EpiChord: Large Routing State plus Parallel Queries equals
Improved DHT Lookup Performance and Resilience

Ben Leong
benleong@mit.edu

Abstract— We present EpiChord, a distributed hash ta-
ble (DHT) that achieves lookup resilience by issuing paral-
lel asynchronous queries. EpiChord caches large amounts
of routing state at each node and uses multiple parallel
queries to mitigate the effects of outdated entries, thus
ensuring that lookup performance does not degrade even
when network churn is high. By ensuring cached entries
are well-distributed in the id namespace, EpiChord guar-
antees O(logn)-hop lookup performance in the worst case
and can often attain O(1)-hop lookup performance in the
common case if network churn is low. EpiChord has a low
maintenance cost since it exploits information gleaned from
observing lookup traffic to improve lookup performance,
and only sends network probes occasionally as a backup
mechanism. Our experience with EpiChord demonstrates
that we can achieve significant gains in lookup performance
and resilience by moving from a limited-state-per-node to a
large-state-per-node DHT architecture without incurring a
significant cost in additional network traffic.

I. INTRODUCTION

In recent years, more than a dozen DHT lookup algo-
rithms and routing topologies have been proposed [1], [2],
[31, [4], [5]. [6], [7], [8]. [9]. Most initial DHT research
was directed towards minimizing the amount of routing
state per node. The motivation for minimizing routing
state is clear. In a dynamic network with a relatively high
churn rate, routing state will inevitably become outdated
over time and timeouts will occur when a node tries to
query another node that has failed or has left the network.
The general assumption is that if the number of fingers
is reasonably small (O(logn)), a node can periodically
refresh all the fingers at a frequency high enough to make
the probability of timeouts negligible. This is a reasonable
approach, but it does have two major problems: (i) it is not
easy to determine the optimal refresh rate adaptively — set-
ting it too low will result in excessive timeouts, while set-
ting it too high will result in excessive background main-
tenance traffic; (ii) there will always be a non-zero prob-
ability of timeouts under any reasonable setting for the
refresh rate and it is still costly to recover from timeouts.

In this paper, we describe EpiChord, a DHT that
achieves lookup resilience by issuing parallel asyn-
chronous queries to avoid the need of having to recover
from timeouts. We can afford to do so without generating
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excessive amounts of lookup traffic because we maintain a
large amount of routing state at each node, which reduces
the number of hops per lookup and thereby the number
of lookup messages significantly. Furthermore, parallel
lookups allow us to store a large amount of routing state
without excessive cost because we can tolerate outdated
state without having to worry about timeouts.

Existing DHTs tend to decouple the lookup process
from routing state maintenance. In EpiChord, routing
state maintenance costs are amortized into the lookup
costs as nodes rely mainly on observing lookup traffic and
on piggybacking additional network information on query
replies to keep their routing state up-to-date under reason-
able traffic conditions. EpiChord only sends probes as a
backup mechanism if lookup traffic levels are too low to
support the desired level of performance.

Although our parallelized lookup algorithm can be ap-
plied to any of the existing DHT routing topologies that
have some flexibility in the choice of neighbors (i.e., ring,
tree or xor) [10], we chose to implement our proof-of-
concept DHT using the Chord ring [2] as the underlying
routing topology. We chose Chord because of its simplic-
ity and its many provable guarantees on stability and ro-
bustness [11], which EpiChord automatically inherits by
adopting Chord’s stabilization algorithm.

EpiChord ensures that entries in the cache are dis-
tributed with a particular bias towards the nearby nodes,
which allows us to achieve a worst-case lookup perfor-
mance guarantee of O(logn) hops. Nodes are expected to
have fn (0 < 8 < 1) up-to-date cache entries in steady
state, so lookups can be resolved in one hop with proba-
bility 3.

Although one might expect a parallel-lookup algorithm
to generate significantly more network traffic, we show
that in practice we are able to achieve significantly better
lookup performance on average than that the correspond-
ing sequential Chord lookup algorithm with comparable
amounts of lookup traffic.

Il. OVERVIEW OF EPICHORD
Like Chord, EpiChord is organized as a one-
dimensional circular namespace and the node responsible
for a key is the node whose identifier most closely follows
the key, i.e., the successor. In addition to maintaining a



successor list of £ nodes, nodes in our network also main-
tain a predecessor list of & nodes. Nodes communicate
with their immediate successor and predecessor periodi-
cally, exchanging their entire successor and predecessor
lists. Instead of maintaining a finger table with O(logn)
entries, EpiChord maintains a cache that not only guaran-
tees at least O(logn)-hop performance, but can often do
better.

To allow nodes to learn about other nodes efficiently,
we use iterative lookups. We also adopt two simple poli-
cies to learn new routing entries. (i) When a node first
joins the network, it obtains a full cache transfer from
one of its two immediate neighbors. (ii) Nodes gather in-
formation by observing lookup traffic: a node updates its
cache based on information returned by queries and adds
an entry to the cache each time it is queried by a node not
already in the cache.

To look up a destination id, node x initiates p queries
in parallel to the node immediately succeeding id and to
the p — 1 nodes preceeding id, within the set of nodes
known to it (see Figure 1). Probing the succeeding node
gives us a chance of locating the destination node in one
hop. When contacted, each of the p nodes will provide its
[ “best” next hops from its cache or if it owns id, it will
simply say so. When these replies are received, further
queries will be dispatched asynchronously in parallel if
z learns about nodes that are closer to the destination id
than the other queries that are still pending. We call an
EpiChord network where p lookups are made in parallel a
p-way EpiChord.

Each cache entry has an associated time. When a node
receives a query or reply, it sets (or resets) the time of the
sender to that of its local clock. Query responses contain
a lifetime for each entry, equal to the sender’s clock at the
time of the send minus that node’s time in the sender’s
cache, and this information is used to set or reset the time
in the receiver’s cache for that node. Nodes are flushed
if they don’t respond to some number of queries or when
their lifetime exceeds some limit. Note that this scheme
requires synchronized clock rates but not synchronized
clocks. Furthermore, our preliminary experiments indi-
cate that the cache management scheme does not have a
big impact on performance and we suspect that any rea-
sonable scheme will work.

Like Chord, the correctness of the lookup algorithm is
guaranteed because a query can always reach the destina-
tion id by moving sequentially down the successor lists.
In general, O(logn)-hop routing schemes have a prede-
fined set of O(logn) fingers and provide guarantees on
lookup performance by ensuring that a node knows about
some nodes in the vicinity of each finger. Similarly, Epi-
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Fig. 1. Cache entries returned
from cache for node = for a
lookup of #d.

Fig. 2. Division of address
space into slices with respect to
node x.

Chord divides the namespace into two symmetric sets of
exponentially smaller slices as shown in Figure 2. For
performance guarantees, a node simply enforces the fol-
lowing invariant:

Cache Invariant: Every dice contains at least

j cache entries at all times.

The key idea is that to provide an O(logn)-hop guar-
antee on the lookup pathlength, the density of entries per
slice must increase exponentially as we get nearer to the
reference node. EpiChord estimates the number of slices
from its k successors and & predecessors: it requires that
the successor and predecessor lists fall into the two adja-
cent slices closest to the reference node. This implies that
we need to choose j and & such that & > 2j.

Since we need only O(logn) cache entries to guaran-
tee O(logn)-hop performance and we have O(n) entries
in the cache, the probability that the invariant is satisfied
is very high if the O(n) entries are approximately uni-
formly distributed. In the unlikely event that a node dis-
covers there are insufficient cache entries for a given slice,
it simply makes a lookup to the midpoint of that slice.

Il. ANALYSIS
A. Lookup Performance

If we assume a uniformly distributed workload, we
can show that worst-case lookup performance is O(log n)
hops. The expected worst-case lookup pathlength is at
most %loga n, where o = 35 + J% Here, n is the size
of the network, and j is the minimum number of cache
entries per slice. (The proof is omitted because of space
constraints.) This result indicates that for j = 1 we get the
same expected worst-case result as Chord does. However,
for 7 > 2, we tend to do much better: for j = 2, a = 7.2
and the EpiChord expected lookup pathlengths are at most
only log,, 2 ~ % of that for Chord. Nodes are expected to
have Sn (0 < 8 < 1) cache entries in the steady state, so
lookups are resolved in one hop with probability 5.

B. Cache Sze and Composition in the Seady Sate

The proportion of live! entries in the cache compared
to the total network size is an important system parameter

L Anentry is liveif its associated node is still online. The set of cache
entries for a node will in general consist of some live entries and some
unexpired, outdated entries.



because it determines the probability of one-hop success
and the overall performance of the system. To obtain an
estimate of the number of live entries in a cache in the
steady state, we consider a network of size n such that in a
fixed time interval, a fraction r of the nodes in the network
leave and each node makes @ lookups uniformly over the
1d namespace and sends out p queries in parallel for each
lookup. Where z is the number of nodes that is known to
a node at time ¢, we obtain the following relation:
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if queries are made uniformly over the entire 1d names-
pace, the distribution of entries within the cache is ap-
proximately uniform in the steady state.

Suppose we have a network of 100,000 nodes and
0.001% (or 10) of the nodes leave on average each sec-
ond?. If the nodes each make one lookup on average
per minute and 5 query messages are sent in parallel
for each lookup, nodes can be expected to know about
AT ~ 1,600 live nodes at any one time in the
steady state when doing hardly any work. On the other
hand, we only need approximately 2 log, (100, 000) ~ 34
nodes for j = 2 to guarantee O(logn) routing perfor-
mance. Since there is significant flexibility in the choice
of the 34 nodes, the 1,600 live cache entries are likely to
be able to satisfy the cache invariant.

C. Tradeoff in Messaging Costs between Small-Sate Se-
quential Lookup and Large-Sate-Per-Node (LSPN) Par-
allel Asynchronous Lookup

EpiChord join costs are low because a new node only
needs to register with its two immediate neighbors and it
can obtain its entire initial routing cache from either of
them. In contrast, a Chord node has to make O(logn)
lookups to locate a set of valid fingers. Although Epi-
Chord requires a larger amount of initial state (O(n)) to
be transferred, a resource-constrained node can choose to
obtain only j log n entries from its neighbor instead of 5n
entries at the small cost of some degradation in its initial
lookup performance.

2This is the approximate node departure rate of the Gnutella network
derived from the results of a recent measurement study [12], [9].

A Chord node has to periodically refresh all the fin-
gers. In contrast, the number and frequency of routing
state maintenance messages for EpiChord are expected to
be significantly lower as most of the cost associated with
such maintenance is amortized into the lookup cost.

An iterative Chord lookup will require log, n messages
on average, while a corresponding EpiChord lookup will
require plog, n messages in the worst-case. This means
that even though several lookup messages can be gener-
ated in parallel per lookup hop for EpiChord, the num-
ber of query messages for EpiChord exceeds Chord only
when plog,n > logyn, i.e., p > log, a (in the worst
case). For j = 2, this means that we can support p = 3
(which gives a good degree of lookup resilience) with no
increase in lookup traffic.

Furthermore, all lookup messages for EpiChord are
useful: If a node sends a lookup and the queried node
responds, both of the nodes have learnt that each other is
alive. If the queried node fails to respond and the query
times out, the effort is not wasted either because the query-
ing node would have learnt that the queried node is either
temporarily unavailable, has failed, or has left the net-
work.

IV. SIMULATION RESULTS

To further understand the tradeoffs when we move from
a limited-state-per-node DHT to a large-state-per-node
DHT with the same basic routing topology, we compared
EpiChord to a corresponding optimal? iterative Chord net-
work of the same size and with the same set of node ids
using our network simulator, which is written in Java. The
resulting lookup performance in terms of number of hops
and messaging costs is shown in Figures 3 and 4 respec-
tively. Although one would expect our algorithm to gener-
ate significantly more traffic because of parallel lookups,
these results show that this is not the case because fewer
hops are needed per lookup. In particular, for our chosen
parameter settings (k = 4, Q@ = 3, r = 0.1%, [ = 3), the
amount of lookup traffic generated by a 4-way EpiChord
network is roughly the same as that of a corresponding
optimal Chord network.

Although increasing the number of parallel queries p
does not significantly improve lookup pathlength, it re-
duces the probability of timeouts significantly in the face
of network churn as shown in Figure 5, where we simu-
lated a relatively dynamic network (r = 5%) with a fairly
laissez faire cache maintenance policy (i.e. cache entries
are flushed at a rate much slower than the churn rate).

3By optimal, we mean that the finger tables of the Chord nodes have
accurate finger entries at all times regardless of node failures.
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Fig. 3. Comparison of lookup performance between Chord and p-way
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Fig. 4. Comparison of lookup messaging cost between Chord and
p-way EpiChord (k = 4,Q = 3,7 = 0.1%,1 = 3).
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Our simulations also show that:

« Holding p and [ constant at 3, the amount of lookup
traffic @@ (varying between 1 and 6) has only a
marginal effect on either the lookup pathlength or
the number of messages sent for the range of  from
0.1% to 5%. This implies that although our scheme
requires a sufficient level of traffic to perform well,
its actual level of performance is not highly depen-
dent on the amount of traffic observed.

« Holding p constant at 3 and (2 constant at 1, the num-
ber [ of “best entries” returned per response (vary-
ing between 3 and 5) has neglible effect on either the
lookup pathlength or the number of messages sent for
the range of  from 0.1% to 5%. We thus conclude
that we can keep [ small and set | = 3.
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Fig. 5. Probability of timeouts with a fairly laissez faire cache main-
tenance policy (k = 4,Q = 1,7 = 5%, = 3).

V. RELATED WORK

Like EpiChord, Kademlia [6] gathers routing infor-
mation from observing lookup traffic and uses parallel
lookups to improve lookup resilience. The organization of
its routing entries is also somewhat analogous to that for
EpiChord, albeit in a different namespace. The key differ-
ence between EpiChord and Kademlia is that Kademlia
limits the amount of routing state to O(logn), while Epi-
Chord does not. By limiting its routing state to O(logn),
Kademlia lookups take on average O(logn) hops while
EpiChord can often achieve one- or two-hop lookup per-
formance with its large routing state. This is means that
with the same degree of parallelism, Kademlia is likely
to generate significantly more lookup traffic than Epi-
Chord. While Kademlia employs parallel lookups mainly
to improve lookup performance, EpiChord employs paral-
lel lookups mainly to cope possible timeouts arising from
maintaining a large amount of routing state. As shown in
Figure 3, more parallelism in the lookups for EpiChord
improves lookup pathlength only marginally. The main
lookup performance gain for EpiChord comes from main-
taining large routing state.

Proximity routing has been shown to be effective in im-
proving DHT routing performance [10]. As observed in
Kademlia, having parallel asynchronous lookup queries
indirectly optimizes for proximity and hence will im-
prove lookup latency in general. This also applies to
EpiChord. The key observation here is that the final se-
quence of lookups that returns the correct answer first in
an asynchronous parallel lookup algorithm is equivalent
to a proximity-optimized lookup sequence for the corre-
sponding sequential lookup algorithm. We have not at-
tempted to characterize this performance gain because it
is clearly highly dependent on the network topology.



Gupta et al. [9] proposed a scheme that disseminates
global network membership changes to all nodes using a
background broadcast process. They further showed that
their global broadcast scheme is feasible in terms of both
storage and bandwidth consumption for large networks
with up to a million nodes. Kelips [7] uses an epidemic
algorithm to propagate changes through the system. Ke-
lips does not provide any guarantees on worst-case perfor-
mance and relies on a random walk-based search to locate
a file when information on the required file is not cached
locally. Both these schemes impose a fixed amount of
constant background traffic on all nodes, even ones that
are relatively inactive. We recognize however that if we
want to provide stringent guarantees on routing pathlength
(i.e. one-hop), a proactive scheme is likely to be necessary.

VI. CONCLUSION

Our analysis and simulations have shown that by using
parallel lookups and by amortizing the network mainte-
nance costs into the lookup costs, our approach offers sig-
nificantly better lookup pathlengths and latencies with lit-
tle additional costs in terms of complexity and bandwidth
consumption.

Our simulations have also shown that even though mul-
tiple messages are sent per lookup step, the number of
packets sent per lookup is not significantly larger than that
for a sequential lookup algorithm because lookup path-
lengths are significantly shorter. This is a desirable trade-
off because lookup latency is the principal measure of
lookup performance.

Although our reply messages will tend to be larger than
those of traditional sequential lookup algorithms, since {
“best” entries are returned, even with the increase in size,
the messages are still less than 100 bytes in size (includ-
ing the TCP/IP headers) at a reasonable setting of [ = 3.
Hence, the increased size of the responses is not an issue
even for nodes behind a 56k modem line.

EpiChord is currently not fully optimized. There is still
significant flexibility for nodes to adopt individual poli-
cies to further enhance and optimize their individual (and
thereby global) lookup performance, if so desired. For ex-
ample, a node that discovers a high rate of node failures
within the network (i.e., from the fact that many queries
are unacknowledged) can adaptively increase the number
of parallel queries per lookup as well as be more aggres-
sive in flushing old entries from its cache. One can also
imagine improving the dissemination of routing state by
piggybacking additional random node entries on requests
or responses. Finally, if a higher level of background traf-
fic can be tolerated, EpiChord can also employ a provably
efficient epidemic cache exchange mechanism [13] to in-
crease the number of cached entries.

This paper describes work in progress. EpiChord is an
attempt at understanding the tradeoffs within the large-
state-per-node DHT design space. Our experience with
EpiChord demonstrates that we can achieve significant
gains in lookup performance and resilience by moving
from a limited-state-per-node to a large-state-per-node
DHT architecture without incurring a significant cost in
additional network traffic.
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