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Abstract
This paper considers the problem of selecting good paths
in an ad hoc wireless network. It is well-known that pick-
ing the shortest path, in terms of number of hops, between
two nodes often leads to poor performance, because such
paths tend to use a smaller number of long-range links that
could have marginal quality. As a result, quality-aware rout-
ing metrics are desired for networks that built solely from
wireless radios. Previous work, such as De Couto et al.'s
ETX, has developed metrics that work well when wireless
channel conditions are relatively static, but typical wireless
channels experience variations at many time-scales. For ex-
ample, channels may have low average packet loss ratios, but
with high variance, implying that metrics that use the mean
loss ratio will perform poorly. In this paper, we describe
a new metric, called ENT (E�ective Number of Transmis-
sions) that works well under a wide variety of channel con-
ditions. In addition to analyzing and evaluating the perfor-
mance of ENT, we provide a uni�ed geometic interpretation
for wireless quality-aware routing metrics.

1. Introduction
This paper considers the problem of selecting good paths in
a mobile ad hoc wireless or sensor network. It is well-known
that picking the shortest path, in terms of number of hops,
between two nodes often leads to poor performance, because
such paths tend to use a smaller number of long-range links
that could have marginal quality. As a result, quality-aware
routing (QAR) metrics are desired for networks that are
built using wireless radios.

In wired networks, the routing problem can be modeled
as a graph where nodes are connected by edges of certain
weights, on which solving a network optimization problem
(e.g., shortest-paths) gives the paths to use to send data be-
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Figure 1: Steps of routing problems include assign-
ing a cost to each link and �nding the best link.

tween nodes. However, in a network with wireless links, we
cannot talk about \links" in the same sense as in wired net-
works. Wireless communication using radio is time-varying
and radio range is unpredictable, and depends greatly on
the other radio communications occurring concurrently else-
where in the network. Moreover, radio communication qual-
ity depends on noise and channel fading, especially when
nodes move. All of these factors cause high variability in
the quality of the \link" between any two nodes, and makes
it hard to adapt traditional wired routing techniques to wire-
less networks.

Finding the best paths between nodes in a wireless network
involves three steps:

1. Assigning metrics to links. Due to the large size of the
parameters that a�ect a link, this task is non-trivial.
Moreover, it is desirable that these metrics are com-
posable so that the end-to-end metric of a path can
be easily derived from the metrics of the links on the
path.

2. Determining the best path from the link metrics. The
optimum path can be the one that minimizes the total
cost or the one with the minimum maxl2link �l where
�l is the cost of forwarding a packet over link l as
shown in Fig. 1.

3. Disseminating routing information. The link and/or
path metrics need to be disseminated in some manner
to help nodes select paths by evaluating path met-
rics. Several routing protocols for mobile networks
have been developed in the past (e.g., [1, 2], etc.)
to cope with mobility, and changing topologies.

This paper presents a detailed investigation of the �rst step,
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determining link metrics, by developing a quality-aware rout-
ing metric that captures both long-term link quality and
short-term variability of the radio channel between nodes.
Our metric is called ENT (E�ective Number of Transmis-
sions), and represents the cost (in terms of number of the
number of transmissions) of sending a packet over a link in
such a way that the path that minimizes the overall cost
while providing guarantees on the maximum packet loss
probability visible to higher layers (e.g., TCP connections)
that use the path. Our metric takes into consideration not
only the physical layer parameters, but also the application
level loss rate requirements. We emphasize that, like many
other cost metrics, the ENT does not require a change in
the structure of the underlying optimization problem that
constructs the optimum paths.

The rest of the paper is organized as follows. In the next
section, we give motivation for the work and compare our
work to previous QAR metrics such as ETX [3]. In Section
3, we present our network model, develop the ENT metric
and give a geometric interpretation of di�erent QAR met-
rics to show how they relate to one another. An important
requirement for any QAR metric is that the node be able
to estimate channel conditions properly; we discuss the key
ideas underlying good channel estimation in Section 4. The
paper concludes with a summary of our contributions Sec-
tion 5.

2. Motivation and Related Work
The traditional approach to routing in ad-hoc wireless net-
works has been minimum-hop routing [4, 1]. The simplicity
of minimum-hop routing is attractive in the face of node
mobility. However, minimum-hop routing inherently \quan-
tizes" the state of a link into one of the two states, \up" or
\down." Several researchers have described why shortest-
path routing in wireless networks leads to sub-optimal per-
formance [3, 5]: such routing leads to paths that use longer-
range links of marginal quality. To counter these perfor-
mance problems, researchers have proposed QAR metrics
that consider the performance characteristics of the indi-
vidual radio \links" along a path in deciding how to route
packets.

We observe that the type of the QAR metric to be cho-
sen depends on the physical layer being used. First, sup-
pose that each node uses robust error control coding along
with power control to achieve low error rates and adapts to
changing channel conditions. In this scenario, low packet
loss ratios can be achieved throughout the network. In this
case, a uniformity in the link quality and reliable transmis-
sion rates is possible, which makes minimum-hop routing a
reasonable approach. Thus, if the physical layer is able to
estimate and adequately adapt its coding scheme to cope
with channel variability, QAR is not critical.

Adaptive physical layer schemes to \hide" the vagaries of
the wireless links are hard to achieve in practice. In fact, we
know of no current or next-generation radios that propose
to employ sophisticated techniques to fully handle channel
quality issues at the physical layer, because of implementa-
tion complexity and the absence of practically useful codes
that can perform well (especially in the non-asymptotic limit
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Figure 2: All three links have the same ETX.

of �nite packet sizes) across the large range of channel con-
ditions that are observed in practice. In addition, if energy
consumption were an issue and power-controlled radios were
used, shortest-path routing is worse than minimum-energy
routing based on estimating channel quality [6].

Today's practical wireless radios such as the ones based
on the 802.11 standard employ only a simple coding strat-
egy, mostly for error detection. Nodes transmit at constant
power level and rely on a small number of link-layer packet
retransmissions to overcome errors. Some 802.11 systems
vary the modulation (and hence the rate) based on current
error conditions, slowing the transmission rate when the er-
ror rate is high. Our work focuses on QAR over radio net-
works comprised of radios similar to 802.11 or Bluetooth,
where packet losses are visible to higher layers. We use ob-
servations of bit-errors and link-layer frame losses to develop
a QAR metric.

2.1 Related Work
Our metric is inspired by ETX, a new metric proposed by De
Couto et al. [3]. In ETX, each node estimates the packet loss
rate pf to each of its neighbors over a recent time window,
and obtains an estimate pr of the reverse direction from its
neighbor (these loss estimates are obtained using broadcast
packets that are not retransmitted at the link layer). The
node then estimates the expected transmission (ETX) count
to a neighbor as 1

(1�pf )(1�pr)
, and picks the path that has

the smallest ETX value from a set of choices.

Yarvis et al. [5] propose a QAR metric that estimates the
per-link delivery ratios and uses the product of these as the
path metric. This metric does not account for the total
bandwidth consumed, because it will prefer two links of low
loss rates preferentially over a single link with higher loss-
rate; when link-layer retransmissions are used, the single
higher-loss link may be able to deliver the packet without as
many total transmissions as the two-hop path (ETX is mo-
tivated by this observation). Adya et al. [7] propose a delay
based QAR metric . This metric uses the measured average
round trip time seen by unicast probes between neighboring
nodes.

2.2 Channel Variability
Although these QAR metrics, especially ETX, show impres-
sive gains over traditional shortest path routing, they only
take the average link behavior into consideration. For in-
stance, consider the three �ctional radio links shown in Fig-

2



0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

Packet number

# 
co

rr
up

te
d 

by
te

s
E [# corrupted bytes] = 226 ,  var [# corrupted bytes] = 241,560

Figure 3: E [# corrupted bytes/packet] = 226, std.
dev. # corrupted bytes/packet = 492.

ure 2, all of which have the same ETX metric. These links
behave in very di�erent ways in time. This example raises
two questions:

1. In reality, do we observe such variable behavior in wire-
less links?1

2. If so, to what extent does channel variability a�ect
packet loss behavior?

Several previous measurements have shown that channels
vary over short time-scales. Willig et al. present the analy-
sis of 802.11b-based packet traces collected in an industrial
environment, showing that packet losses occur in bursts [8].
The coeÆcient of variation for the number of corrupted con-
secutive before a successful reception in their trace is about
17, which suggests highly bursty behavior.2 Woo et al. [9],
and Zhao and Govindan [10] have both observed a signi�cant
variability in link quality in wireless sensor networks. The
former paper points out that the instantaneous packet error
probability varies by approximately 30% around its mean.
The latter paper, as well as Willig et al., both show that the
packet-error stochastic process has long-term dependencies.

There are also a large number of past studies on modeling
the instantaneous bit error probability. Most of them use
Markov models for this purpose. For instance, Gilbert and
Elliot [11, 12] used a two stage Markov chain, Fritchman [13]
used a multi-stage Markov chain and Willig [14, 8] used
semi-Markov processes and bi-partite models.

1Note that the time-scale over which path-selection deci-
sions are made is typically hundreds of packets; i.e., once a
path between two nodes has been selected, it is unlikely to
be changed from packet to packet. When we talk about vari-
ability, we mean variability over a time-scale of single packet
times up to the time to transmit a few hundred packets.
2I.e., the ratio of the variance of the number of retransmis-
sions to the square of the expected number of retransmis-
sions is 17.
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Figure 4: The estimated power spectral density of
the trace shown in Figure 3.

We motivate our work by presenting additional anecdotal
evidence for channel variability over short time-scales across
802.11b links. This evidence is by no means comprehensive,
but is intended to provide some intuition.

The packet trace shown in Figure 3 is taken from a transmis-
sion between two nodes, connected using a 1 Mbit/s 802.11b
radio, placed 0.55 miles from each other across an open
area. The transmitting node sends a continuous stream of
1392-byte ping packets, where each packet has a well-de�ned
byte-pattern. Each point in the graph shows the number of
corrupted bytes in each packet. In this trace, the average
number of corrupted bytes per packet is 226, with a stan-
dard deviation of 492. The link is clearly a marginal one,
but also shows how variable link quality can be.

Figure 4 depicts the power spectrum of the number of cor-
rupted bytes in this trace (# corrupted bytes); this graph
shows that there is signi�cant power in non-DC frequencies
and that certain time scales are much stronger than others.
This strongly supports the observation that a wireless link
can be highly variable even over short time-scales.

In this paper, we develop the ENT metric which takes not
only the average but also the variability of the instantaneous
link quality. ENT is a two dimensional metric in the sense
that it combines physical channel parameters and applica-
tion level loss requirements as a single cost.

More precisely, each node estimates the mean and the vari-
ance of the bit error probability periodically and combines
them with the desired probability of loss rate for the appli-
cation to evaluate the e�ective number of transmissions to
all of its neighbors. These values are then used by various
routing algorithms to �nd the best path to send packets to
a given destination node.

3. Quality-Aware Routing with ENT

3.1 Model
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For the channel, we assume time varying binary symmetric
channel. Namely, a bit transmitted at time t is misdetected
by the intended receiver with probability pB;t. We will not
attempt to model fpB;t; t > 0g. We only assume that it is
stationary for the time being and will relax this assumption
later.

We assume �xed sized packets and let S be the packet size.
At a given link, for a packet to be received error free by the
receiving node, all of its bits need to be transferred without
an error. If an error is detected, packet is dropped and gets
retransmitted over the link. Let pc(T ) be the probability
that bits T � S + 1; : : : ; T are all received correctly. Con-
ditional on pB;t; T � S + 1 6 t 6 T , pc(T ) can be written
as,

pc(T ) =
TY

t=T�S+1

(1� pB;t) (1)

We de�ne 1=pc(T ) as the instantaneous number of transmis-
sions at time T . It physically signi�es the average number of
transmissions for correct reception if the instantaneous num-
ber of transmissions remained �xed at pc(T ). Note that

3

ETX = E

�
1

pc(T )

�
(2)

Before the analysis, we discuss some of ETX's shortcom-
ings. In Section 2.2, we discussed how wireless channels
vary over both short (single-packet) and longer time-scales.

Thus, E
h

1
pc(T )

i
is not a good representative of the qual-

ity of a wireless channel, because the channel quality is ex-
tremely variable, and good or bad states of the channel can
be highly persistent. For example, a link with a lower ETX
metric may in fact lead to a higher observed loss rate at the
transport layer, because good link-layer protocols do not try
to retransmit lost packets forever but give up after M at-
tempts. When losses occur in bursts, picking a link in the
middle of a burst-error situation would be bad even if it
had a lower ETX. If the goal is to reduce the observed loss
rate at the sender's transport layer (e.g., a TCP sender),
then ETX may pick a sub-optimal link. The bad choice is
likely to be problematic when a node in the network is faced
with a choice of two links, one that has a lower ETX but
higher variance in 1=pc(T ) and the other than has a higher
ETX but lower variance in 1=pc(T ). Our ENT metric there-
fore considers both the mean (ETX) and the variance of
1=pc(T ).

3.2 The ENT Metric
Instead of comparing the expected number of transmissions
for links, we develop a metric for each link that takes into
account the probability that the number of transmissions
exceed a certain threshold. Our goal is to attempt to reduce
the packet loss ratio observed by higher-layer protocols, after
any link-layer retransmissions are done. The ENT metric
involves both the mean and the variance of 1=pc(T ), the
instantaneous number of transmissions.

3The ETX estimate in [3] is 1=E [pc(T )]. We use Eq. (2) as
the expected number of transmissions.

First, using Eq. (1) we can write,

log
1

pc(T )
=

TX
t=T�S+1

log
1

1� pB;t

�
TX

t=T�S+1

pB;t (3)

where Equation (3) follows when pB;t (the individual bit-
error rate) is reasonably small.

Now, consider the probability that the instantaneous num-
ber of link-layer transmissions exceeds M . Let

� = exp (E [log 1=pc(T )])

= exp (S �pB)

where �pB = E [pB;t] and � can be thought of as a modi�-
cation of expected number of transmissions, E [1=pc(T )] (in
fact � 6 E [1=pc(T )] from Jensen's inequality). Also, let

�2� = var (log (1=pc(T )))

Due to stationarity, parameters � and �2� are constant. Fi-
nally, let � = log(M=�).

The event that the instantaneous number of transmissions
exceeds M can be viewed as a threshold crossing for the
process fpB;t; t > 0g. Thus, the probability of this event
occuring can be written as the probability that the sum of
S steps of the process fpB;t; t > 0g exceeds logM :

P

�
1

pc(T )
>M

�
= P

 
TX

t=T�S+1

pB;t > logM

!

� exp

�
�
1

2

�

�2�
� �

�
(4)

The derivation is based on a large deviation analysis, and
is detailed in the appendix. The assumptions we make in
the derivation of this result are that S � 1 is large and
�=�2� � 1. These assumptions are reasonable in practice, as
discussed in Section 2.2. The right side of Equation (4) is an
upper bound which gets exponentially tight as S increases.

Next, we will incorporate the application level loss rate re-
quirement into the picture. Suppose, it is desried by the ap-
plication that the probability that the instantaneous number
of transmissions exceeds M to be Papp 6 exp(�Æ�). A link
can satisfy the requirement if

Æ 6
1

2

�

�2�

Thus, if we plug in � = log(M=�), we ge

log �+ 2Æ�2� 6 logM (5)

What we achieved by deriving the condition given in (5) is
that we took complicated probability relations for a channel
and translated them into a linear relation involving the �rst
two order statistics of the loss characteristics of the channel
and the application parameter Æ. If we pick a link satisfying
(5), then we can meet the application's requirement, Papp.

One way to interpret the condition in (5) is as follows. Sup-
pose the application does not specify any loss probability
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constraint, i.e., Æ = 0. The condition turns into a a com-
parison of �, the average channel behavior, and M . Thus,
the application requirement turns into a condition involv-
ing averages only. Now suppose the application has a loss
rate requirement, i.e., Æ > 0. In that case we need to over-
book our resources to meet the loss probability target. The
amount of spare � that has to be put aside in order to accom-
modate fast time scale uctuations through overbooking is
2Æ�2�. This way the packet loss probability target is met. As
expected, this amount is directly related to the variability,
�2�, of the channel and the strictness, Æ, of the application
loss rate requirement.

The �rst and second terms on the left side of (5) are the ex-
pected value and the scaled version of the variance4 of the
log instantaneous number of transmissions, respectively. We
compare the sum of these two with log maximum number
of transmissions before a packet loss manifests at the higher
layer (because the maximum number of link-layer transmis-
sions, M has been exhausted). The unit of the right side
is log number of transmissions and so is the unit of the left
side. This sum can hence be thought of as the logarithm of
the e�ective number of transmissions (i.e., log ENT) of
the link.

For a wireless link, l, we de�ne

�(l)(Æ) = E

�
log

1

pc(T )

�
+ 2Ævar

�
log

1

pc(T )

�
= �+ 2Æ�2�

as the log ENT (and hence exp (�(Æ)) is the ENT). If a link
satis�es Papp 6 exp(�Æ�), then the log ENT for that link is
between the expected log instantaneous number of transmis-
sions and the maximum number of link-layer transmissions,
M , before a packet loss is observed at the sender's transport
layer. As a result, for link l, one can write the following con-
dition:

Papp 6 exp(�Æ�) ) �(l)(Æ) 6 logM (6)

3.3 Geometric Interpretation of QAR Metrics
To shed some light on the ENT metric and its relation to
other quality-aware metrics, we now present a geometric in-
terpretation of ENT. Insights from this interpretation may
lead to a better understanding of what ENT signi�es in prac-
tice and will help us view di�erent QAR algorithms in a
uni�ed manner.

Let us represent a wireless link by two parameters, log(�=M)
(= ��) and ��. Each link corresponds to a point in the
coordinate space (��; log(�=M)) as illustrated in Fig. 5.
Thus, the point with the lowest ordinate value is the one
that minimizes the expected number of transmissions. Such
links will be preferred by routing algorithms that employ �
as the link cost metric (e.g., ETX).

The set of points that satisfy Papp = exp(�Æ�) are on the
parabola �(Æ) = logM as shown in Fig. 6. Thus, the points
outside of the shaded region fail to satisfy Papp 6 exp(�Æ�).
The shaded region can therefore be regarded as a feasible

4As S grows, �2� approaches index of dispersion of the pro-
cess pB;t

links

log )( M/µ
Σσ

# transmissions
min expected

Figure 5: Each point in (��; log(�=M) coordinate
space represents a link.

feasible
region

σΣ

(µ / M )log

σΣ2δ−=/µ M( )log 2

Figure 6: The points in the feasible region satisfy
Papp 6 exp(�Æ�).

region. Suppose we want our routing algorithm to select
the links that not only minimize the expected number of
transmissions, but also keep the loss probability smaller than
exp(�Æ�). Then the algorithm should pick the link with
the smallest ordinate value among the points in the feasible
region. We describe this clearly in the �rst algorithm we
give at the end of the section.

From Eq. (4),

log P

�
1

pc(T )
>M

�
� �

1

2

�
log(�=M)

��

�2
Since for any given point, the slope of the line connecting
the origin to that point is log(�=M)=��, points with larger
jlog(�=M)=��j has lower loss probability. For instance, in
Fig. 7, channel l has a lower loss probability than chan-
nel l0. If the objective is to minimize the probability of
loss, then the routing algorithm will choose points with large
jlog(�=M)=��j ratios.

Finally, let us evaluate the vertical distance, D(l), between
any admissible point, l : (��; log(�=M)) and the boundary
of the feasible region. As illustrated in Fig. 8,

D(l) = � log
� �

M

�
� 2Æ�2�

= logM � �(l)(Æ) (7)
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Figure 7: The slopes of the dashed lines are repre-
sentatives of the loss probability.

l

/µ M( )log

σΣ

(µ / M )log

σΣ
22δ

D (l)

Figure 8: The vertical distance between a point and
the boundary of the feasible region is logM � log
ENT.

Hence, the link that maximizes the vertical distance to the
boundary of the feasible region is the one that minimizes the
ENT. This means, given an increase in the expected number
of transmissions, the link with a small ENT is more likely
to remain in the admissible region. Thus, if the objective
is robustness with respect to the changes in the expected
number of transmissions, the routing algorithm will choose
points with smaller ENT.

3.4 ENT-based Routing Protocols
Based on the insights we built in the previous section, we
will construct three routing algorithms based on ENT and
loss rates. In terms of dissemination of routing information,
these algorithms are very similar to the ETX algorithm. In-
deed the only di�erence is that the parameter �� is propa-
gated as well as the expected number of transmissions.

There are two points we need to emphasize before we give
these algorithms. The �rst one is that since the ENT is a
function of the application parameter, Æ, an optimal path
between two nodes may di�er from one application to an-
other. The second is that we assume the process pB;t to be
uncorrelated for di�erent links in a network (this is observed
in [3]). Thus, �2� is additive over the di�erent links on a path
between two nodes.

Algorithm 1: For each link, compute the log ENT. Com-
pare against logM . Assign a cost of 1 to the links that
have log ENT > logM and assign a cost of ETX to the
others. Between any given pair of nodes use the path that
minimizes the total cost.

This algorithm focuses only on the feasible links, i.e., the
ones that satisfy the application loss reqirement, Papp. It
picks those with the minimum ETX among those. This in-
volves only a minimal modi�cation to ETX (given the link
parameters).

Algorithm 2: For each link, compute the log ENT. Com-
pare against logM . Assign a cost of 1 to the links that
have log ENT > logM and assign a cost of log ENT to the
others. Between any given pair of nodes use the path that
minimizes the maximum ENT over all the links that belong
to the path.

This algorithm also focuses on the feasible links. It picks
the path which is most robust with respect to the changes
in the channel. I.e., it picks the paths for which the links
tend to remain in the feasible region longer than others.

Algorithm 3: For each link, compute the log ENT. Com-
pare against logM . Assign a cost of 1 to the links that
have log ENT > logM and assign a cost of � log (1� Ploss)
to the others. Between any given pair of nodes use the path
that minimizes the total cost.

This too focuses on the feasible links. Between any given
pair of nodes, it picks the path with the minimum overall
probability of packet loss over all the links.

One can notice that we can arbitrarily add extra constraints
to the problem (such as a constraint on ETX for example)
depending on the requirements of the application and solve
the problems without much extra complexity. This is due
to the simplicity of the way (i.e., the ENT) we handle the
high dimensionality of the problem.

4. Channel Estimation
So far, we have assumed that the channel parameters �; ��
are available to us at any point in time. In reality, QAR
metrics depend on the estimation of the parameters that
represent the channel characteristics. We have to estimate
these parameters based on the measurements taken from the
channel.

There are two types of measurements depending on how
much physical layer information we have. In the �rst case,
pB;t may be available to the estimator. This may be par-
tially reasonable if some detector reliability information avail-
able from the physical layer can be accessed by the esti-
mator. The signal to noise ratio (SNR) is an example of
such information since there is a direct relation between bit
(or symbol) error probability and SNR. However, in most
systems, values of pB;t are not available for the use of the
estimator. In such cases, active or passive probing may be
used. Probe packets are then examined for bit errors. Thus,
instead of individual samples of pB;t, the estimator has the
knowledge of the outcome of sequence of indicator random
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variables, 1B;t.

1B;t =

�
1 w.p. pB;t
0 w.p. 1� pB;t

If we extract 1B;t from the probe packets, we can examine
the positions of bit errors and estimate how they are corre-
lated.

We study estimators based on di�erent types of information
available. Before we present our estimators, let us give some
fundamental assumptions we make about the dynamics and
the time scales of the network.

4.1 Time Scales
Let Tr be the time scale that the changes in routes occur.
Namely, once a path is assigned for a pair of nodes it is
kept unchanged for a duration of Tr time units. Routing
time scale is typically in the order tens of seconds (i.e., hun-
dreds of packets), so the network updates optimal routes
once every Tr seconds. This is an exogenous parameter of
the system and picked independently of the network param-
eters such as �; ��.

As we mentioned before, the process pB;t uctuates over
multiple time scales. A signi�cant portion of the power of
this process is in frequencies f > T�1

r . Thus, the channels
vary5 signi�cantly within a routing time scale. A metric that
is based on the average link behavior can only capture the
e�ects of the components that do not exhibit a signi�cant
variation between routing updates. Thus, the channel esti-
mation �lters for such metrics as ETX need to have cuto�
frequencies at f � T�1

r .

Designing such low pass �lters has received much attention
in past work on channel estimation for routing metrics. Vari-
ous �lters from the simple moving average ([3]) and exponen-
tially weighted moving averaging (EWMA) to more sophis-
ticated non-linear �ltering ([9, 15, 16]) have been proposed
in the literature. In [9] and [15], the EWMA parameters
are adjusted according to the channel conditions to �nd a
balance between agility and stability .

By incorporating the variance, we take the faster time scale
components, f > T�1

r , in addition to the slowly varying
ones. The high frequency components are used to estimate
the amount of \spare" ETX that has to be put aside (the
variance term in the ENT) in order to accommodate fast
time scale uctuations through \overbooking." This way
the packet loss probability target is met. Indeed, this con-
stitutes the main idea behind ENT routing metric. Without
taking into account the high frequency terms as well as low
frequencies, it is not possible to meet the loss rate require-
ment, Papp.

Recall that we assumed that pB;t is stationary for each link.
Now we relax this assumption. Let Tc be the time scale over
which the statistics of a link remain unchanged. I.e., �; �2�
exhibit either little or no change in any given consecutive
Tc time slots. We assume that Tc � Tr. We also assume

5This is the main motivation for using the channel variations
in our metrics

that the estimators have an idea of the value of Tc. The rea-
son why we make this assumption is that we need accurate
estimates of the sample statistics (sample mean, autocovari-
ance) in our estimators. Note that, this assumption does
not imply that channels do not vary in time scales less than
Tc. Indeed, a signi�cant portion of their variations occur
in time scales < Tc. It just means that the statistics are
unchanged in Tc.

4.2 Estimating the ENT
In this section we discuss issues associated with estimation
of ENT and describe our ENT estimator. The process,
pB;t or 1B;t are measured using probe packets. Each node
broadcasts 8-10 probe packets approximately once every sec-
ond and extracts the sequence of pB;t or 1B;t depending on
whether there is access to the physical layer or not.

To eventually estimate the ENT using these samples, we �rst
need to estimate the sample mean and the autocovariance
function. We use a moving average of duration Tc seconds
which includes Tc sets of probe packets since a probe packet
is send every second. Note that we will have an accurate
estimate of the mean and the samples of the autocovari-
ance function and these samples are separated by a second
(sets of probe packets are separated by that a second). If
we use 1B;t, the sample mean, �̂1B and the autocovariance

estimate, K̂1B (t) converge to the sample mean, �pB and auto-
covariance, KpB (t) of pB;t respectively. Note however that,
�2� cannot be estimated using the samples of 1B;t.

At the beginning of each routing period (once every Tr),
we use the most recent set of probe packets to estimate
ENT to be used in each routing period. Thus, we have
the following prediction problem at the beginning of each
routing period. We take the beginning of the routing period
as t = 0. Given the values of pB;s or 1B;s; 0 < s 6 �
where � is the duration of a probe period (8-10 packets) we

would like to estimate�k =
P�+(k+1)S

s=�+1+kS pB;s for all k; 0 6
k 6 Tr=S where Tr=S is the routing time scale given in
terms of number of packets. Then, using these individual �
estimates, we will assign an ENT for the link to be held in
the entire routing period. We emphasize that even though
we have Tr sets of probe packets within a routing period,
each path will remain �xed over the entire routing period.

Before giving our estimator, to give an understanding on the
agility-stability trade-o�6, we present a simple estimator.
Suppose we have access to the physical layer information
and thus have samples of pB;t available to us. From the
long observation windows, we have accurate estimates of
the sample mean, �� = S�pB and the sample variance, �2� of
�k. For link l, we can use the estimate

�̂(Æ) = �� + 2Æ�2� (8)

for all the routing periods within the entire Tc. This ENT
estimate is very accurate, but it changes once every Tc time
slots. In many networks this simple estimator may be prefer-
able since it captures the statistical changes in the chan-
nel and it does not even need the long observation window.

6In the estimation literature this is also known as the error-
resolution trade-o�
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However, there is signi�cant power in components of pB;t
that vary in time scales T; Tr < T < Tc. If we would like
to capture such variations, we need to use more agile esti-
mators that use the local observations as well as the long
observation window. The question is can we do this with-
out sacri�cing the accuracy. The answer is yes. Next, we
will build an \optimal" estimator that takes the estimation
errors into consideration in constructing the ENT estimate.

4.2.1 Optimal Linear Estimator

We will construct the linear least squares (LLS) estimator to
predict �k for all k; 0 6 k 6 Tr=S. Then, we will combine
these individual estimates to get a single ENT estimate for
the routing period.

The autocovariance function determines the coeÆcients of
the LLS estimator which is the �lter that minimizes the
mean squared error. We build the estimator for the case
where pB;t is available which can be replicated identically
for the case where 1B;t is available.

As described, we have the accurate estimates of � and K~pB

of ~pB = [pB;1 pB;2 � � � pB;� ]
0. Hence, we shall use �pB instead

of �̂ and K~pB instead of K̂1B (t). Let
~K�k~pB = cov (�k; ~pB)

which is a � dimensional vector its s entry is

~K�k~pB (s) =

�+(k+1)SX
l=�+kS+1

KpB (l� s)

The coeÆcients of the LLS estimator for �k can then be
found as (see [17]):

�̂llsk = S�pB + ~K�k~pBK
�1
~pB

(~pB � �pB) (9)

and the mean squared error, �k, for the LLS estimate is:

�llsk = E
h
(�k � �̂llsk )2

i
(10)

= �2� � ~K�k~pBK
�1
~pB

~K0

�k~pB
(11)

Note that the second term in Eq. (11) is the decrease in
the error variance due to using LLS estimator instead of the
plain mean estimator, (8). Let us focus in the de�nition of
the error variance given in (10). It gives us the mean square

deviation of �k from its estimate, �̂llsk . Thus, the estimated
log ENT, �̂(Æ; � + kS) at time � for the actual ENT of the
link at time � + kS is

�̂(Æ; � + kS) = �̂llsk + 2Æ�llsk (12)

An interesting point to emphasize here is that the variance
term of the log ENT estimate is due to the variance of the
estimation error. This may look counter intuitive since �2�
and �k are di�erent quantities. The reason why we use the
latter in place of the former becomes clearer when we con-
sider the two extreme cases. First suppose we can estimate
�k perfectly, i.e., �k = 0. Then, �̂k = �k with probability
1, which means �k is no longer random. Therefore,

�̂(Æ; � + kS) = �̂k

in which there is no Æ term. Second, suppose ~pB and �k are
uncorrelated. Then,

�̂(Æ; � + kS) = S�pB + 2Æ�2�

since �k = �2�. Thus, the ENT decreases with decreasing
estimation error. This suggests that if ENT is used as the
routing metric, the best way home is the way you know!

4.2.2 Combining Individual ENT Estimates

Now we know how to estimate the ENT for individual time
periods, 0 6 k 6 Tr=S. We have to come up with a sin-
gle metric to �nd the best route for the entire routing pe-
riod. So, let us discuss how to combine these ENT estimates,
�̂(Æ; � + kS) to �nd that single metric. It is proved in Ap-
pendix B that the \best" log ENT estimate for the period
(�; � + Tr) is

�̂(Æ) =
1

Tr=S

Tr=SX
k=1

h
�̂(Æ; � + kS) + 2Æ(�̂� �̂k)

2
i

(13)

where

�̂ =
1

Tr=S

Tr=SX
k=1

�̂k

The overall ENT estimate given in (13) is the average of
the individual ENT estimates for all k 6 Tr=S increased by

the extra error for using �̂ instead of �̂k for each individual
packet.

We can build the LLS estimator for �(k) based on the ob-
servations, 1B;s; 0 < s 6 � , using the matrix K~1B

instead

of K~pB in Eq. (9). One can observe that

K~1B
= K~pB +

�
�pB � E

�
p2B;t

��
I (14)

where I is the identity matrix. The eigenvectors of K~1B
and

K~pB are identical whereas each eigenvalue of K~1B
is �pB �

E
�
p2B;t

�
higher than the corresponding eigenvalue of K~pB .

The increase in eigenvalues causes an increase in the error
variance, �k. Indeed, the negative term in Eq. (11) decreases
inversely proportional to the increase in the eigenvalues.

4.3 Examples
In this section, illustrate the channel estimation tools we de-
veloped so far on one real world and two toy examples. We
shall also give plots for the traditional EWMA �lter and the
modi�ed EWMA �lter which was developed by us and com-
pare the results of these two �lters. A detailed treatment
of these �lters can be found in Appendix C. In the �rst
example, we assume that the autocovariance of the loss rate
consists of a single exponentially decaying term, i.e., the pB;t
process varies in single time scale. The second example il-
lustrates the scenario with two terms that are exponentially
decaying and one term which decays as t��; 0 < � < 1
so that the resulting process varies in two time scales and
it is long range dependent. The third example considers
the trace of 1B;t taken from a packet exchange between two
nodes separated by 0.55 miles. In these three examples we
evaluate ENT estimates and study how di�erent �lters per-
form depending on their system parameters such as the ratio
of probing time scale to routing time scale, rate of decay of
the autocovariance function. Depending on the results we
have, we reach certain conclusions on how to do channel
estimation.
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4.3.1 Single Time Scale

In this example, the autocovariance function of pB;t decays
exponentially and it varies over a single time scale. Indeed,
the autocovariance,

KpB (t) = �2pBe
��t=S

In the case where pB;t; t 6 � is known, the LLS estima-
tor coeÆcients are all zero except for the coeÆcient of pB;�
term.This means, only the most recently observed sample is
relevant for all the predictions in the future. Also, this term
only has limited impact for estimating farther points since
the coeÆcient of this most recently observed term in the
estimate decays exponentially with the decay rate �. I.e.,
the LLS estimate converges to the sample mean estimate
exponentially fast!

Another thing to point out is that just one probe packet
is suÆcient in this case since we use just the most recently
observed sample, pB;� . Not however that the long probe
sequence once every Tc is necessary to estimate the mean
and the autocovariance.

The case where we observe 1B;t is very di�erent. This time
the LLS estimator uses a larger set of observations. In what
follows we assume S�pB = 1, �2pB = 0:01 and � = 0:01. In

Fig. 9 we illustrate the LLS estimator coeÆcients for �̂lls1
for �=S = 2; 5 and 10 packets. The bit position is inverted
since it goes from the recent past to further in the past.
Thus, position 0 in the graph represents the coeÆcient for
pB;� . Packet sizes are normalized to S = 10 bits. Error
variance7 for these three cases are 0.407, 0.361 and 0.359
respectively. It does not decrease further signi�cantly with
increased probe size (the decrease in the error variance is ap-
proximately 10�5 when � is increased to 100 packets from

10 packets.). Note that, if pB;t is known, �
lls
1 = 0:055 which

is much less than �lls1 = of the case where 1B;t is observed.
Also, as the decay rate of the autocovariance function in-

creases, �̂llsk looks more and more like the simple moving
average estimator.

In Fig. 10, we plot the estimator coeÆcients and associated

error variances for �̂llsTr=S for di�erent values of �=Tr. We
took �=S = 10 and normalized the packet size to S = 10. We
found that �Tr=S = 0:913; 0:988 and 0.999 for Tr=� = 1; 2
and 5 respectively. ~pB and �Tr=S become almost uncor-
related for Tr=� > 3. This example illustrates the scenario
where the observation window is small, i.e., the probe packet
sequence is short compared to the routing time scale. As a
side note, these values are also �10; �20 and �50 for the case
where Tr=� is �xed at 5.

The error variances for the case where ~pB is observed are
0.872, 0.983 and 0.999 for Tr=� = 1; 2 and 5 respectively.
The interesting point is that the di�erence between the error
variances of the LLS estimates when pB;t is observed and
when 1B;t is observed becomes insigni�cant for increasing
Tr=� .

7We give the error variance as a fraction of �2�. If we say
the error variance is 0.5, we mean that the variance of error
is �2�=2. From now on, when we say error variance, we mean
relative error variance.
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Figure 9: Estimator coeÆcients for �̂lls1 as a function
of the bit position of the probe bits for varying � .
We normalized the packet size to S = 10.
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Figure 12: Estimation error variance, �ewma
k , of the

generic EWMA estimator for �=S = 10 and Tr=� = 2.

In Fig. 11, �llsk ; k 6 25 is illustrated for �=S = 10 packets

for both ~pB and ~1B .

Fig. 12 illustrates the error variance, �ewma
k , of �̂ewma

k with
the generic EWMA estimator for  = 0:99; 0:9 and 0:75.
The observation is ~1B and we keep Tr=� �xed at 2.5. It
can be seen that the EWMA �lter performs better than
MA (since �ma

k = 1 for all k) only for a couple of k values.
Beyond that, it has a higher variance than 1 which makes it
inappropriate for loss rate estimation in this example.

To illustrate how much gain we get by estimating the second
order statistics of the loss rate process we also considered the
modi�ed EWMA estimator. The modi�ed EWMA estima-
tor is illustrated for the same parameters in Fig. 13. Also,
the error variance of the LLS estimator is plotted on the
same graph. For a good range of  values, the modi�ed
EWMA estimator performs very similar to the LLS estima-
tor. As mentioned, it is much simpler to implement since it
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Figure 13: Estimation error variance, �ewma
k , of the

modi�ed EWMA estimator for �=S = 10 and Tr=� =
2.

does not require the matrix inversion as the LLS estimator.

4.3.2 Multiple Time Scales

In this example, the autocovariance function of the pB;t
process has two exponentially decaying components and a
slowly decaying term which makes the pB;t process long
range dependent. In [8, 10], the authors imply that the
packet loss probability exhibits similar behavior by saying
that the packet loss bursts are small with high probability
but occasionally very long bursts are observed.

KpB (t) = �2pB

h
C1e

��1t=S + C2e
��2t=S

+ (1� C1 �C2)(t=S)
��3
i

S�pB = 1 and �2pB = 0:01. We take �1 = 0:01 � �2 = 0:1
and C1 = C2 = 0:45. Thus, these components have equal
power and the �rst one is more dominant in low frequencies
and the second term is more dominant in higher frequencies.
We take �3 = 0:5, and thus the third term has in�nite power
in DC! This means that the pB;t is long range dependent. In
[8], the authors imply that packet loss probability exhibits
similar behavior by saying that the packet loss bursts are
small with high probability but occasionally very long bursts
are observed.

LLS estimator coeÆcients are illustrated in Fig. 14 for �̂lls3
(the third packet after the probe sequence) for �=S = 2; 5
and 10 packets. The bit position is inverted since it goes
from the recent past to further in the past. Thus, position
0 in the graph represents t = � . Error variances are 0.821,
0.811, 0.81 respectively. It does not decrease further signif-
icantly with increased probe size.

In the case where pB;t; t 6 � is known, the LLS estimator
has a very high coeÆcient for the pB;� term as was the case
in the single time scale scenario. However, this time other
coeÆcients are non-zero. More interestingly, there is a spike
at pB;0, i.e., the coeÆcient of pB;0 is much higher than its
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Figure 14: Estimator coeÆcients for �̂lls3 for varying
� . We normalized the packet size to S = 10.

close neighbors. At the beginning this looks surprising since
pB;0 has the lowest covariance with �k among all pB;t. The
explanation for this \anomaly" is that pB;0 is the represen-
tative for all the points that are not observed. For instance,
suppose we would like to estimate pB;s for some s < 0 using
pB;t; 0 6 t 6 � . The LLS estimator will put a very high
weight on pB;0 compared to all other observations. This
means, among pB;t; 0 6 t 6 � , pB;0 carries signi�cantly
higher information about the entire past than all the other
points. Therefore, when estimating �k, the LLS �lter puts
the weight of all unobserved points (i.e., pB;t; t < 0) onto
pB;0 as their representative.

In Fig. 15 we illustrate the LLS estimator coeÆcients for

�̂lls1 for �=S = 2; 5 and 10 packets. Packet sizes are nor-
malized to 10 bits. Error variance for these three cases are
0.893, 0.869 and 0.863 respectively. A more smoothed ver-
sion of the spiky behavior that we had in the pB;t case for
the earlier probe bits is observed in this case. The reason is
the same.

For this example, instead of plain error variances, we study

how �llsk approaches to 1 as k increases. This gives us an un-
derstanding on the e�ect of the long range dependent term
of the autocovariance on the estimation error. The com-
plementary error variance, 1 � �llsk is given in Fig. 16 for
Tr=� = 25 and �=S = 10 packets. Beyond k = 100, the
impact of the exponentially decaying terms are negligible.
After this point, the decay in the complementary error vari-
ance is as t�2�3 = t�1. Thus, unlike the �rst example, in
systems with long range dependent bit error probabilities,
the estimates may carry non-negligible information even far
away from the observation points.

Fig. 12 illustrates the error variance, �ewma
k , of �̂ewma

k with
the generic EWMA estimator for  = 0:99; 0:95 and 0:9.
The observation is ~1B and we keep Tr=� �xed at 2.5. The
generic EWMA estimator performed similar to the previous
example which makes the MA �lter more appealing.

The error variance for the modi�ed EWMA estimator is il-
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Figure 15: Estimator coeÆcients for �̂lls1 as a func-
tion of the bit position of the probe bits for varying
� . We normalized the packet size to S = 10.
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generic EWMA estimator for �=S = 10 and Tr=� = 2.

lustrated for a range of parameters in Fig. 18. We take
Tr=S = 1000 packets. Also, the error variance of the LLS
estimator is plotted on the same graph. For a range of 
values ( > 0:81), the complementary error variance decays
as t�1. There is critical point  � 0:81 in this example) be-

yond which there exists a k <1 such that �
(ewma)
k > 1. We

believe such a point exists for all possible calibrations of the
modi�ed EWMA estimator. We must reduce the estimator
coeÆcient for �̂llsk further while keeping it proportional to
K~1B�k

. The optimal calibration is beyond the scope of this
paper.

4.3.3 Real Trace

In this example we use the trace given in Fig. 3. This trace
consists of 194 packets of size S = 1392 bytes. Since the
position of individual byte losses are not available to us, we
use a di�erent approach here. We use the number of bytes
lost,

Nk =
SkX

t=S(k�1)+1

1B;t

In this example, we use Nk; k 6 � to estimate �k; k > � .

First we estimate the statistics of Nk. Mean error proba-
bility, �Nk = 225:922. Note that this is also E [�k]. The

estimated autocovariance function, K̂N (t) of Nk is given in
Fig. 19. The interesting thing about the autocovariance
function is that it has an envelope with an amplitude which
increases, i.e., the absolute covariance tends to increase with
increasing t. The sample variance of Nk is �2� � 2:42� 105.
This shows that the loss probability may depend highly on
the variance rather than the mean of the probability of loss.
The power spectrum, SN (!) of Nk was given in Fig. 4.

After estimating the statistics, we use the �rst � = 50 sam-

ples of Nk as probe packets and �nd the LLS estimate, N̂ lls
k

for 51 6 k 6 150. The theoretical error variance, �llsk of
the LLS estimator is given in Fig. 20. The estimation error
for the packets close to the probe packets are around 0.8
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Figure 18: The dashed curve is the complementary
error for the LLS estimator and the solid curves are
the complementary error variance for the modi�ed
EWMA estimator for  = 0:95; 0:9; 0:85; 0:82; 0:81
and 0.8 from top to bottom. The complementary
error variance decays with t2�3 = t�1 for  > 0:81. If
reduced further, for some k <1; �k > 1.

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

5

t

K
N

(t
)

Figure 19: The estimated autocovariance, K̂N (t) of
Nk for t < 120.

12



0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

k

εlls

Figure 20: The theoretical error variance, �llsk , with
the LLS estimate.

50 100 150
−1000

−500

0

500

1000

1500

k

N
k

estimate
actual

Figure 21: The actual trace and the estimate.

and decreases almost linearly for the subsequent packets in
51 6 k 6 150 to around 0.4. This is due to the extraordinary
nature of the autocovariance function.

The estimates, N̂ lls
k and the actual values of Nk for 51 6 k 6

150 are illustrated in Fig. 21. The normalized mean squared
error for this case is, 1.21 which actually is worse than that
of MA. It is related to the high estimation error that we
have in estimating the second order statistics and the high
power of Nk that is con�ned in the higher frequencies.

Finally, we use the �rst � = 50 samples as probes and use
the modi�ed EWMA with  = 0:99 (very close to MA) to
estimate Nk; 51 6 k 6 150. The theoretical error variance,
�ewma
k of the EWMA estimator is given in Fig. 22.

4.4 Channel Estimation Summary
A number of implications of these results we had can be
listed as follows.
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Figure 22: The theoretical error variance, �ewma
k ,

with the modi�ed EWMA estimate.

� The main estimator we use is the LLS estimator. Al-
most all the estimators that has a reasonable per-
formance depend on the �rst two order statistics of
the pB;t process. Thus, estimating the �rst two order
statistics is of crucial importance for channel predic-
tion.

� We illustrated that the estimation error variance for
the case where we observe 1B;t is reasonably close to
that where we observe pB;t. Note, however that this
depends on the assumption that we can measure the
�rst two order statistics in both cases, which is much
easier if we have pB;t compared to having 1B;t.

� The generic EWMA estimation may perform poorly in
the time scales of order a few packets. We modi�ed the
generic EWMA to improve its performance highly, but
the modi�ed version depends on the knowledge of the
�rst two order statistics of the channel. In the time
time scales of interest, simple MA estimate is much
more appealing due to its simplicity and it does not
require the knowledge of the mean and the autoco-
variance of pB;t.

� The variance of pB;t plays an signi�cant role in system
performance and it should be taken into consideration
in quality aware routing protocols.

� The motivation of ENT is not just measuring the higher
layer losses. It is also the fact that ENT is more robust
with respect to estimation errors. We take into consid-
eration the estimation errors as well as the variations
in the channel through the variance term of ENT.

5. Conclusions
This paper developed a new quality-aware routing metric for
ad hoc wireless networks, called ENT (for E�ective Number
of Transmissions). ENT takes into account both the mean
and variance of the channel conditions, and is designed to
reduce the errors visible to higher layers like TCP after the
link layer has attempted to deliver the packet using retrans-
missions. In fact, ENT is a general concept, and many QAR
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metrics �t into a uni�ed framework given by our ENT analy-
sis. Network designers can choose from a number of di�erent
metrics using the framework we developed. We also showed
how nodes in the network can eÆciently estimate channel
conditions to feed into the network layer.
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APPENDIX
A. Derivation of the Probability of Packet Loss
In this section, we derive the probability of packet loss, given
in (4). Let pB = E [pB;t]. Then,

log P

�
1

pc(T )
>M

�
= log P

 
TX

t=T�S+1

pB;t > logM

!

= log P

 
TX

t=T�S+1

pB;t � SpB > �

!

6 �S��S

� �
S

�
(15)

where

��S

� �
S

�
= sup

r>0

h �
S
r � (�S(r)� rpB)

i
(16)

and

�S(r) =
1

S
log E

"
exp

 
r

SX
t=1

pB;t

!#

is assumed to be di�erentiable for r > 0. Inequality (15) is
the Cherno�'s bound. It becomes tighter as � grows. The
optimization procedure in Eq. (16) is illustrated graphically
in Fig. (23). The abcissa of the point where �S(r) � rpB
has a derivative of �=S is rm. The tangent line at rm cuts
the x-axis at ro. Thus,
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ro =
S

�
��S

� �
S

�

=
S

�

h �
S
rm � (�S(rm)� rmpB)

i
which means,

P

 
TX

t=T�S+1

pB;t > logM

!
� exp(�ro�) (17)

Recall that � =
PT

t=T�S+1 pB;t. From Taylor series expan-
sion, for small values of r,

�S(r) � rpB +
1

2S
�2�r

2 (18)

since �0S(0) = pB and �00S(0) = �2�. Suppose rm � 1. If we
use (18) to evaluate rm we get,

rm =
�

�2�

and

ro =
1

2
rm

Note that generally, �2� due to the small decay in the auto-
covariance of pB;t even in very long time scales. If SpB is
small, then the Cherno� bound can be very tight even for
moderately large values of �. Therefore, rm � 1 is not an
unrealistic assumption and using (18) is valid for r � rm.
Rewriting Eq. (17),
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pB;t > logM
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�
(19)

B. Combining ENT Estimates
Given the estimates, �̂(Æ; � +kS), of the ENT for individual
time periods, 0 6 k 6 Tr=S, we show how to come up with
a single metric to �nd the best route for the entire routing
period.

Claim 1. If �̂k is an unbiased estimate of �k and the
corresponding mean squared error is �k, then mean squared
error corresponding to �̂k +A is �k +A2.

Proof: Let �̂k be an unbiased estimate. Then,

E

��
�k � (�̂k +A)

�2�
= E

h
(�k � �̂k)

2
i

+ 2AE
h
�k � �̂k

i
+A2

= �k +A2

completing the proof. Thus, if we use �̂ instead of �̂k for
0 6 k 6 Tr=S, the total mean squared error is incresed

by
PTr=S

k=1 (�̂ � �̂k)
2. The choice of � that minimizes this

amount of increase is

�̂ =
1

Tr=S

Tr=SX
k=1

�̂k

Hence, the \best" log ENT estimate for the period (�; �+Tr)
is

�̂(Æ) =
1

Tr=S

Tr=SX
k=1

h
�̂(Æ; � + kS) + 2Æ(�̂� �̂k)

2
i

C. EWMA Filters
In this section we discuss the EWMA for estimating ENT.
EWMA estimator is the main tool used in the context of
loss rate estimation. In general the EWMA is used in the
following form (EWMA for 1B;t is a trivial extension of this):

�̂ewma
k = S

�X
s=0

(1� )��spB;s (20)

where 0 <  6 1. Moving averaging is the degenerate case of
EWMA where  = 1. We call this the the generic EWMA.
Let ~� = [��1 ��2 � � � 1]0. The error variance associated
with the generic EWMA is,

�ewma
k = �2�k �

n
2S(1� )

�
~� � ~K�k~pB

�
� var

�
S(1� )

�
~� � ~pB

��o
(21)

where \�" represents inner product. The generic EWMA
does not take advantage of the known �rst two order statis-
tics. In fact, EWMA estimate is unbiased, that is, it inher-
ently performs mean estimation. It also assumes decaying
autocovariance by putting more weight on the recent obser-
vations. Thus, it is designed for the cases where statistics
are not known or are not estimated accurately. Later in this
paper we will analyze the generic EWMA and show that its
performs poorly (worse than MA) in real world scenarios
and toy examples.

We propose a modi�ed version of EWMA which uses the
�rst two order statistics.

�̂ewma
k = S

"
�pB +

k ~K�k~pBk

�2�

�X
s=0

(1� )��s (pB;s � �pB)

#

(22)
The error variance can be evaluated as:

�ewma
k = �2�k �
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2
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�
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(23)

It is clear that given the �rst two order statistics, one could
use the LLS estimator instead of the modi�ed EWMA. How-
ever, the matrix inversion in the LLS estimator may be un-
desirable especially if the probing interval is large.
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