A High–Throughput Path Metric for Multi–Hop Wireless Routing

Douglas S. J. De Couto MIT CSAIL (LCS)

Daniel Aguayo, John Bicket, and Robert Morris http://pdos.lcs.mit.edu/grid

Indoor wireless network

29 PCs with 802.11b radios (fixed transmit power) in 'ad hoc' mode

$$\bigcirc 2^{nd} \text{ floor } \bigcirc 3^{rd} \text{ floor } \bigcirc 5^{th} \text{ floor } \\ \bigcirc 4^{th} \text{ floor } \bigcirc 6^{th} \text{ floor } \end{vmatrix}$$

Testbed UDP throughput

What throughput is possible?

'Best' for each pair is highest measured throughput of 10 promising static routes.

Talk outline

- Testbed throughput problems
- Wireless routing challenges
- A new high-throughput metric (ETX)
- Evaluation

Challenge: more hops, less throughput

- Links in route share radio spectrum
- Extra hops reduce throughput

Smooth link distribution complicates link classification.

Many links are good in one direction, but lossy in the other.

Another straw-man metric

Maximize end-to-end delivery ratio

End-to-end delivery ratio: $\begin{cases} A-B-C = \frac{51\%}{A-C} \\ A-C = 50\% \end{cases}$ Actual throughput: $\begin{cases} A-B-C : ABBABBABB = 33\% \\ A-C : AAAAAAA = 50\% \end{cases}$

New metric: ETX

Minimize total transmissions per packet (ETX, 'Expected Transmission Count') Link throughput ≈ 1/Link ETX

Delivery Ratio		<u>Link ETX</u>	<u>Throughput</u>
100%	$\bigcirc \longrightarrow \bigcirc$	1	100%
50%	$\bigcirc \bigcirc \bigcirc$	2	50%
33%		3	33%

Calculating link ETX

Assuming 802.11 link–layer acknowledgments (ACKs) and retransmissions:

P(TX success) = P(Data success) × P(ACK success)

Link ETX = 1 / P(TX success) = 1 / [P(Data success) × P(ACK success)]

Estimating link ETX:

P(Data success) \approx measured fwd delivery ratio r_{fwd} P(ACK success) \approx measured rev delivery ratio r_{rev}

Link ETX $\approx 1 / (r_{\text{fwd}} \times r_{\text{rev}})$

Measuring delivery ratios

- Each node broadcasts small link probes (134 bytes), once per second
- Nodes remember probes received over past 10 seconds
- Reverse delivery ratios estimated as
 r_{rev} ≈ pkts received / pkts sent
- Forward delivery ratios obtained from neighbors (piggybacked on probes)

Route ETX

Route ETX = Sum of link ETXs

ETX Properties

- ETX predicts throughput for short routes (1, 2, and 3 hops)
- ETX quantifies loss
- ETX quantifies asymmetry
- ETX quantifies throughput reduction of longer routes

ETX caveats

- ETX link probes are susceptible to MAC unfairness and hidden terminals
 - Route ETX measurements change under load
- ETX estimates are based on measurements of a single link probe size (134 bytes)
 - Under-estimates data loss ratios, overestimates ACK loss ratios
- ETX assumes all links run at one bit-rate

Evaluation Setup

- Indoor network, 802.11b, 'ad hoc' mode
- 1 Mbps, 1 mW, small packets (134 bytes), RTS/CTS disabled
- DSDV + modifications to respect metrics
 - Packets are routed using route table snapshot to avoid route instability under load.
- DSR + modifications to respect metrics

DSR with ETX (no TX feedback)

Some related work

- Threshold-based techniques
 - DARPA PRNet, 1970s-80s [Jubin87]: Minimum hop-count, ignore 'bad' links (delivery ratio < 5/8 in either direction)
 - Link handshaking [Lundgren02, Chin02]: Nodes exchange neighbor sets to filter out asymmetric links.
 - SNR-based approaches [Hu02]: Mark low-SNR links as 'bad', and avoid them
- Mote sensors [Yarvis02]
 - Product of link delivery ratios

What's next: MIT Roofnet

Summary

- ETX is a new route metric for multihop wireless networks
- ETX accounts for
 - Throughput reduction of extra hops
 - Lossy and asymmetric links
 - Link-layer acknowledgements
- ETX finds better routes!

DSDV & DSR implementations: http://pdos.lcs.mit.edu/grid

Roofnet info at poster session

Extra slides follow

ETX vs. link handshaking

Throughput differs between paths

Evaluation details

- All experiments:
 - 134-byte (including 802.11 overhead) UDP packets sent for 30 seconds
- DSDV:
 - 90 second warm-up (including ETX)
 - Route table snapshot taken at end of 90s used to route UDP data for next 30s
- DSR:
 - Initiate route request by sending 1 pkt/s for five seconds; followed by UDP data for 30s
 - ETX warms up for 15s before route request

Effect of asymmetry on DSDV

B successfully receives all of A's route ads, and installs a one-hop route to A.

But, throughput of B-A = 0.08B-C-A = 0.5