Multihop Wireless Networks: What's Wrong With Min Hopcount?

Douglas S. J. De Couto Daniel Aguayo, Benjamin A. Chambers, and Robert Morris <u>http://pdos.lcs.mit.edu/grid</u>

Wired Nets: Why Min Hopcount?

- Prefer route with fewest links ("hops")
- Many more sophisticated alternatives

 End-to-end latency, lowest congestion, etc.
- Min hopcount works in practice
 - Can engineer a decent network
 - Alternatives complex, less tested

Min Hopcount Assumption

- All important route state in hopcount
- Link quality is bimodal
 - Links are either "good", or "bad"
- All "good" links are equivalent
 - Sufficient condition for success
- What about wireless?

Indoor Wireless Network

6th floor

802.11b radios (fixed tx power), PCs, DSDV

Min Hopcount Underperforms

"Best" is maximum pkts/sec over multiple static source routes

Not All Min Hopcount Paths Are Equal

Not All Links Are Equal

- 171 non-zero links
- Links are not bimodal
- Min hopcount assumptions are false

- There are nodes at every distance
- Link quality depends on signal strength (distance)
- Min hopcount maximizes link distance
 - Marginal links are more likely!

Should We Give Up Hopcount?

- Intuition from wired networks is wrong
 - Links share spectrum
 - Capacity penalty for more hops

- What should we optimize?
 - Per-route throughput, **network capacity**, power?

Low Quality 802.11 Links

- 802.11 has link-level retransmissions
- Lossy links become narrow links
 - -0% effective loss rate
 - Good pings
 - But, low packet-per-second throughput
- Retransmissions waste capacity
 - Other nodes could have transmitted

A Reasonable (Wrong) Idea

• Maximize bottleneck throughput: A-D-C

Actual throughput: $\begin{cases} A-B-C: ABBABBAB = 1/3 \\ A-D-C: ADC: ADC = 1/4 \end{cases}$

A Better Idea

- Insight: spectrum use is important!
- Idea: minimize transmissions per packet

Transmissions Per Packet

Transmissions per packet (A-B-C) = 3Transmissions per packet (A-D-C) = 4

Research Agenda

- Explore performance of other protocols, e.g. DSR, AODV
- Explain route performance by underlying link performance
- Confirm usefulness of transmissions per packet as metric
- Handle link variation over time

Summary

- Minimum hopcount protocols are unlikely to achieve best performance
- Quality varies between links
- Transmissions per packet nicely quantifies link and path quality for routing