(3), the reli-
able nodes maintenance bandwidth decreases as the
lifetime increases. Since the unreliable nodes are
not being used for data storage, model(3) is able to
achieve a low per-node maintenance bandwidth of
64Kbps when the lifetime is 8 months.

For Figure 1.b we vary reliable node lifetimes
along the x-axis and vary the unreliable node life-

week. The longest trace, Gummadi et al [6], is five months long;
however, their passive trace only considers a node availabile
when actively downloading an object. Instead, we show how
maintenance bandwidth per node varies as the ratio Y �Y � varies.
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Figure 1: Per-node maintenance bandwidth vs Lifetime. Data/Ptr = 100 for (a), (b), and (c). (a) Per node mainte-
nance bandwidth versus the lifetime ratio of the reliable and unreliable nodes, � �� � . We increase � �� � by holding

� U
constant at one day and increasing

� S . (b)
� U�� � �� . The x-axis is

� S . (c) ���	� � � � W
� ������ . The � -axis is
������

.

times at a ratio of eight times less than the reliable
nodes lifetime. The per-node maintenance band-
width for all models decreases as lifetime increases;
the models vary only by a constant difference in
bandwidth. This constant difference is due to the
constant difference in the combination of node avail-
ability, lifetime and the ratio of data to pointers.

For Figure 1.c we use a distribution for lifetimes
among individual nodes. We vary lifetime in a sim-
ilar manner conjectured by Gummadi et al [6]; that
is, a node’s lifetime is proportional to its availabil-
ity (i.e. ��� � � � � L�$�� ). As before there is a constant
difference between the different per-node bandwidth
maintenance costs, but it is dramatically increased by
the difference in lifetime.

4.2 Varying Data to Pointer Ratio,
5 6

For this comparison we consider only replication
as we vary the data to pointer ratio in Figure 2.a
In model(1), the bandwidth is constant at 32Mbps,
due to the maintenance of data placed on unreliable
nodes. For model(2.a), the bandwidth of the reli-
able nodes is fairly constant at 64Kbps; however, it
is higher than 64Kbps when

5 6�� � * � ��� . For
model(2.b), as we decrease the amount of pointers in
the system (i.e. increase

5 6 ), we decrease the amount
of work each unreliable node is required to do. For
model(3.a) reliable node maintenance is constantly
low at 64Kbps (bandwidth per node is higher than
64Kbps when

5 6 � ��� ).
4.3 Replication vs. Coding, Varying

5 6
In this section, we compare the maintenance band-
width of replication versus coding. This analysis
allows to to evaluate if more efficient coding tech-
niques can actually be leveraged, or if the increased
complexity of the infrastructure cancels out the re-
dundancy gains made by coding techniques.

We compare both replication and coding schemes

by varying the data to pointer ratio Figure 2.b. For
model(1), the bandwidth per node is decreased by
using coding techniques. The bandwidth per node
is still dominated by the unreliable nodes, but cod-
ing reduces bandwidth from 32Mbps to 8Mbps. For
model(2.a) the reliable nodes bandwidth is fairly
constant and reduced from 64Kbps to 16Kbps by
using coding techniques. The interesting point is
that maintaining fragments is actually more expen-
sive than maintaining replicas (in terms of bandwidth
per node) when

5 6 � �0*21 � ����� ��� � ���
� .
For model(2.b), the DHT is maintaining the point-
ers. The DHT does not discriminate between reliable
and unreliable nodes, so the unreliable nodes domi-
nate the maintenance cost. But as we decrease the
amount of pointers in the system (i.e. increase

5 6 ),
we decrease the amount of work the DHT is required
to do. Another interesting point is that maintaining
coding pointers is always more expensive than main-
taining replication pointers by a constant factor 1
(i.e. �+* � �+*21 ). For model(3.a) reliable node main-
tenance is constantly low at 16Kbps when

5 6 7 ���
� .
4.4 Varying Number of Node, �
In Figure 3, we show that the system aggregate stor-
age scales linearly as the number of nodes increase.
That is, bandwidth per node characteristics is con-
stant because the storage per node is constant.

5 Discussion and Conclusion

DHTs do not take into account the suitability of a
given peer for a specific task before explicitly or
implicitly delegating that task to the peer[13]. In
our analysis, differentiating among high- and low-
availability nodes saves bandwidth. The savings in-
crease as the gap widens, and if lifetimes are longer
for highly available nodes (evident in Figures 1). Fi-
nally, storing pointers only works if the amount of
data to pointer ratio is high (Figures 2).
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Figure 2: Per-node maintenance bandwidth vs Data/Ptr ratio.
� S � � months and

� U ��� day for both (a) and
(b). (a) Per node maintenance bandwidth versus the Data/Ptr ratio for replication only. (b) Per node maintenance
bandwidth versus the Data/Ptr ratio for both replication and coding.
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Figure 3: Per-node maintenance bandwidth vs Network
Size. We increase network size and aggregate storage and
show that the maintenance bandwidth remains constant.

By understanding the system dynamics and pa-
rameters, we can create a self-organizing option that
is durable and available. One self-organizing option,
is to use a DD. Figure 3 used the self-organizing
mode to achieve six 9’s of data availability. The DD
configuration used a DHT of all nodes for pointers
and reliable nodes for data, used coding, had an av-
erage of large objects, the average lifetime of the reli-
able nodes was eight months, and the reliable nodes
were designated as having availability greater than
or equal to 70%. Another non-self-organizing op-
tion for robust and bandwidth-efficient storage is to
explicitly designate two rings [7], one reliable ring
used for storage another unreliable ring not used at
all.
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