
CEDAR: a Core-Extraction Distributed Ad hoc

Routing algorithm
Prasun Sinha Raghupathy Sivakumar Vaduvur Bharghavan

University of Illinois at Urbana-Champaign
Email: {prasun, sivakumr, bharghav} @timely. crhc.uiuc.edu

Absiract—CEDARis an algorithm for QoS routing in ad hoc network en-

vironments. It has three key components: (a) the establishment and main-

tenance of a setf-organizing routing infrastructure catted the core for per-

forming route computations, (b) the propagation of the link-state of stable

high-bandwidth links in the core through increase/decrease waves, and (c)a

QoS ra,ute computation algorithm that is exeeuted at the core nodes using

onty locally available state.

Our preliminary performance evaluation shows that CEDAR is a robust

and adaptive QoS routing algorithm that reacts effectively to the dynamics

of the network white stitl approximating link-state performance for stable
networks.

Keywords—Ad hoc routing, QoS routing

I. INTRODUCTION

An ad hoc network is a dynamic multi-hop wireless network

that is established by a group of mobile hosts on a shared wire-

less channel by virtue of their proximity to each other. Ad hoc

networks find applicability in military environments, wherein a

platoon of soldiers or a fleet of ships may establish an ad hoc net-

work in the region of their deployment. Military network envi-

ronments typically require quality of service for their mission-

critical applications. Hence, the focus of this paper is to provide

quality of service routing in ad hoc networks.

Ad hoc networks are dynamic in nature, and transmissions

are susceptible to fades, interference, and collisions from hid-

den/exposed stations. These characteristics make it a challeng-

ing task to design a QoS routing algorithm for ad hoc networks.

Following are the main design goals for such an algorithm:

1. The algorithm should be highly robust and should degrade

gracefully with increasing mobility.

2. Route computation should not require maintenance of

global information.

3. The computed route should be highly likely to sustain the

requested bandwidth for the flow.

4. ‘The route computation should involve as few hosts as pos-

sible to reduce the state management overhead involved in

(>0S routing.

5. Hosts should have quick access to routes when connections

need to be established.

We propose CEDAR as a QoS routing algorithm, which

achieves the above design goals for small to medium size ad hoc

networks consisting of tens to hundreds of nodes. The following

is a brief description of the three key components of CEDAR.

. Core extraction: A set of hosts is distributedly and dynam-

ically elected to form the core of the network by approx-

imating a minimum dominating set of the ad hoc network

using only local computation and local state. Each core host

maintains the local topology of the hosts in its domain, and

alSO performs route computation on behalf of these hosts.

●

●

Link state propagation: QoS routing in CEDAR is achieved

by propagating the bandwidth availability information of

stable links in the core graph. The basic idea is that the in-

formation about stable high-bandwidth links can be made

known to nodes far away in the network, while information

about dynamic links or low bandwidth links should remain

local. Slow-moving increase waves and fast moving de-

crease waves which denote corresponding changes in avail-

able bandwidths on links, are used to propagate non-local

information over core nodes.

Route computation: Route computation first establishes a

core path from the dominator (See Section II) of the source

to that of the destination. The co?e path provides the direc-

tionality of the route from the source to the destination. Us-

ing this directional information, CEDAR iteratively tries to

find a partial route from the source to the domain of the fur-

thest possible node in the core path (which then becomes

the source for the next iteration) satisfying the requested

bandwidth, using only local information. Effectively, the

computed route is a shortest-widestl furthest path using the

core path as the guideline.
The rest of this paper is organized as follows. Section II de-

scribes the network model and terminology used in the paper.

Section III describes the computation and dynamic management

of the core of the network, Section IV describes link state propa-

gation through the core using increase and decrease waves. Sec-

tion V describes the route computation algorithm of CEDAR,

and puts together the algorithms described in the previous sec-

tions. Section VI analyzes the performance of CEDAR through

simulations and Section VII summarizes the paper.

II. NETWORK MODEL AND TERMINOLOGY

We assume that all the hosts communicate on the same shared

wireless channel. Neighborhood is assumed to be a commutative

property (i.e. if A canhear l?, then 13 can hear A). Because of
the local nature of transmissions, hidden and exposed stations2

abound in an ad hoc network. We assume the use of a CSMAICA

like algorithm such as MACAW [1] for reliable unicast commu-

nication, and for solving the problem of hiddeu/exposed stations.

Essentially, data transmission is preceded by a control packet

handoff, and the sequence of packets exchanged in a commu-
nication is the following: RTS (from sender to receiver) - CTS

(from receiver to sender) - Data (from sender to receiver) - ACK

1A shortest widest path is the maximum baudwidth path. If there are several
such paths, it is the one with the least number of hops.

2A bidden station is a host that is within the range of the receiver but not the
transmitter, while an exposed station is within the range of the transmitter but uot
the receiver.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

(from receiver to sender). Local data broadcasts are not assumed

to be reliable.

We assume that each host can estimate the available band-

width using some link-level mechanisms. We also assume a

close coordination between the MAC and routing layers is as-

sumed. In particular, reception of RTS and CTS control mes-

sages at the MAC layer is used to improve the behavior of the

routing layer, as explained in Section III.

We represent the ad hoc network by means of an undirected

graph G = (V, E), where V is the set of nodes in the graph (hosts

in the network), and E is the set of edges in the graph (links in

the network). The ith open neighborhood, IVi (z) of node ~ is the

set of nodes whose distance from x is not greater than i, except

node r itself. The ith closed neighborhood Ni [x] of node x is

N(i) IJ {X}.

A clominating set S c V is a set such that every node in V

is either in S or is a neighbor of a node in S, A dominating set

with minimum cardinality is called a minimum dominating set

(MDS). Also, every node not in S chooses one of its neighbors

who is in S as its dominator. A virtual link [u, v] between two

nodes in the dominating set S is a path in G from u to v. We use

the term tunnel interchangeably with virtual link in our discus-

sions.

Given an MDS VC of graph G, we define a core of the graph

C = (VC,,?3C), wherellc = {[u, v] I u c Vc, v e VC, U E

N3 (v) }. Thus, the core graph consists of the MDS nodes VC,

and a set of virtual links between every two nodes in Vc that are

within a distance 3 of each other in G. Two nodes u and v which

have a virtual link [u, v] in the core are said to be nearby nodes.

Thus, from the definition of the core, if G is connected, then a

core C of G must also be connected (via virtual links).

III. CEDAR ARCHITECTURE AND THE CORE

The QoS routing architecture in CEDAR has three key com-

ponents: (a) the establishment of the core in the ad hoc network

to manage topology information and perform route computation,

(b) the propagation of the link-state of stable high bandwidth

links in the core graph through increase and decrease waves, and

(c) the route computation algorithm at core nodes using only lo-

cal state.

In the rest of this section, we first describe the motivation for

choosing a core-based routing architecture, then describe a low

overhead mechanism to generate and maintain the core of the

netwc,rk, and finally describe an efficient mechanism to accom-

plish a ‘core broadcast’ using unicast transmissions.

A. Rationale for a Core-based Architecture in CEDAR

Many contemporary proposals for ad hoc networking require

every node in the ad hoc network to perform route computations

and topology management [2], [3], [4]. However, CEDAR uses a

core-based infrastructure for QoS routing due to two compelling
reasons.

1. QoS route computation involves maintaining local and

some non-local link-state, and monitoring and reacting to

some topology changes. Clearly, it is beneficial to have as

few nodes in the network performing state management and

route computation as possible.

2. Local broadcasts are highly unreliable in ad hoc networks

due to the abundance of hidden and exposed stations.

Topology information propagation [4] and route probes [2],

[3] are inevitable in order to establish routes and will, of ne-

cessity, need to be broadcast if every node performs route

computation. While the adverse effects of unreliable broad-

casts are typically not considered in most of the related

work on ad hoc routing, we have observed that flooding in

ad hoc networks is highly lossy [5]. On the other hand, if

only a core subset of nodes in the ad hoc network perform

route computations, it is possible to setup reliable unicast

channels between nearby core nodes and accomplish both

the topology updates and route probes much more effec-

tively.

The issues with having only a core subset of nodes performing

route computations are threefold. First, nodes in the ad hoc net-

work that do not perform route computation must have easy ac-

cess to a nearby core node so that they can quickly request routes

to be set up. Second, the establishment of the core must be a

purely local computation. In particular, no core node must need

to know the topology of the entire core graph. Third, a change

in the network topology may cause a recomputation of the core

graph. Recomputation of the core graph must only occur in the

locality of the topology change, and must not involve a global re-

computation of the core graph. On the other hand, the locally re-

computed core graph must still only comprise of a small number

of core nodes - otherwise the benefit of restricting route compu-

tation to a small core graph is lost. Our core computation algo-

rithm satisfies the above requirements.

B. Generation and Maintenance of the Core in CEDAR

Ideally, the core comprises of the nodes in a minimum domi-

nating set Vc of the ad hoc network G = (V, E). However, we

are using a robust and simple constant time algorithm which re-

quires only local computations and generates good approxima-

tions for the MDS in the average case.

Consider a node u, with first open neighborhood N1 (u), de-

gree d(u) = IN1 (u) 1, dominator dorn(u), and effective degree

d“ (u), where d* (u) is the number of its neighbors who have cho-

sen v, as their dominator. The core computation algorithm which

is performed periodically, works as follows at each node u.

1. u broadcasts a beacon which contains the

following information pertaining to the core computation:

< U, d*(u), d(u), dom(u) >.
2. u sets don(u) +-- v, where v is the node in Nl [u] with the

largest value for < d*(v), d(v) >, in lexicographic order.

Note that u may choose itself as the dominator.

3. u then sends v a unicast message including the following

information: < u, {(w, dom(w)) [VW c N1 (u)} >. v

then increments d*(v).

4. If d* (u) >0, then u joins the core.

Essentially, each node that needs to find a dominator selects the
highest degree node with the maximum effective degree in its

first closed neighborhood. Ties are broken by node id.

When a node u joins the core, it issues a

‘piggybacked broadcast’ in N3 (u). A piggybacked broad-

cast is accomplished as follows. In its beacon, u transmits

a message: < u. DOiW. 3. vath.traversed = null >.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

When node w hears a beacon that contains a message <

u, DOM, i,path-traversed >, it piggybacks the message <

u, DOM, i – 1, path_traversed + w > in its own beacon if

i – 1 > 0. Thus, the piggybacked broadcast of a core node ad-

vertises its presence in its third neighborhood. This guarantees

that each core node identifies its nearby core nodes, and can set

up virtual links to these nodes using the path-traversed field

in the broadcast messages. The state that is contained in a core

node u is the following: its nearby core nodes (i.e. the core nodes

in lV3 (u)); N*(u), the nodes that it dominates; for each node

v c N“(u), < Vw E iV1(v), < w, dorn(w) >>. Thus each

core node has enough local topology information to reach the

domain of its nearby nodes and set up virtual links. However,

no core node has knowledge of the core graph. In particular, no

non-local state needs to be maintained by core nodes for the con-

struction or maintenance of the core. Note from steps 2 and 4 that

over a period of time, the core graph prunes itself because nodes

have a propensity to choose their core neighbor with the highest

effect ive degree as their dominator.

Maintaining the core in the presence of network dynamics is

very simple. Consider that due to mobility, a node loses con-

nectiv ity with its dominator. After listening to beacons from its

neighbors, the node either finds a core neighbor which it now

nominates as its dominator, or nominates one of its neighbors to

join the core, or itself joins the core.

C. Core Broadcast and its Application to CEDAR

As with most existing ad hoc networks, CEDAR requires the

broadcast of route probes to discover the location of a destina-

tion node, and the broadcast of some topology information (in

the form of increase/decrease waves). While most current algo-

rithms assume that flooding in ad hoc networks works reason-

ably well, our experience has shown otherwise. In particular, we

have observed that flooding probes, which causes repeated lo-

cal broadcasts, is highly unreliable because of the abundance of

hidden and exposed stations. Thus, we provide a mechanism for

‘core broadcast’ based on reliable unicast (using RTS-CTS etc.),

Note that it is reasonable to assume a unicast based mechanism

to achieve broadcast in the core, because each core node is ex-

pected to have few nearby core nodes. Besides, our core broad-

cast mechanism ensures that each core node does, not transmit a

broadcast packet to every nearby core node. CEDAR uses a close

coordination between the medium access layer and the routing

layer in order to achieve efficient core broadcast.

Recall that a virtual link is a unicast path of length 1, 2, or

3. Recall also, that CSMA/CA protocols use a RTS-CTS-Data-

ACK handshake sequence to achieve reliable unicast packet

transmission. Our goal is to use the MAC state in order to

achieve efficient core broadcast using O (IV [) messages, where

[Vl is the number of nodes in the network.

In (order to achieve efficient core broadcast, we assume that
each node temporarily caches every RTS and CTS packet that
it hears on the channel for core broadcast packets only. Each

core broadcast message M that is transmitted to a core node i

has the unique tag < M, i >. This tag is put in the RTS and

CTS packets of the core broadcast packet, and is cached for a

short period of time by any node that receives (or overhears)
these packets on the channel. Consider that a core node u has

heard a CTS(< M, w >) on the channel. Then, it estimates that

its nearby node v has received M, and does not forward M to

node v. Now suppose that u and u are a distance 2 apart, and

the virtual channel [u, v] passes through a node w, Since w is a

neighbor of v, w hears CTS(< M, v >). Thus, when u sends a

RTS(< M, v >) to w, w sends back a NACK back to u. If u and

v are a distance 3 apart, using the same argument we will have

atmost one extra message. Essentially, the idea is to monitor the

RTS and CTS packets in the channel in order to discover when

the intended receiver of a core broadcast packet has already re-

ceived the packet from another node, and suppress the duplicate

transmission of this packet.

Core broadcast with node
1 as source

A
111610

I
8

Core broadcast with node
3 as source

Ad hcc Network Topology

Fig. 1. Example of a core broadcast. Nodes in black me core nodes. Sotid lines

denote links in the ad hoc network. Dotted pipes denote virtual tinks in the

core graph.

In the ad hoc network shown in Figure 1, when node 1 is the

source of the core broadcast, 10 would not be sending a message

to 11 as it would have heard a CTS from 11, when 11 was re-

ceiving the message from 3. Similarly, 8 would not be sending

on the tunnel to 10, as 9 would have heard the CTS from 10, and

hence, would send a NACK when 8 sends an RTS to 9. Also,

on the tunnel from 6 to 3, the message would be sent to 5, but 5

would not be able to forward it any further because of 4 having

heard CTS from 3, and hence, 5 receiving NACK from 4. Thus,

the example illustrates that a duplicate message can be avoided

on tunnels of length 1 and 2, but a duplicate message will travel

one extra hop for tunnels of length 3.

Note that core broadcast has the following features:

1. The core nodes do not explicitly maintain a source-based

tree. However, the core broadcast dynamically (and implic-

itly) establishes a source-based tree, which is typically a

breadth-first search tree for the source of the core broadcast.

2. The number of messages is O(\Vc 1) in the average case. In

particular, the only case we transmit extra data messages is

when two nearby core nodes are a distance 3 apart.

3. Since the trees are not explicitly maintained, different mes-

sages may establish different trees. Likewise, changes in

the network topology do not require any recomputation.

However, the coordination of the MAC layer and the rout-

ing layer ensures that the core broadcast establishes a tree,
and that a core node typically does not receive duplicates

for a core broadcast.

While our approach for the core broadcast is very low overhead

and adapts easily to topology changes, the RTS and CTS packets

corresponding to a core broadcast need to be cached for some

time after their reception.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Core broadcast finds applicability in two key aspects of A. Increase and Decrease Waves

CEDAR: discovery of the core path, and propagation of in-

creaseldecrease waves.

IV. QoS STATE PROPAGATION IN CEDAR

Section III described the core routing infrastructure of

CEDAR. Since each core node uses only the locally cached state

to compute the shortest-widest furthest path along the core path

in the route computation phase, we now turn our attention to the

nature of state that is stored in each core node. Atone extreme is

the minimalist approach of only storing local topology informa-

tion at each core node, This approach results in a poor routing

algorithm (i.e. the routing algorithm may fail to compute an ad-

missible route even if such routes exist in the ad hoc network) but

has a very low overhead for dynamic networks. At the other ex-

treme is the maximalist approach of storing the entire link state of

the ad hoc network at each core node. This approach computes

optimal routes but incurs a high state management overhead for

dynamic networks, and potentially computes stale routes based

on ou~-of-date cached state when the network dynamics is high.

The problem with having only local state is that core nodes

are unable to compute good routes in the absence of link-state

information about stable high-bandwidth remote links, while the

problem of having global state is that it is useless to maintain the

link state corresponding to low-bandwidth and highly dynamic

links that are far away because the cached state is likely to be

stale anyway. Fundamentally, each core node needs to have the

up-to-date state about its local topology, and also the link-state

corresponding to relatively stable high-bandwidth links further

away. Providing for such a link-state propagation mechanism

ensures that CEDAR approaches the minimalist local state algo-

rithm in highly dynamic networks, and approaches the maximal-

ist link-state algorithm in highly stable networks. We achieve the

goal of having stability and bandwidth based link-state propaga-

tion using increase and decrease waves, as described in this sec-

tion.

The basic idea of having an increaseldecrease wave approach

for updating link-state is the following. There are two types of

waves: a slow-moving increase wave that denotes an increase of

bandwidth on a link, and a fast-moving decrease wave that de-

notes a decrease of bandwidth on a link. For unstable links that

come up and go down frequently, the fast moving decrease wave

quickly overtakes and kills the slower moving increase wave,

thus ensuring that the link-state corresponding to dynamic links

is local. For stable links, the increase wave gradually propagates

through the core. Each increase wave also has a maximum dis-

tance it is allowed to propagate. Low bandwidth increase waves

are all owed only to travel a short distance, while high bandwidth

increase waves are allowed to travel far into the network. Essen-

tially, the goal is to propagate only stable high-bandwidth link-
state throughout the core, and keep the low-bandwidth and un-

stable link-state local.

We first describe the mechanics of the increase and decrease

waves, and then answer the three key questions pertaining to

these waves: when should a wave be generated, howfast should

a wave propagate, and howfar should a wave propagate.

For every link 1 = (a, b), the nodes a and b are responsible

for monitoring the available bandwidth on 1, and for notifying

the respective dominators for initiating the increase and decrease

waves, when the bandwidth changes by some threshold value.

These waves are then propagated by the dominators (core nodes)

to all other core nodes via core broadcasts. Each core node has

two queues: the ito-queue that contains the pending core broad-

cast messages for increase waves, and the alto-queue that con-

tains the pending core broadcast messages for decrease waves.

For each link 1 about which a core node caches link-state, the

core node contains the cached available bandwidth bau (1).

The following is the sequence of actions for an increase wave.

1. When a new link 1 = (a, b) comes up, or when the avail-

able bandwidth b(a, b) increases beyond a threshold value,

then the two end-points of 1 inform their dominators for ini-

tiating a core broadcast for an increase wave:

ito(< a, b, dorrt(a), dorn(b), b(a, b), Ml(b) >)

where ito (increase to) denotes the type of the wave, (a, b)

identifies the link, dorn(a) denotes the dominator of a,

don(b) denotes the dominator of b, b(a, b) denotes the

available bandwidth on the link, and ttl (b) is a ‘time-to-

live’ field that denotes the maximum distance to which this

wave can be propagated as an increase wave. The ids of the

dominators of the link end-points are required by the rout-

ing algorithm. ttl (b) is an increasing function of the avail-

able bandwidth, as described in Section IV-B.

2. When a core node u receives an ito wave

ito(a, b, dorn(a), don(b), b(a, b), ttl),

(a)

(b)

(c)

(d)

if u has no state cached for (a, b)

and (b(a, b) = O),

the wave is killed.

else if u has no state cached for (a, b) and (b(a, b) > O),

bo. (a, b) +- b(a, b)

if (tti > O), then

add ito(a, b, dom(a), don(b), b(a, b), ttl – 1)

to the ito-queue.

else if u has cached state for (a, b) and (ttl > O),

bav(a, b) - b(a, b)

delete any pending ito/dto message for (a, b)

from the ito-queue and alto-queue.

if (baV(a, b) < b(a, b))

add ito(a, b, dorn(a), dons(b), b(a, b), ttl – 1)

to the ito-queue.

else if (b@V(a, b) > b(a, b)),

add dto(a, b, don(a), dorn(b), b(a, b), ttl – 1)

to the alto-queue.

else if u has cached state for (a, b) and (ttl = O),

ba. (a, b) + b(a, b)

delete any pending ito/dto message for (a, b)

from the ito-queue and alto-queue.

add dto(a, b, dowt(a), dorn(b), O, cm) to the alto-queue.
3. The ito-queue is flushed periodically, depending on the

speed of propagation of the increase wave.

The following is the sequence of actions for a decrease wave.

1. When a link 1 = (a, b) goes down, or when the

available bandwidth b(a, b) decreases beyond a threshold

value, then the two end-points of 1 inform their domina-

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

tors for initiating a core broadcast for a decrease wave:

dto(a, b, dom(a), don(b), b(a, b), ttl(b)), where dto (de-

crease to) denotes the type of the wave, and the other pa-

rameters are as defined before.

2. When a core node u receives a dto wave

dto(a, b, dorn(a), dorn(b), b(a, b), ttl), it is processed in

the same way as the ito wave is processed in 2 above.

3. ‘The alto-queue is flushed whenever there are packets in the

cpeue.

There are several interesting points in the above algorithm.

First, the way that the ito-queue and the alto-queue are flushed

ensures that the decrease waves propagate much faster than the

increa!se waves and suppress state propagation for unstable links.

Second, waves are converted between ito and dto on-the-fly,

depending on whether the cached value for the available band-

width is lesser than the new update (ito wave generated) or not

(alto wave generated). Third, after a distance of ttl (which de-

pends on the current available bandwidth of the link), the dto(<

a, b, dom(a), dom(b), O, co >) message ensures that all other

core nodes which had state cached for this link now destroy that

state. However, the dto(< a, b, dorn(a), donz(b), O, m >) wave

does not propagate throughout the network - it is suppressed as

soon as it hits the core nodes which do not have link state for

(a, b) cached (point 2(a) in decrease wave propagation). As we

have noted before, the increase/decrease waves use the efficient

core broadcast mechanism for propagation.

B. Issues with increaseldecrease waves:

There are three key questions pertaining to the propagation of

increase/decrease waves that need to be answered. While finding

answers to these questions is still part of ongoing research, we

present below some preliminary answers.

● When should a IncreaselDecrease Wave be Generated? A

wave should only be generated when the available band-

width has changed by a threshold value since the last

wave was generated. A simple approach would be to

make the threshold a constant system parameter. Another

method suggested by [6] uses logarithmic update, which

c~oesnot wastefully generate increase/decrease waves when

the change in link capacity is unlikely to alter the probabil-

i~y of computing admissible routes.

● How Far does a IncreaselDecrease Wave Propagate?

our goal is to propagate information about stable high-

bandwidth links throughout the network and localize the

state of the low-bandwidth links. In other words, the max-

imum distance that an increase wave can travel (i.e. the

time-to-live field) is an increasing function of the available

bandwidth of the link.

● How Fast does a Increase\Decrease Wave Propagate?

An increase wave waits for a fixed timeout period (e.g.,

twice the expected inter-arrival time between the genera-

tion of two successive waves for any link) at each node be-
fore being forwarded whereas a decrease wave is imme-

diately forwarded to its neighbors. Thus decrease waves

move much faster and can kill increase waves for unstable

links. The wait-before-forwarding for increase waves also

naturally leads to the implicit establishment of a source-

based breadth-first-search tree for the core broadcast de-

scribed in Section III.

V. QoS ROUTING IN CEDAR

The QoS route computation in CEDAR consists of three key

components: (a) discovery of the location of the destination and

establishment of the core path to the destination, (b) establish-

ment of a short stable admissible QoS route from the source to

the destination using the core path as a directional guideline, and

(c) dynamic re-establishment of routes for ongoing connections

upon link failures and topology changes in the ad hoc network.

Briefly, QoS route computation in CEDAR is an on-demand

routing algorithm which proceeds as follows: when a source

node s seeks to establish a connection to a destination node d,

s provides its dominator node dom(s) with a < s, d, b > triple,

where b is the required bandwidth for the connection. If dom(s)

can compute an admissible available route to d using its local

state, it responds to s immediately. Otherwise, if dom(s) al-

ready has the dominator of d cached and has a core path estab-

lished to dom(d), it proceeds with the QoS route establishment

phase. If dorn(s) does not know the location of d, it first dis-

covers dom(d), simultaneously establishes a core path to d, and

then initiates the route computation phase. A core path froms

to d results in a path in the core graph from dom(s) to don(d).

dorn(s) then tries to find the shortest-widest furthest admissible

path along the core path, i.e. dom(s) uses its local state to find

the shortest-widest admissible path to a node t in the domain of

the furthest possible core node dom(t) in the core path. Once the

path froms tot is established, dom(t) then uses its local state to

find the shortest-widest furthest admissible path to d along the

core path, and so on. Eventually, either an admissible route to

d is established, or the algorithm reports a failure to find an ad-

missible path. As we have already discussed in previous sec-

tions, the knowledge of remote stable high-bandwidth links at

each core node significantly improves the probability of finding

an admissible path so long as such a path exists in the network.

In the following subsections, we describe the three key com-

ponents of QoS routing in CEDAR.

A. Establishment of the Core Path

The establishment of a core path takes place whens requests

dom(s) to setup a route to d (say with required bandwidth b),

and dom(s) does not know the identity of dom (d) or does not

have a core path to dom(d), Establishment of a core path con-

sists of the following steps.

1. dom(s) initiates a core broadcast to set up a core path with

the following message:

< core.path-req, dom(s), d, b, P = null >.

2. When a core node u receives the core path request message

< core.path.req, dom(s), d, b, P >, it sets P - PU {u},
and forwards the message to each of its nearby core nodes

(according to the core broadcast algorithm)

3. When dom(t) receives the core path request message <
core.path.req, dorn(s), d, b, P >, it sends back a source

routed unicast core-path.ack message to dom(s) along the

inverse path recorded in P. The response message also con-

tains P, the core path from dom(s) to dom(d).

Upon reception of the core_path_ack message from dom(d),

dom(s) completes the core path establishment phase and enters

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

the QoS route computation phase.

Note that by virtue of the core broadcast algorithm, the core

path request traverses an implicitly (and dynamically) estab-

lished source routed tree from dorn(s) which is typically a

breadth-first search tree. Thus, the core path is approximately

the shortest admissible path in the core graph from dorn(s) to

dom(d), and hence provides a good directional guideline for the

QoS route computation phase.

B. QoS Route Computation

Recall from Sections III and IV that dorn(s) has a partial

knowledge of the ad hoc network topology, which consists of the

up-to- date local topology, and some possibly out-of-date infor-

mation about remote stable high-bandwidth links in the network.

The following is the sequence of events in QoS route computa-

tion.

1. Using the local topology, dorn(s) tries to find a path froms

to the domain of the furthest possible core node in the core

path (say dorn(t)) that can provide at least a bandwidth of b

(bandwidth of the connection request). The bandwidth that

can be provided on a path is the minimum of the individual

available link bandwidths that comprise the path,
2. Among all the admissible paths (known using local state)

to the domain of the furthest possible core node in the core

path, dom(s) picks the shortest-widest path using a two

phase Dijkstra’s algorithm [7].

3. Let t be the end point of the chosen path. dom(s) sends

dom (t) the following message:

<< s, d, b, P,p(s, t), dom(s), t >, wheres, d, and t are the

source, destination, and intermediate node in the partially

computed path, b is the required bandwidth, P is the core

path, and p(s, t) is the partial route computed so far.

4. dom(t) then performs the QoS route computation using its

local state identical to the computation described above.

5. Eventually, either there is an admissible path to d or the lo-

cal route computation will fail to produce a path at some

core node. The concatenation of the partial paths computed

by the core nodes provides an end-to-end path that can sat-

isfy the bandwidth requirement of the connection with high

probability.

The core path is computed in one round trip, and the QoS route

computation algorithm also takes one round trip. Thus, the route

discovery and computation algorithms together take two round

trips if the core path is not cached and one round trip otherwise.

Note that while the QoS route is being computed, packets may

be sent froms to d using the core path. The core path thus pro-

vides a simple backup route while the primary route is being

computed.

C. Dynamic QoS Route Recomputation for Ongoing Connec-

tions

Route recomputations may be required for ongoing connec-

tions under two circumstances: the end host moves, and there is

some intermediate link failure (possibly caused by the mobility

of an intermediate router). End host mobility can be thought of

as a special case of link failure, wherein the last link fails.

CEDAR has two mechanisms to deal with link failures and re-

duce the impact of failures on ongoing flows: dynamic recompu-

tation of an admissible route from the point of failure, and noti-

fication back to the source for source-initiated route recomputa-

tion. These two mechanisms work in concert and enable us to

provide seamless mobility.

1. QoS Route Recomputation at the Failure Point Consider

that a link (u, v) fails on the path of an ongoing connec-

tion froms tot. The node nearest to the sender, u, then ini-

tiates a local route recomputation similar to the algorithm

in Section V-B. Once the route is recomputed, u updates

the source route in all packets from s to t accordingly. If

the link failure happens near the destination, then dynamic

route recomputation at the intermediate node works well

because the route recomputation time to the destination is

expected to be small, and packets in-flight are re-routed

seamlessly.

2. QoS Route Recomputation at the Source: Consider that a

link (u, v) fails on the path of an ongoing connection from

s tot, The node nearest to the sender, u, then notifiess that

the link (u, v) has failed. Upon receiving the notification, u

stops its packet transmission, initiates a QoS route compu-

tation as in Section V-B, and resumes transmission upon the

successful re-establishment of an admissible route. If the

link failure happens near the source, then source-initiated

recomputation is effective, because the source can quickly

receive the link-failure notification and temporarily stop

transmission.

VI, PERFORMANCE EVALUATION

For our simulations, we make the following assumptions

about the network environment. (a) The channel capacity is

lMbps. (b) It takes 6 time for a node to successfully transmit a

message over a single link, where d is the degree of the node. (c)

The dynamics of the topology are induced either by link failure

or mobility. (d) Packets are source routed. (e) The transmission

range for each node is a 10 by 10 unit square region with the node

at the center of this region (we generate our test graphs by ran-

domly placing hosts in a 100 by 100 square region) and (vi) each

CEDAR control packet transmission slot has a period of 2ms.

We present three sets of results from our simulations. The first

set of results characterizes the performance of CEDAR in a best-

effort service environment. The goal is to isolate the character-

ization of the basic routing algorithm from the effects of QoS

routing for this set of results. The second set of results evaluates

the performance of QoS routing in CEDAR. The third set of re-

sults evaluates the performance of CEDAR for ongoing connec-

tions in the presence of mobility. Essentially, the first two sets of

results evaluate the performance of CEDAR in coming up with

new routes in an ad hoc network, while the third set of results

evaluates how CEDAR copes with link failures for ongoing con-

nections.

In all our simulations, the notation CEDARt stands for a sim-

ulation run of CEDAR at time t (note that the amount of remote
link information a core node has and consequently the optimality

of routes it computes increases with time)

A. Performance of CEDAR in a best-effort service environment

We use a randomly generated graph having 30 nodes (Figure

2) for the results in this section. The significant parameters for

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

the graph - number of nodes(n), number of edges(m), number of

core rlodes(C), diameter of the core(diarnc), average degree(J)

- are shown in the caption of Figure 2. For evaluating CEDAR

in a best-effort environment, we measure the average path length

(APL) in number of hops, message complexity for route com-

putation (MC), route computation time (TC) in seconds and the

core node usage ratio (CU) also in number of hops. These mea-

surements are taken for both optimal shortest path routing and

CEDAR. For CEDAR, we measure these parameters at differ-

ent points of time to study the impact of the propagation of in-

crease waves. The time d used in the tables is the constant time

for which increase waves are delayed at each hop.

As can be seen from the results, CEDAR performs reasonably

well before the introduction of increaseldecrease waves, but con-

verges to a near optimal performance once these waves are intro-

duced.. The ideal value for the CU should be zero as we seek to

avoid using the virtual tunnels for data flow in order to prevent

it from becoming a bottleneck. The counter-intuitive increase in

APL, MC and TC with increase in time in these simulations are

due tc) the fact that we are able to preferentially bypass the core

nodes (as indicated by the decrease in CU) as more topology in-

formation becomes available. Thus the results shown in Table I

indicate the near optimal nature of CEDAR with increase in net-

work stability.

50
kmlig.g””.—

45
/(27

40

35 -

30

25

20 -

15

10

5

ok I
0510152025 3035404550

Fig. 2. Graph used for Performance Evaluation Simulations

(n;rn,C’,&wnc,Awgdeg) = (30,79,11,7,5)

APL MC TC Cu

optimal 2.82 5.65 0.07 NIA

CEDARtO 3.40 6.82 0.08 0.27

CED#i&+d 3.35 6.70 0.08 0.10

CEDARtO+zd 3.30 6.64 0.08 0.09

~EDARtO+sd 3.10 6.37 0.07 0.09

TABLE I

PERFORMANCE OF CEDAR COMPARED TO AN OPTIMAL APPROACH.

B. Performance of QoS Routing in CEDAR

Bandwidth is the QoS parameter of interest in CEDAR. We

first compare QoS routing in CEDAR with an optimal short-

est widest path algorithm with respect to two parameters: the

time

to+d
to +26

to +36

trJ +46

to +56 L
26 18 30

21 24 50

15 17 50

17 10 30 mhc bwc ho bwo

1 100 1 100

4 50 4 50

1 50 2 100

2 50 2 50

5 50 4 50

TABLE II

PERFORMANCE OF CEDAR COMPARED TO AN OPTIMAL APPROACH WITH

CONNECTION REQUESTS ISSUED AT TIMES SHOWN.

t. t. s d bwv acco accw acc.W

o 8 8 13 55 yes yes yes

20 31 3 13 55 yes yes no

28 38 6 7 16 yes yes yes

56 64 16 4 45 yes no no

64 74 16 11 23 yes yes yes

TABLE III

PERFORMANCE IMPROVEMENT OF CEDAR WITH THE ADVENT OF increase

AND decrease WAVES. THE ACCEPTIREJECT RATIO FOR OPTIMAL, CEDAR

WITH WAVES AND CEDAR WITHOUT WAVES ARE 10:0, 9: I AND 7:3

RESPECTIVELY.

available bandwidth (bw) along the computed path, and the path

length (in hops). The time field in Table II represents the time at

which the QoS route request was issued. Once the route is com-

puted, each link locks the specified amount of resources along

that route before processing the next connection request.

Next, we present the improvement in the performance of

CEDAR with the advent of the increase and decrease waves. We

use the constant threshold approach to decide when to generate a

wave. The ttl field in a wave is set using a linear function (of the

advertised bandwidth) and while increase waves travel from one

hop to another with a constant delay, decrease waves are prop-

agated from one hop to another with no delay. The parameter

we use to evaluate the performance is the accept/reject ratio for

connection requests. As can be seen, once the increaseldecrease

waves are introduced, the performance of CEDAR is close to that

of an optimal algorithm.

For the results in this section, we use the 30 node graph in Fig-

ure 2 with link bandwidths randomly set to either 50 units or 100

units. In the column headers in Table II, hc, bwc and ho, bwo

stand for the hopcount and available bandwidth of routes com-

puted by CEDAR and the optimal algorithm respectively. Note

from Table II that CEDAR approximates the optimal algorithm

for the scenarios simulated. Further, from Table III, we can see

the utility of the increase and decrease waves to CEDAR. In Ta-
ble III, the column headers t., te, s, d and bw~ stand for the start

time of the connection, end time of the connection, the source,

the destination and the bandwidth requested respectively, while

acco, acc~ and accnW represent whether the connection request

was accepted in the optimal algorithm, CEDAR with waves and

CEDAR without waves respectively.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

rJ;LP

1

2

3

4

5

6

sent

276

294

298

294

298

300

recvd

247

237

260

247

297

299

dropped

29

57

38

47

1

1

rerouted

o
2

63

59

122

141 1
delay

0.140
0.134

0.136

0.128

0.138

0.152

TABLE IV

PERFORMANCE OF CEDAR’s RECOVERY MECHANISM ON A LINK FAILURE

WITH LINK FAILURE ON PATH FOR FLOW FROM NODE 24 TO 20. INPUT

TRAFFIC GENERATED USING POISSON DISTRIBUTION

C. EJTectof Link Failures on Ongoing Flows in CEDAR

While the previous sets of results evaluated the performance

of CEDAR in terms of generating initial routes, we now turn our

attention to the ability of CEDAR to provide seamless connec-

tivity in ad hoc networks inspite of the dynamics of the network

topology.

We again use the 30 node graph in Figure 2 for evaluating the

performance of CEDAR in the presence of link failures. For an

arbitrary flow, we bring down links that are progressively farther

away (RLP - relative link position- represents the position of the

link failure relative to the source) from the source and we show

the impact of that link failure in terms of number of packets lost,

number of packets re-routed and delay for subsequent packets.

As can be observed from Tables IV, the relative location of the

link failure with respect to the source has a significant impact on

the above mentioned parameters. In particular,
. If the link failure is very close to the source, the recompu-

tation time at the failure point is large and hence a consid-

erable number of packets can potentially be lost. But the

source notification message, described earlier in Section 5,

reaches the source almost immediately and hence prevents

a large number of packets from getting dropped.

. If the link failure is very close to the destination, the recom-

putation time at the node before the failure is very small and

hence very few packets get dropped. But the source noti-

fication message reaches the source with some delay and

hence the number of packets that get re-routed is large.

VII. SUMMARY

Unlike CEDAR, most ad hoc routing algorithms that we are

aware of generously use flooding or broadcasts for route com-

putation. As we have mentioned before, our experience has been

that flooding in ad hoc networks does not work well due to the

abunc[ance of hidden and exposed stations.

The ad hoc routing algorithms in [2], [8] provide a single route

in response to a route query from a source; these algorithms have

low overhead but sometimes use sub-optimal and stale routes.

[9] uses a spine structure for route computation and maintenance.
While it provides optimal or near optimal routes depending upon

the nature of information stored in the spine nodes, it incurs a

large overhead for state and spine management.

Previous work on tactical packet radio networks had led to

many of the fundamental results in ad hoc networks. [10] has

propc,sed an architecture similar to the core called the linked

clmterhead architecture but it uses gateways for communication

between clusterheads and does not attempt to minimize the size

of the infrastructure.

As is apparent from our work, we have used many of the re-

sults from contemporary literature. The notion of on-demand

routing, use of stability as a metric to propagate link-state infor-

mation, clustering, and the use of cluster-heads for local state ag-

gregation have all been proposed in previous work in one form

or the other. We believe that our contribution in this paper is to

propose a unique combination of several of these ideas in con-

junction with the novel use of the core, increase/decrease waves,

core broadcast, and local state-based routing in the domain of

QoS routing. Consequently, we are able to compute good admis-

sible routes with high probability and still adapt effectively with

low overhead to the dynamics of the network topology.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

V. Bharghavau, S. Shenker A. Demers, and L. Zhang, “MACAW: A
medium access protocol for wireless LANs~’ in Proceedings ofACl!4 SIG-
COMM, London, England, Aug. 1994.
D, B. Johnson and D. A. Maltz, “Dynamic source routing in ad-hoc wire-
less networks: in Mobile computing, (cd. T. Imielinski and H. Korth),
Kluwer Academic Publishers, 1996.
M. S. Corson and A. Ephrernides, “A highly adaptive distributed routing

algorithm for mobile wireless networks,” ACM/Baltzer WirelessNetworks

Journal, vol. 1, no. 1, pp. 61-81, Feb. 1995.

C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers;’ in Proceedings

of ACM SIGCOMM, London, England, Aug. 1994, pp. 234-244.
V. Bharghavan, “Performance of multiple access protocols in wire-

less packet networks;’ http://www.timeIy. crhc.uinc.edrr/publications.htmL
A shorter version of this paper appeared in Proceedings of International

Performance and Dependability Symposium, Sept. 1998.
B. Awerbuch, Y. Du, B. Khau, and Y. Shavitt, “Routing through networks
with topology aggregation;’ in Proceedings of the IEEE Symposium on
Computers and Communications, Athens, Greece, June 1998.
Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth gum-
antees,” in Proceedings of Flfih IEEE Irrternational Conference on Network
Protocols, Atlanta, Oct. 1997.
C.-K. Toh, “A novel distributed routing protocol to support ad-hoc mobile
computing;’ in Proceedings of 15th IEEE Annual International Phoenix

Conference on Computers and Communications, 1996, pp. 480-486.
R. Sivakumar, B. Das, and V. Bharghavau, “Spine routing in ad hoc net-

works,” ACM/Baltzer Cluster Computing Journal (special issue on Mobile
Computing). To appeax
A. Ephrernides, J. E. Wleseltbier, and D. J. Baker, “A design concept for
retiable mobile radio networks with frequency hopping signaling,” in Pro-
ceedings of the IEEE, Jan. 1987, pp. 56-73.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

