
Abstract—We propose SWAN, a stateless network model 
which uses distributed control algorithms to deliver service 
differentiation in mobile wireless ad hoc networks in a simple, 
scalable and robust manner. We use rate control for UDP and 
TCP best-effort traffic, and sender-based admission control 
for UDP real-time traffic. SWAN uses explicit congestion 
notification (ECN) to dynamically regulate admitted real-
time traffic in the face of network dynamics brought on by 
mobility or traffic overload conditions. We use the term 
“soft” real-time services to indicate that real-time sessions 
could be regulated or dropped due to mobility or excessive 
traffic overloading at mobile wireless routers. SWAN is 
designed to limit such conditions, however. A novel aspect of 
SWAN is that it does not require the support of a QOS-
capable MAC. Rather, soft real-time services are built using 
existing best effort wireless MAC technology. Simulation, 
analysis, and results from an experimental wireless testbed 
show that real-time applications experience low and stable 
delays under various multi-hop, traffic and mobility 
conditions. The wireless testbed and ns-2 simulator source 
code are available from the Web (comet.columbia.edu/swan). 

 
 

I. INTRODUCTION 
 

There is a growing need to support quality of service (QOS) in 
mobile ad hoc networks [1], however, this is challenging. 
Wireless ad hoc networks represent distributed systems, which 
interconnect wireless mobile nodes without the need for fixed 
infrastructure. The interconnection between remote nodes relies 
on peer wireless and mobile nodes that operate as routers on 
behalf of source-destination pairs. Rerouting among mobile 
devices causes topology and network load conditions to change 
dynamically, making it difficult to support real-time applications 
with appropriate QOS.  

Another challenge in supporting QOS for real-time 
applications is associated with the design of the medium access 
control (MAC) protocol. The dynamic nature of wireless ad hoc 
networks makes it difficult to dynamically assign a central 
controller to maintain connection state and reservations. Because 
of this, best effort distributed MAC controllers are widely used in 
existing wireless ad hoc networks. The IEEE 802.11 Distributed 
Coordination Function (DCF) is a good example of a best effort 
distributed MAC. Recently, there have been a number of 
proposals to support service differentiation at the MAC layer 
using distributed control schemes [2] [3].   

In this paper, we assume a best effort MAC and propose a 
simple, distributed, and stateless network model called SWAN 
that uses feedback-based control mechanisms to support soft 
real-time services and service differentiation in wireless ad hoc 
networks. We use rate control for UDP and TCP best-effort traffic 
and sender-based admission control for UDP real-time traffic. We 
use explicit congestion notification (ECN) to dynamically 
regulate admitted real-time traffic in the face of network 
dynamics such as mobility and temporary traffic overload.  
Intermediate nodes do not keep per-flow state information in 

SWAN wireless networks. As a result, there is no need for 
signaling or complex control mechanisms to update, refresh, and 
remove per-flow state information, as is the case with “stateful” 
mobile ad hoc networks found in the literature [1] [3]. Changes 
in topology and network conditions, even node and link failure 
do not affect the operation of the SWAN control system. This 
makes the system simple, robust, and scalable. Instead of 
depending on state information, SWAN uses feedback 
information from the network. A rate control mechanism uses the 
MAC delay measurements from packet transmissions as 
feedback, while a source-based admission control mechanism 
uses rate measurements from aggregated real-time traffic as 
feedback.  

In order to ensure that the bandwidth and delay requirements 
of real-time UDP traffic are met, rate control of TCP and UDP 
best effort traffic is performed at every mobile node in a fully 
distributed and decentralized manner. Rate control is designed to 
restrict best effort traffic yielding the necessary bandwidth 
required to support real-time traffic. Rate control also allows the 
best effort traffic to efficiently utilize the bandwidth that is not 
utilized by the real-time traffic at any moment. The total rate of 
all best effort and real-time traffic transported over each local 
shared media channel should be maintained below a certain 
“threshold rate”, limiting any excessive delays that might be 
experienced.  SWAN adopts engineering techniques that attempt 
to set the admission threshold rate at mobile nodes to operate 
under the saturation level of the wireless channel.  

Addressing these goals is challenging in mobile wireless ad 
hoc networks because of the dynamic nature of the wireless 
channel, and the unpredictability of mobile devices. In SWAN, 
we adapt the well-known additive increase multiplicative 
decrease (AIMD) rate control mechanism to address some of 
these challenges. AIMD algorithms are widely used by a number 
of transport protocols. For example, the TCP congestion control 
mechanism uses AIMD window based control, while WTCP [4] 
uses AIMD rate control. In [10] AIMD control is applied to real-
time UDP traffic. TCP and WTCP use AIMD control to improve 
the performance of TCP traffic. In contrast, we propose to use 
AIMD rate control to improve the performance of real-time UDP 
traffic. TCP attempts to avoid network congestion collapse by 
using packet loss as feedback. We propose to control the rate of 
TCP traffic more conservatively to avoid excessive delays of real 
time UDP traffic by using packet delay as a feedback to local rate 
controllers. Figure 1 illustrates the general behavior of a TCP-
like congestion controlled system [8]. The congestion control 
algorithm ensures that the system works around, or preferably 
close to, the “cliff”, which ensures maximum system throughput, 
but at the cost of larger queues, and therefore larger average 
delays. SWAN’s AIMD control algorithm, on the other hand, 
keeps the system at the delay “knee”, where the system 
throughput is almost the same as at the cliff, but the buffers are 
significantly less loaded, so the delay is close to the minimum. 
SWAN achieves this by using the MAC delay as a feedback 
instead of packet loss. The reason for doing this is that loss 
typically happens at the cliff, while delays start to increase at the 
knee, as illustrated in Figure 1. 

This paper is structured as follows. Section II presents the 
SWAN network model. Section III describes distributed control 
algorithms for rate control, source-based admission control and 
dynamic regulation, respectively. Section IV analyzes the MAC 
delay and the busy probability of a wireless network with and 

SWAN: Service Differentiation in Stateless               
Wireless Ad Hoc Networks 

Gahng-Seop Ahn, Andrew T. Campbell, Andras Veres and Li-Hsiang Sun  

 

Gahng-Seop Ahn, Andrew T. Campbell, Andras Veres and Li-Hsiang 
Sun are with the COMET Group, Columbia University, New York, e-
mail: ahngang@comet.columbia.edu.  

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



without rate control. Sections V and VI present the performance 
evaluation of SWAN using the ns-2 simulator and an 
experimental wireless testbed, respectively. Section VII presents 
some concluding remarks. 

 
 

II. SWAN MODEL 
  

The SWAN model includes a number of mechanisms used to 
support rate regulation of best effort traffic, as illustrated in 
Figure 2. A classifier and a shaper operate between the IP and 
MAC layers. The classifier is capable of differentiating real-time 
and best effort packets, forcing the shaper to process best effort 
packets but not real-time packets. The shaper represents a simple 
leaky bucket traffic shaper. The goal of the shaper is to delay best 
effort packets in conformance with the rate calculated by the rate 
controller, as illustrated in Figure 2.  

There is no flow or session state information maintained at 
intermediate nodes in support of end-to-end communications 
between source destination pairs. Furthermore, when a session is 
admitted there is no admission control decision taken at 
intermediate nodes. Rather, the admission control test to 
determine if a new session should be admitted or not is 
conducted solely at the source node. A key operation of the 
admission controller, which is based at every mobile device, is to 
efficiently estimate local bandwidth availability. The admission 
controller located at the source node probes the network between 
the source and destination to determine the instantaneous end-to-
end bandwidth availability. Based on the results of a 
request/response probe the session admission controller located 
at source node makes a decision to admit a new real-time flow or 
not. Once a session is admitted as a real-time session its packets 
are marked as RT (for real time service) otherwise they are 
considered as best effort packets.  We use the DS (DiffServ) code 
word to maintain this packet state information in our SWAN 
wireless testbed and ns-2 simulation environment. Typically, a 
bandwidth probe is sent at the beginning of a session or, as 
discussed later, when mobility or channel load conditions force a 
real-time session to re-establish its end-to-end service quality. 

Once a session is admitted it is desirable to maintain service 
quality for the lifetime of the session. Because our wireless 
network model takes a conservative approach when allocating 
bandwidth to real-time traffic, small scale violations of service 
quality can be tolerated without impacting application level QOS. 
These small-scale violations may occur because of bursty real-
time sources or unpredictable traffic patterns. In a static wireless 
ad hoc network there is little need for further control algorithms 
above and beyond the rate control of best effort traffic and 
admission control of real-time traffic. One could even argue that 
under low mobility conditions this approach is sufficient for the 
delivery real-time performance. However, the bandwidth 
availability and dynamics of a wireless channel may change 
rapidly in the case of moderate to higher levels of mobility. 
Larger-scale violations may occur when real-time flows are 
admitted or dynamically re-routed. In the former case, multiple 
source nodes could simultaneously send new session probes that 
may traverse common intermediate nodes facilitating the 

admission of new sessions. This in turn could overload these 
common intermediate nodes. There is a need for additional 
SWAN mechanisms that can help resolve these issues. 

We propose to regulate real-time sessions when a mobile node 
observes violation of real-time sessions; for example, due to 
mobility or source-based admission control. We adopt a 
regulation mechanism based on ECN, which was originally 
proposed for controlling and improving TCP traffic performance 
in IP networks. To allow for experimentation with IPv4, two bits 
(i.e., ECN-Capable Transport and Congestion Experienced bits) 
have been set-aside in the IP header for ECN [5]. In another 
proposal [6] ECN is used to control both TCP and non-TCP 
traffic in a wireline DiffServ architecture. We propose to use 
ECN to control and regulate UDP real-time traffic in the case of 
traffic violations most likely brought on by the re-routing of real-
time sessions. By regulation, we mean that the ECN mechanism 
forces real-time flows to re-establish their real-time service. 
Under such conditions an existing flow would either be able to 
re-establish its original service quality or be dropped. We do not 
consider bandwidth adaptation of real-time sessions in this paper. 
Rather, we assume that real-time flows attempt to re-establish 
service at their original bandwidth levels. 

It should also be noted that SWAN’s ECN control system also 
serves to regulate real-time sessions in the case of persistent 
congestion, or due to potential overloading associated with 
source-based admission control. If multiple sources “read” (via 
request/response probes) the state of the network at the same 
time they may erroneously admit more real-time sessions than an 
intermediate node can support. We call this condition “false 
admission” and discuss it further in Section III-C. If false 
admission occurs, then the ECN control system will randomly 
regulate real-time flows, forcing the control system back to an 
operating point that is within the admission threshold of the 
wireless network. SWAN’s design philosophy is not to add more 
protocol complexity or state information to resolve any perceived 
unfairness among real-time flows that are randomly selected for 
dynamic regulation. Rather, we rely on the existing SWAN 
distributed control algorithms to resolve such issues. 

 
 

III. DISTRIBUTED CONTROL ALGORITHMS 
 
A.  Rate Control of Best Effort Traffic 
 

Each node in the mobile ad hoc network independently regulates 
best effort traffic. The rate controller determines the departure 
rate of the shaper using the AIMD rate control algorithm based 
on feedback from MAC. This feedback measure used by the rate 
controller represents the packet delay measured by the MAC 
layer. In our model we use existing best effort MAC technology 
as part of SWAN. Packet delay for the IEEE 802.11 DCF mode 
MAC, for example, can be measured rather simply. When a 
packet arrives at the MAC layer, the MAC listens to the channel 
and defers access to the channel according to the CSMA/CA 
algorithm. When the MAC gets access to the channel then RTS-
CTS-DATA-ACK packets are exchanged. The reception of an 
ACK packet at the transmitter indicates that a packet was 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. General behavior of a congestion 
controlled system. 

load 

throughput 

congestion 
control “cliff” 

delay 
“knee” 

delay

Fig. 2.  SWAN Model. 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



received successfully. The packet delay represents the time it 
took to send the packet between the transmitter and receiver 
including the total deferred time (including possible collision 
resolution) plus the time to fully acknowledge the packet. This is 
simply measured at the source node by subtracting the time that a 
packet is passed to the MAC layer (from the upper layer) from 
the time an ACK packet is received from the receiver. 

SWAN’s AIMD rate control algorithm is shown in Figure 3. 
Every T seconds, each mobile device increases its transmission 
rate gradually (additive increase with increment rate of c Kbps) 
until the packet delays become excessive. The rate controller 
detects excessive delays when one or more packets have greater 
delays than the threshold delay d sec. As soon as the rate 
controller detects excessive delays, it backs off the rate 
(multiplicative decrease by r%). The threshold delay d is based 
on the real-time delay requirements of applications in wireless 
network, as discussed in our previous work [2]. The shaping rate 
is adjusted every T second. The period T should be small enough 
to be responsive to the dynamics of mobile ad hoc networks [1] 
[11] [12]. 

 
If there is a large difference between the shaping rate and the 

actual transmission rate then a mobile device is capable of 
transmitting a burst without due control, hence, potentially 
limiting the performance of real-time traffic. To resolve this 
problem, the rate controller monitors the actual transmission rate. 
When the difference between the shaping rate and the actual rate 
is greater than g% of the actual rate, then the rate controller 
adjusts the shaping rate to be g% above the actual rate. This 
“gap” (i.e., g%) allows the best-effort traffic to increase its actual 
rate gradually. 

In this paper, we argue that bandwidth and delay bound 
requirements of real-time traffic can be adequately supported by 
using rate control based on our simple SWAN AIMD rate control 
algorithm, while best effort traffic can efficiently utilize any 
remaining bandwidth. However, to fully support real time traffic, 
rate controlling best effort traffic is insufficient. There is also a 
need to support “edge” admission control. 

 
B.  Source-based Admission of Real-Time Traffic 
 

Using a shared wireless channel allows mobile hosts to listen to 
packets sent within radio transmission range. An admission 
controller uses this feature to measure local resource availability. 
At each node, the admission controller measures the rate of real-
time traffic in terms of bits per second. Note that in order to 
smooth out small-scale traffic variations, the admission controller 
uses a running average (e.g., weighted moving average) of these 
measures. 

If we know the threshold rate [2] that would trigger excessive 
delays, then bandwidth availability in a local shared media 
channel is simply the difference between the threshold rate and 
current rate of the real-time traffic. However, it is difficult to 
estimate the threshold rate accurately because the threshold rate 
may change dynamically depending on traffic patterns. It is not 
desirable to admit real-time traffic up to the threshold rate for a 
number of reasons. First, best effort traffic would be starved of 
resources should the real-time traffic consume bandwidth up to 
such a threshold rate. Best effort traffic is rate controlled to yield 
the bandwidth required for real-time traffic and to keep the total 
traffic, both real-time and best effort, below the threshold rate. 
Second, there would be no flexibility to tolerate channel 
dynamics, as previously discussed. The total rate of aggregated 
real-time traffic may be dynamic due to changes in traffic 
patterns and node mobility. Due to node mobility, for example, 
intermediate nodes may need to maintain real-time traffic in 
excess of resources set-a-side for real-time traffic. There are a 
number of possible ways to address this problem. 

We take a simple approach and admit real-time traffic up to a 
rate that is more conservative than the threshold rate. Therefore, 
the estimated available bandwidth of a local shared media 
channel is the difference between this conservative admission 
control rate and the current rate of the real-time traffic. With such 
a policy, we can use fixed, coarse, and statistically approximated 
values for the admission control rate. Even though the measure is 
conservative the utilization of the network is not limited because 
any remaining unutilized bandwidth will be potentially absorbed 
by the best-effort traffic. This approach is simple and flexible and 
allows bandwidth sharing between real-time and best-effort 
traffic. 

The process of admitting a new session is as follows. The 
admission controller located at the source node sends a probing 
request packet toward the destination node to estimate the end-to-
end bandwidth availability. The probing request packet is a UDP 
control packet that contains a “bottleneck bandwidth” field. Each 
intermediate node between the source-destination pair intercepts 
the probing request packet and updates the bottleneck bandwidth 
field if the bandwidth availability at the node is less than the 
current value of the field. Therefore, if the local bandwidth 
availability is different for each hop along the path between the 
source and destination then the value of the bottleneck field at the 
destination node represents the bottleneck bandwidth along the 
path. The destination node sends a probing response packet back 
to the source node with the bottleneck field copied from the 
probing request. There is no need for this probe response 
message to follow a reverse path back toward the source node. 

Once the source node receives the probing response packet it 
can execute the simple source-based admission control by 
comparing the end-to-end bandwidth availability and the 
bandwidth requirement for the new real-time session. Note that 
no bandwidth request is carried in the probe message, no 
admission control is executed at intermediate nodes, nor are there 
any resources allocated or reserved on behalf of the source node 
during the lifetime of the session. Rather, the probe 
instantaneously “reads” the state of the network path presented to 
it by the routing protocol and makes a local source based 
admission decision based on the probe response. What makes 
such a stateless approach work is that all nodes independently 
regulate best effort traffic and each source uses admission control 
for real-time sessions. When a new real-time session is admitted, 
the packets associated with the flow are marked as RT (real-time 
packets/traffic). The classifier looks at the marking, and if the 
packet is marked as RT, the packet will bypass the shaper 
mechanism, remaining unregulated. Here there is an implicit 
assumption that the source node regulates its real-time sessions 
based on its admission control decision. 

 

Procedure update_shaping_rate ( )  
/* called every T second period */ 
Begin 
 
if (n > 0)                                /* one or more packets have delays 
                                                  greater than the threshold delay d sec */ 
    s  s * (1 – r / 100)         /* multiplicative decrease by r% */ 
 
else 
 
    s  s + c                          /* additive increase by c Kbps */ 
 
if ( (s – a) > a * g / 100)      /* difference between actual rate and shaping 
                                                 rate is greater than g% of actual rate */ 
    s  a * (1+ g / 100)        /* adjust shaping rate to match actual rate */    
 
end 
 

        Fig. 3. SWAN AIMD Rate Control Algorithm. 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



 
C.  Dynamic Regulation of Real-Time Traffic 
 

  Impact of Mobility and False Admission  
 

Mobility and “false admission” represent two conditions that 
violate this simple approach to source-based admission control 
thereby complicating the delivery of soft-QOS assurances in 
stateless wireless networks. Node mobility is harmful because 
real-time flows admitted along a certain path are dynamically re-
routed due to node mobility. Because nodes are unaware of 
mobility and flow re-routing, resource conflicts can arise and 
persist. Source nodes, for example, that have been previously 
admitted flows are unaware of node mobility and the re-routing 
of flows through new intermediate nodes that may have 
insufficient resources to support previously admitted traffic. 
False admission is a result of multiple source nodes 
simultaneously initiating admission control at the same instance 
and sharing common paths and nodes between source-destination 
pairs. Because intermediate nodes do not maintain state 
information and admission control is conducted at the 
edge/source node in a fully decentralized manner, each source 
node may receive a response to their probe message indicating 
that resources are available when in fact they are not. However, 
the source node is unaware of this fact and falsely admits a new 
flow and starts transmitting real-time packets under the 
assumption that resources are available to meet the flows needs. 
Consider the following false admission scenario. Four source 
nodes want to establish video flows at a rate of 200 Kbps and 
probe the network. A common intermediate node only has 
resources to support 200 Kbps of real-time traffic, sufficient to 
support only a single video flow. However, in the case of false 
admission all the flows are admitted erroneously because all the 
nodes “see” a reservation that can support 200 Kbps. This results 
in the four source nodes pumping data into the wireless network 
with an aggregate rate of 800 Kbps, destined toward the common 
node under discussion. If left unresolved, the re-routing of 
admitted flows and false admission can cause excessive delays in 
real-time traffic, because, the utilization of the admitted or falsely 
admitted real-time traffic can violate the admission control rate 
and exceed the threshold rate by a significant margin. To resolve 
these problems, we augment the SWAN AIMD rate control and 
source-based admission control algorithms with dynamic 
regulation of real-time traffic when congestion/overloading is 
experienced by nodes due to the re-routing of admitted flows and 
false admission. 

 
 Source and Network-Based Regulation Algorithms 

 
The ECN-based regulation of real-time sessions operates as 
follows. Each node continuously, and independently, measures 
the utilization of its real-time traffic to estimate the local 
available bandwidth, as discussed in Section III-B. Each mobile 
node can detect violations (i.e., congestion/overload conditions) 
using this periodic traffic measurement. When a node detects 
such a violation, it starts marking the ECN bits in the IP header 
of the real-time packets. The destination node monitors the ECN 
bits and notifies the source using a regulate message. When the 
source node receives a regulate message, it initiates re-
establishment of its real-time session based on its original 
bandwidth needs. To reestablish a real-time session a source node 
follows the same process as setting up a new session by sending 
a probing request toward the destination. A source node 
terminates the session if the estimated end-to-end bandwidth 
indicated in the probing response packet cannot meet its existing 
session needs. This is one of the reasons why we call our 
approach to service differentiation in mobile ad hoc networks 
“soft” because an admitted real-time flow may encounter both 
periodic violations in its bandwidth requirements and, in the 
worst case, may have to be “dropped” or live with degraded best 

effort delivery. 
If the nodes in a congested or overloaded condition were to 

mark all packets with CE (Congestion Experienced) then all 
sessions traversing these nodes would be forced to be re-
established their real-time service at the same time. Such an 
approach is inefficient and would lead to erroneous behavior. For 
example, all sources may re-probe the network, “see” network 
resources over utilized and drop all their flows accordingly.  This 
clearly is not the best policy. More systematic approaches may 
only penalize a small number of sources. To address the problem, 
we consider two approaches and analysis their suitability and 
trade-offs: 

Source-Based Regulation (SWAN-1). When an intermediate 
node experiences overload or congested conditions it marks all 
flows with CE. When destination nodes encounter packets with 
the CE bit marked they send regulate messages to the appropriate 
source nodes to force the re-establishment of flows that have 
previously been successfully admitted. However, in this case the 
source node does not immediately initiate re-establishment upon 
receipt of a regulate message. Rather, it waits for a random 
amount of time before initiating the re-establishment procedure. 
Under such a regime, source regulation would be staggered 
thereby avoiding flash-crowd conditions, where, a number of 
sources simultaneously initiate regulation (i.e., re-establishment 
of service) at the same time, “see” the path overbooked and drop 
their real-time sessions accordingly. Under a staggered regime, 
the rate of the real-time traffic will gradually decrease until it 
reaches below the admission control rate. At that point, congested 
or overbooked nodes will stop marking packets.  Because flows 
can be admitted by mistake, due to false admission, source nodes 
need to be capable of differentiating between regulation 
associated with false admission and regulation due to mobility. 
Nodes can do this by keeping some state information about 
newly admitted flows versus on-going flows. This allows a 
source node to take immediate corrective action in the case 
where it receives a regulation message for a flow that it just 
admitted, albeit falsely.  A disadvantage of this approach is that 
sources which regulate earlier than other sources (i.e., wait the 
shortest period of time before initiating re-establishment) are 
more likely to find the path overbooked and be forced to drop 
their sessions. An advantage of this scheme, however, is that it is 
purely source-based. 

Network-Based Regulation (SWAN-2). Rather than marking all 
packets with CE, congested/overloaded nodes randomly select a 
“congestion set” of real-time sessions and only mark packets 
associated with this set. This can be done using a hash function 
without keeping any per-flow state at the intermediate nodes. A 
congested node marks the congested set for a period of time T 
seconds and then calculates a new congested set. As in the case 
of the previous algorithm, nodes stop marking packets 
“congested” when the measured rate of the real-time traffic drops 
below the admission control rate. Under such an approach the 
rate of the real-time traffic will gradually decrease until it reaches 
below the admission control rate. However, there is a need for 
intermediate routers to distinguish between flows that have been 
falsely admitted or not. In this case, source nodes could use an 
additional bit in the TOS field to indicate if a RT session is new 
or old (namely RT-new, RT-old). When a flow is newly admitted, 
packets are marked as RT-new for a period of time before being 
marked as RT-old. A disadvantage on this scheme is that it 
requires some intelligence at intermediate nodes to manage the 
congested sets and determine if a flow is new or old in order to 
correctly respond to false admission. 

 
 Performance Considerations and Trade-offs 

 
There are a number of trade-offs between the source-based and 
network-based regulation schemes. Figure 4 compares the two 
approaches and shows how a combination of admission control 
and regulation can manage the rate of real-time traffic under 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



overload conditions. The results were obtained from an ns-2 
simulation of SWAN that is further discussed in Section V. To 
observe how regulation works, we consider an extreme scenario 
where a number of real-time sessions are suddenly rerouted in 
the network through a certain hop. The re-routed sessions have 
all previously been successfully admitted. As shown in Figure 4, 
due to mobility re-routed flows start to be routed over the shared 
media channel (without admission control) at 20 sec into the 
simulation scenario. Also a number of source nodes 
simultaneously perform admission control for new real-time 
sessions creating conditions for false admission at 20 sec into the 
scenario. Note, that the proposed admission control mechanism 
allows small-scale violation up to the threshold rate for ECN-
based regulation. In this simulation, the admission control rate is 
set at 2 Mbps and the threshold rate is 3.5 Mbps. The channel 
bandwidth is 11 Mbps. For a more detailed discussion on the 
setting of these system parameters, which are determined by 
considering the requirements of the admission control and 
threshold rates, see our previous work  [2] on the analysis of 
distributed MAC delays. As soon as the rate exceeds the 
threshold rate, the mobile nodes in the shared media channel 
begin to mark the ECN field of the packets of all real-time flows 
(SWAN-1) or the active set (SWAN-2) depending on the scheme.  

Figure 4, shows the results for both schemes. For both 
algorithms flows are dropped gradually after intermediate nodes 
start to mark the ECN field in the packets of real-time flows. 
Note that the dropped flows may not necessarily be the re-routed 
sessions but existing sessions that were admitted previously. This 
may seem unfair but our approach is stateless and there is no 
mechanism for congested nodes to differentiate between existing 
and re-routed sessions. Furthermore, it is likely that most real-
time sessions would be re-routed multiple times during the 
lifetime of their sessions. In this case, there is little benefit in 
attempting to discriminate between the existing and re-routed 
flows when statistically all sessions should be treated in the same 
manner on average. We used a random number between (0, 7) to 
support the back-off and set selection functions required by the 
SWAN-1 and SWAN-2 schemes, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      From Figure 4, we observe that the rate of the real-time 

traffic is gradually reduced until it reaches the admission control 
rate for the SWAN-2 approach. We observe that this took 
approximately 4 seconds for SWAN-2. The simulation results 
indicate that after re-routing, nineteen sessions were traversing 
the node under congested conditions. Five of these sessions were 
traversing the node prior to overloading. Eight sessions were re-
routed sessions and six sessions were the product of false 
admission. The regulation process resulted in eleven sessions 
being successfully regulated with eight sessions dropped. In the 
scenario discussed above, all falsely admitted sessions are 
dropped prior to other flows being dropped, with one of the 
dropped flows traversing the node before flows were re-routed. 

The response of the source-based regulation scheme (i.e., 
SWAN-1) took longer (2 seconds) than the network-based 
approach (i.e., SWAN-2). This additional latency caused more 
real-time traffic to be dropped over that experienced by SWAN-2. 
In the case of SWAN-1, the network operates below the 
admission control rate indicating that the scheme results in under 
utilization of resources at the congested node, as shown in Figure 
4. In summary, the SWAN-2 approach performs better than 
SWAN-1 with the cost of an additional 1-bit in the packet header 
for marking flows new/old, and more intelligence at intermediate 
nodes to manage the sets to mark. 

 
IV. ANALYSIS 

 
We analyze the MAC delay and the probability that mobile 
devices find themselves in a backlogged state in IEEE 802.11 
wireless networks. We use the terms “original system” and 
“proposed system” to refer to IEEE 802.11 wireless networks 
with and without rate control, respectively. In section IV-A, we 
show through analysis that the proposed system performs better 
than the original system in terms of MAC delay. Section IV-B 
explains why this is the case. We show that by controlling the 
probability of mobile nodes being in a backlogged state, the 
target MAC delay of the real-time traffic can be maintained. This 
result confirms that the SWAN approach is feasible and effective. 
 

A.  Analysis of MAC Delay 
 

Assume there are two classes of mobile devices in the shared 
channel environment. Class 1 and Class 2 represent real-time 
UDP traffic and best effort TCP traffic, respectively. Each of the 

1n  Class 1 mobile devices has an active UDP session, and each 
of the 2n  Class 2 mobile devices has an active TCP session. We 
define an idle mobile device as a mobile device whose MAC 
layer is idle and interface queue empty. If a mobile device is not 
idle then it is busy. Denote the portion of time that a class 
i mobile device is  busy as ionp , . From [7], a busy class i  
mobile device’s transmission probability in each time slot is 
represented as, 

))2(1()1)(21(
)21(2

m
iii

i
i pWpWp

p          (1) 

where ip  is the collision probability for a class i  mobile device 
at each time slot. W  is the initial back-off window, and mW 2  is 
the maximum back-off window in the IEEE 802.11 protocol. By 
following the procedure in [7], the collision probability can be 
represented as, 

1
22,11,2

22,
1

11,1

21

21

)1()1(1

)1()1(1
n

on
n

on

n
on

n
on

ppp

ppp .        (2) 

The probability that one or more packets are sent to the 
channel at each slot is then, 

21 )1()1(1 22,11,
n

on
n

ontr ppP ,            (3) 

and the probability of a successful transmission each slot is, 

tr

n
on

n
onon

tr

n
on

n
onon

s

P
pppn

P
pppn

P

1
22,11,12,2

22,
1

11,11,1

21

21

)1()1(

)1()1(
      (4) 

The total throughput of the system (in packets/sec) can be 
represented as, 

))1(()1( cssstrtr

trs

TPTPPP
PP

S        (5) 

where  is the length of a time slot, which is 20 s in all our 
simulations. sT  and cT  are the times needed to send un-collided 

Fig. 4. Comparison of the source-based delayed regulation (SWAN-1) and
network-based set regulation (SWAN-2) schemes. Trace of the actual rate of
the real-time traffic for both schemes. 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



and collided packets, respectively, on the channel. sT  and cT  are 
calculated from the packet length distribution, taking into 
account the overhead of the MAC and physical layers (i.e.,  SIFS, 
DIFS, ACK, header, and preamble). The length of collided 
packets is approximated as the maximum length of two collided 
packets. The overall average MAC delay can be simply 
calculated using Little’s formula as, 

S
npnp

d onon 22,11,                       (6) 

We carried out an ns-2 simulation for 4 video (Class 1) mobile 
devices and 8~32 FTP (Class 2) mobile devices. In this 
simulation, video sessions are modeled as CBR sources and the 
FTP sessions have an infinitely long file sizes that lasts for the 
whole simulation period. We denote the uncontrolled system as 
the original system, and the system with the proposed feedback 
control as the proposed system. Because it is difficult to use a 
simple model to characterize the flow control of TCP/IP, coupled 
with a queuing system on top of the MAC layer, and the MAC 
layer and traffic shaper (for the proposed system), we record the 
quantity 2,1, , onon pp  during the simulation as an approximation of 
this complex system. With 212,1, ,,, nnpp onon  known, we jointly 
solve (1), (2) for 2121 ,,, pp , then from (3), (4), (5), (6), the 
overall average delay is computed. The results are plotted in 
Figure 5. It is shown that the analytical delay approaches closer 
to the overall average delay than the MAC delay of the video 
sessions for the original system. 

It can be shown that the proposed control mechanism is 
equivalent to a rate control mechanism that controls the 
probability of the interface queue system (including the MAC 
layer) being busy. Because the input to the analysis, 2,1, , onon pp  
are different for the original and proposed systems, this results in 
quite different delay performance, as shown in Figure 5. The 
analysis and simulation results show that the proposed system 
performs well for a growing number (#) of TCP sources. 

 
B.  Analysis of Busy Probability 

 
We now analyze the proposed system from another perspective 
and try to find the value of 2,onp  (i.e. the probability of a Class 2 
mobile device being in backlogged state) that Class 2 mobile 
devices must achieve so that the target average MAC delay can 
be maintained. We assume no packet loss due to buffer overflow 
for Class 1 mobile devices. Because Class 1 mobile devices carry 
UDP real-time sessions with known data rates ( 1S  packets/sec) 
from the application layer, we set our target MAC delay as d, so 

1,onp  can be acquired from the following: 
11, Sdpon
                                   (7) 

We use a procedure called Equilibrium Point Analysis (EPA) 
[9] in calculating the collision probabilities. In this approach, 

probabilities are calculated in terms of the equilibrium point of 
the system, and the average number of mobile devices in each 
state is often chosen as the point. Here we choose the average 
number of backlogged Class 2 mobile devices 2n  as the 
equilibrium point. We modify (2) as,  

1
211,2

2
1

11,1

21

21

)1()1(1

)1()1(1
nn

on

nn
on

pp

pp         (8) 

Note that we can still use (2) to find 2,onp  but slightly worse 
analytical results are produced. We modify (3) accordingly as,  

21 )1()1(1 211,
nn

ontr pP            (9) 

The probability of transmission of Class 1 mobile device 
being successful, conditioned on at least one mobile device 
transmitting is given by, 

tr

nn
onon

s P
ppn

P
21 )1()1( 2

1
11,11,1

1
           (10) 

The probability of a packet transmission being successful, 
conditioned on at least one mobile device transmitting is then 
given by, 

tr

nn
on

tr

nn
onon

s

P
pn

P
ppn

P

1
211,12

2
1

11,11,1

21

21

)1()1(

)1()1(
         (11) 

As in (5), the throughput (in packets/sec) of Class 1 mobile 
device is,  

))1(()1(
1

1
cssstrtr

trs

TPTPPP
PPS            (12) 

We choose the Class 1 MAC delay in the proposed system 
observed in the simulation-video curve of Figure 5 as our target 
delay d. We put (7), (9), (10), (11) to (12) and solve (1), (8), (12) 
jointly for 2n , 2121 ,,, pp . Following this, we calculate the 
probability of a Class 2 mobile device being busy as, 

2

2
2, n

np on

                              (13) 

Figure 6 shows analytical results of 2,onp  in comparison to the 
measured 2,onp  from our simulation of the proposed system. In 
order to achieve the target delay d for Class 1 mobile devices, we 
need to keep the probability of Class 2 being busy to be less than 

2,onp . The input parameters of the above analysis are d (desired 
average delay), 1S  (the throughput of Class 1 mobile devices), 

1n , and 2n  (the number of Class 1 and 2 mobile devices, 
respectively) and the output is 2,onp  (the probability of Class 2 
mobile devices being busy). With 1S , 1n , 2n  fixed, the delay 
statistics are positively related to 2,onp , where a delay violation 
implies a violation of 2,onp . This prompts us to correct this 
situation by minimizing the possibility that a mobile device will 

Fig. 5. A Delay Comparison of Original and Proposed
Systems. 

Fig. 6. Comparison of Busy Probability. 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



be still in a backlogged state.  In our proposed system, this is 
achieved by the multiplicative decrease procedure when the 
delay violation is observed. On the other hand, when the delay is 
small, 2,onp  is also small. The system is under-loaded. The 
additive increase procedure increases 2,onp  by gradually 
increasing the packet arrival rate. The AIMD mechanism with 
delay feedback is thus an automatic procedure to keep 2,onp  on a 
desirable level, so the bandwidth is effectively utilized, but the 
system is not overloaded. As a result, TCP traffic has reasonable 
throughput, while UDP traffic achieves the desirable delay 
performance. Figure 6 compares the analytical result of the 
desirable 2,onp  for achieving the target MAC delay, with the 
measurement from the simulations of the proposed system. The 
simulation curve closely matches the analysis curve. This result 
confirms that AIMD rate control is capable of keeping 2,onp  at a 
desired level, and thus maintaining the target MAC delay. 

Figure 6 shows that it is exactly what the SWAN AIMD rate 
control mechanism does. The simulation curve closely matches 
the analysis curve. This result confirms that AIMD rate control is 
capable of minimizing 2,onp  and thus maintaining the MAC 
delay under a certain boundary. 

 
 

V. EVALUATION 
 
We implemented SWAN using the ns-2 simulator and its wireless 
extensions developed at CMU [12]. The SWAN ns-2 extensions 
include the AIMD rate controller, admission controller, packet 
delay measurement mechanism, local utilization monitoring, 
probe protocol for bandwidth availability estimation, and explicit 
congestion notification. As mentioned in the previous section, we 
use the terms “proposed system” and “original system” to refer to 
wireless ad-hoc networks with and without the SWAN 
mechanisms, respectively. Throughout the simulation, each 
mobile node has a transmission range of 250 meters and shares 
an 11 Mbps radio channel with its neighboring nodes. The 
simulation includes a two-ray ground reflection model and IEEE 
802.11 MAC protocol. 

 
A.  Performance of a Single Shared Channel 
 

To best understand the characteristics of SWAN’s rate control 
and admission control mechanisms we first study a wireless ad 
hoc network that comprises a single shared wireless channel. The 
simulated network has a square shape of 150m x 150m where all 
wireless ad hoc mobile nodes share a single radio channel of 11 
Mbps. The source and destination nodes associated with flows 
are distributed among the mobile nodes in the wireless ad hoc 

network. We ran a large set of simulations using different values 
for the AIMD rate controller parameters, c (increment rate, 
Kbps/sec), r (decrement rate, %), and g (gap between actual rate 
and shaping rate, %) to understand the characteristics, trade-offs 
and performance of our rate control mechanism. 

 
 Gap Control Parameter (g) Analysis 

 
We use 4 TCP connections to see how the SWAN AIMD rate 
controller controls TCP traffic. In this simulation, all TCP flows 
are greedy FTP type of traffic with packet size of 512 bytes. 
Figure 7 shows a trace of a TCP traffic flow that exhibits some 
inefficiency under our rate control regime. Note, that the actual 
and shaping rates do not match, and as shown in the trace, the 
shaping rate keeps growing while the actual rate of the TCP stalls 
and cannot follow the computed shaping rate. Such a disparity 
between the actual and shaping rates can be harmful. If left 
unresolved the “gap” can affect the performance of real-time 
traffic and other best-effort traffic. Such a condition arises 
naturally for TCP. For example, TCP traffic cannot follow the 
computed shaping rate when TCP traffic reaches the maximum 
throughput of the network or backs-off due to packet losses, etc. 
To resolve the mismatch of the actual and shaping rates, we 
introduce a gap control algorithm with parameter g, as described 
in Section III-A. Figure 8 illustrates the trace of the TCP traffic 
with the gap control algorithm activated. From Figure 8, we can 
observe that the actual rate closely follows the shaping rate 
providing better rate control for the TCP traffic; that is, gap 
control prevents a TCP from transmitting an uncontrolled, 
excessive burst of data, which could happen without gap control, 
as illustrated in Figure 7. 

To understand the characteristic of parameter g, we measured 
the fairness between TCP flows (see Figure 9). The definition of 
fairness in [8] is used in measuring the fairness between TCP 
flows: 

2

2

)(
i

i

xn
x

xF  , 

where ix  is the fraction of the bandwidth allocated for i-th flow 
and n is the number of flows. F becomes 1 when all flows share 
the exactly same fraction. The x-axis in Figure 9 represents the 
value for parameter g (gap between actual rate and shaping 
rate, %). As shown in Figure 9, fairness tends to decrease as the 
value of g increases except when the value of g is less than 10%. 
A mobile device may have more chance of transmitting a burst as 
the value of parameter g increases. If a mobile device is allowed 
to transmit a burst then this burst may limit the performance of 
other TCP flows. As a result, the fairness decreases as the value 
of g increases. If the value of g is too small, the gap between the 

Fig. 7. Trace of the shaping rate and the actual rate of the best effort TCP
traffic without the gap control algorithm. 

 

Fig. 8. Trace of the shaping rate and the actual rate of the best effort TCP
traffic with the gap control algorithm. 

 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



actual rate and the shaping rate will be greater than g% most of 
the time, and the gap control algorithm will set the shaping rate 
to closely match the actual rate rather than increasing the shaping 
rate with increment rate c.  So the additive increase of the AIMD 
algorithm may not be able to operate efficiently. Thus, TCP flows 
with smaller traffic rates may have little chance to grow their rate 
with the result that fairness may eventually decrease. 

 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

AIMD Parameter (c, r) Analysis 
 

To better understand the properties of the SWAN AIMD rate 
control parameters c and r, we consider two scenarios for 
background TCP best-effort traffic. The first scenario has 8 TCP 
flows and the second has 32 TCP flows. In both scenarios, all 
TCP flows are greedy FTP type of traffic with packet size of 512 
bytes. TCP flows are rate controlled with parameter c and 
parameter r, while voice and video flows are not rate controlled 
once admitted through the source-based admission control 
process. During the simulation, 4 voice flows and 4 video flows 
are active and monitored for the duration of 200 seconds 
representing real-time traffic. Voice traffic is modeled as 32 Kbps 
constant rate traffic with a packet size of 80 bytes. Video traffic is 
modeled as 200 Kbps constant rate traffic with a packet size of 
512 bytes. 

We measured the average MAC delay of real-time traffic (see 
Figures 10 and 12) and the total throughput of best-effort traffic 
(see Figures 11 and 13). The x-axis of Figures 10 and 11 
represent the value for parameter c (increment rate, Kbps/sec). 
The x-axis in Figures 12 and 13 represents the value for 
parameter r (decrement rate, %). It is shown in Figure 10 that the 
value of parameter c does not have much impact on the average 
delay of real-time traffic. The average delay grows very slowly 
with the increasing value of parameter c. In contrast, the total 
throughput of best-effort TCP traffic is noticeably decreased 
when a small value of parameter c is chosen, as shown in Figure 
11. When the increment rate is 5 Kbps/sec, throughput is reduced 
by about 10% for the 8 TCP flow scenario and by 13% for the 32 
TCP flow scenario in comparison to the original system. For an 
increment rate of 20 Kbps/sec or larger, the TCP throughput 
becomes almost constant with less than 3% reduction in 
throughput.  

The value of parameter r has significant impact on the average 
delay of the real-time traffic, as shown in Figure 12. When the 
decrement rate is set to 10 %, the average delay becomes almost 
as large as the average delay in the original system. The average 
delay becomes smaller as the value of parameter r increases. It is 
observed in Figure 13 that total throughput of the best-effort TCP 
traffic is also sensitive to the value of parameter r. The proposed 
system shows the best and worst-case performance in terms of 
the total throughput of best-effort TCP traffic when the value of 
parameter r is 25% and 75%, respectively. When the value of c is 
35 and the value of r is 50, the average delay of the real-time 
traffic is reduced by more than 60% with 8 background TCP 
flows, and by 75% with 32 background TCP flows. These results 
demonstrate that we can achieve a reduction of 60-75% in the 
average delay of real-time traffic with a 2% loss of TCP 

throughput using the SWAN AIMD rate control algorithm. This 
is a promising result. 

Figures 14 and 15 show the average delay of real-time traffic 
with a growing number of TCP flows and web sources, 
respectively. TCP flows are greedy FTP type of traffic with 
packet size of 512 bytes. The web sources are modeled as short 
TCP file transfers with random file size and random silent period 
between transfers. The file size is driven from a Pareto 
distribution with a mean file size of 10 Kbytes and a shape 
parameter of 1.2. The length of the silent period between two 
transfers is also Pareto in distribution with the same shape 
parameter with a mean of 10 seconds. This creates a highly 
bursty background best-effort traffic load over multiple time-
scales. Web traffic represents micro flows, whereas, FTP traffic 
corresponds to macro flows. The real-time traffic is modeled in 
the same manner as discussed in the previous simulation using 4 
voice flows of 32 Kbps and 4 video flows of 200 Kbps. From 
Figure 14, we observe that the average delay of real-time traffic 
in the original system is the same as the proposed system without 
background TCP flows. The average delay of real-time traffic in 
the original system grows linearly from 3 to 17 msec when the 
number of background TCP flows increase from 4 to 32 flows. In 
contrast, the average delay of real-time traffic in the proposed 
system remains less than 3 msec. 

Figure 15 shows that the average delay for real-time traffic in 

Fig. 9. Fairness between best-effort TCP
flows vs. parameter g. 

 

Fig. 11. Total throughput of best-
effort TCP traffic vs. increment
rate. 

 

Fig. 10. Average delay of real-time
traffic vs. increment rate. 

Fig. 12. Average delay of real-time
traffic vs. decrement rate. 

 

Fig. 13. Total throughput of best-
effort TCP traffic vs. decrement
rate. 

Fig. 14. Average delay of real-
time traffic vs. number of FTP
macro-flows. 

 

Fig. 15. Average delay of real-
time traffic vs. number of web 
micro-flows. 

 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



the original and proposed systems is similar for up to 48 web 
sources. The average delay of real-time traffic in the original 
system grows from 2 to 7 msec when the number of web sources 
increases from 48 to 72 micro flows. In contrast, the average 
delay of the real-time traffic in the proposed system remains 
around 2 msec. It is observed that the average delay in the 
proposed system is less than 4 msec even when web traffic is of 
high intensity. 

The results presented in this section imply that the proposed 
system can support soft real-time traffic with consistently low 
delay by controlling the rate of best-effort TCP and web traffic 
for a single shared media channel. In the next section, we 
investigate the performance of the proposed system that 
considers multi-hops and varying device mobility. 

 
B. Performance of Multi-hop Scenarios with Mobility 
 

In this section, we consider a simulated multi-hop network with 
50 mobile ad hoc nodes. The network area has a rectangular 
shape of 1500m x 300m that minimizes the effect of network 
partitioning. AODV [11] is used for routing in the simulated 
network. The real-time traffic is modeled in the same manner as 
discussed previously. The background TCP traffic is modeled as 
a mixture of FTP and web traffic. Typically, flows traverse 2-5 
hops (3 hops on average) between source-destination pairs.   

Figures 16 and 17 show the average end-to-end delay for real-
time traffic and TCP best effort traffic for an increasing number 
of background TCP traffic, respectively. We observe that the 
packet loss of the real-time traffic is less than 1% in both the 
original and proposed systems. However, the average delay of the 
real-time traffic shows a significant difference between the 
original and proposed systems. The average end-to-end delay of 
the real-time traffic in the original system grows linearly from 8 
to 30 msec, as the number of TCP flows increase from 2 to 12 
flows, respectively. In contrast, the average delay of real-time 
traffic in the proposed system remains around 5 to 7 msec. The 
average “goodput” of TCP traffic in the proposed system is about 
15-20% less than the original system. By adopting the proposed 
control mechanisms, we observe a 38-77% reduction in the 
average delay of the real-time traffic at a cost of 15-20% loss of 
TCP goodput. In addition, the average delay of the real-time 
traffic remains consistently below 8 msec in the proposed system 
while the average delay in the original system grows above 30 
msec. 

The impact of mobility is illustrated in Figures 18 and 19. The 
simulated network is the same as the previous multi-hop 
scenarios with the addition of the introduction of mobility. We 
use a random way-point mobility model [12]. Each mobile node 
selects a random destination and moves with a random speed up 
to a maximum speed of 72 km/hr and pauses for a given “pause 
time” when the destination is reached. When the pause timer 
expires, the mobile node picks another random destination and 
moves at another random speed. The real-time traffic is modeled 
in the same manner as discussed previously. The number of best-
effort TCP flows comprises 5 FTPs and 5 web micro-flows. 

As shown in Figure 18, the average end-to-end delay of the 
real-time traffic in the original system increases slowly as 
mobility increases and the average end-to-end delay of the real-
time traffic in the proposed system grows only for the highest 
mobility scenarios.  We observed in the simulations that the 
throughput of the real-time traffic decreases slowly from 99% to 
95% (i.e., the packet loss increases from 1% to 5%) as mobility 
increases in both the original and proposed systems. The impact 
of mobility on delay and throughput is due to route discovery 
latency and congestion along the new route. However, the end-to-
end average delay of the real-time traffic in the proposed system 
remains under 10 msec in all cases while the average delay in the 
original system grows to 38 msec. The average goodput of best-
effort TCP traffic in the proposed system is about 15-25% less 
than the original system, as shown in Figure 19. 

In the proposed system, the average end-to-end delay of the 
real-time traffic is reduced by 70-75% with 15-25% loss of best-
effort TCP goodput. The average end-to-end delay of the real-
time traffic in the proposed system stays consistently below 10 
msec while the average delay in the original system grows to 38 
msec. 

 
VI. WIRELESS TESTBED RESULTS 

 
In what follows, we describe our experimental results from the 
SWAN wireless testbed, which is based on Linux notebooks 
using Aironet IEEE 802.11b wireless interfaces.  The rate 
controller is implemented by modifying the Aironet device driver. 
We also modified the device driver to measure packet delay. The 
packet delay is measured by calculating the difference between 
the time the device driver feeds a new packet into an Aironet card 
and the time the Aironet card acknowledges back to the device 
driver that the transmission of the packet was successful. We 
implemented a traffic shaper driver between the kernel and the 
Aironet card device driver to control the rate of TCP traffic. 

The utilization monitor and probe protocol are implemented 
using the Berkeley Packet Filter’s Packet Capture library (PCAP). 
PCAP is designed to capture packets for statistical purposes but it 
can also be used to forward packets to the network interface. 
PCAP is used to capture every UDP packet transmitted within the 

Fig. 18. Average delay of the real-
time traffic vs. mobility. 

 

Fig. 19. Average goodput of the
best–effort TCP traffic vs. mobility. 

 

Fig. 16. Average delay of real-time 
traffic vs. number of TCP flows. 

Fig. 17. Average “goodput” of TCP
best-effort traffic vs. number of TCP
flows. 

Fig. 20. Trace of the shaping rate and the actual TCP
transmission rate. 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



radio contact range of a wireless mobile host. The admission 
controller reads the IP header of captured UDP packets and 
estimates the local bandwidth availability. We also use PCAP to 
capture and forward probe signals. The admission controller 
estimates the end-to-end bandwidth availability when a source 
node probes the network path, as previously discussed. 

The results presented in this section were obtained from a 
SWAN wireless ad hoc testbed, which consists of five mobile 
hosts using Aironet 11 Mbps IEEE 802.11b PCMCIA cards. The 
configuration of the testbed is as follows. Four mobile hosts 
generated TCP traffic and one mobile host generated UDP traffic. 
The source and the destination nodes associated with each flow 
were distributed among the mobile hosts. The UDP host 
generated packets every 20 msec at 32 Kbps with the rate of the 
TCP flows being controlled by the rate controller.  

Figure 20 shows a trace of the shaping rate controlled by the 
rate controller and the actual TCP transmission rate. The actual 
TCP rate is well controlled by the shaper, as shown in Figure 20. 
When all four TCP flows were rate controlled, we measured the 
delay of each packet in a UDP real-time flow. Figures 21 and 22 
show the delay of each packet when the TCP flows are regulated 
and unregulated, respectively. By comparing Figures 21 and 22, 
we can observe that the measured delay is improved when TCP 
flows are rate controlled. The average measured delay is 2.3 
msec and 3.3 msec in Figure 21 and 22, respectively. The 
measured delay in Figure 21 remains below a certain boundary 
most of the time, while the delay in Figure 22 reaches 
significantly higher values. Figure 23 shows a simple distribution 
of the measured UDP real-time packet delay for the original (i.e., 
the wireless testbed without rate control) and proposed systems 
(i.e., the wireless testbed with rate control). We can observe that 
proposed system has more packets with packet delays smaller 
than 2 msec, and fewer packets with measured delays exceeding 
4 msec. 66% of the packets have delays of less than 2 msec in 
proposed system, in comparison to 52% for the original system. 
In the proposed system only 11% of the packets have delays 
greater than 4 msec in comparison to 24% for the original system. 

 
VII. CONCLUSION 

 
In this paper, we proposed a simple, distributed and stateless 
network model called SWAN that uses distributed control 
algorithms to support soft real-time services and service 
differentiation in wireless ad hoc networks. An important benefit 
of SWAN is that it is independent of the underlying MAC layer, 
and can be potentially suited to a class of physical/data link 
wireless standards. We presented the performance evaluation of 
SWAN using the ns-2 simulator, and analyzed the MAC delay 
and busy probabilities.  Simulation, analysis, and results from our 
experimental wireless testbed show that real-time applications 
experience low and stable delays under various multi-hop, traffic 
and mobility conditions. The SWAN testbed and ns-2 source 
code are available from the Web (comet.columbia.edu/swan). 
 
 
ACKNOWLEDGEMENT 

 
The SWAN Project is sponsored in part by the ARO Award 
DAAD 19-99-10287, and with support from Ericsson Research. 
The authors would like to thank Jaekwon Oh and Il-Jun Hwang 
for helping to build the SWAN wireless testbed, and Professor 
Mischa Schwartz for his great input.  
 
REFERENCES 

 
[1] S-B. Lee, G-S Ahn, X. Zhang, and A.T. Campbell, “INSIGNIA: 
An IP-Based Quality of Service Framework for Mobile Ad Hoc 
Networks”, Journal of Parallel and Distributed Computing 
(Academic Press), Special issue on Wireless and Mobile Computing 
and Communications, Vol. 60 No. 4 pp. 374-406, April 2000. 

[2] A. Veres, A.T. Campbell, M. Barry and L-H. Sun, “Supporting 
Service Differentiation in Wireless Packet Networks Using 
Distributed Control”, IEEE Journal of Selected Areas in 
Communications, Special Issue on Mobility and Resource 
Management in Next-Generation Wireless Systems, Vol. 19, No. 10, 
pp. 2094-2104, October 2001. 
[3] J. L. Sobrinho and A.S. Krishnakumar, “Quality-of-Service in Ad 
hoc Carrier Sense Multiple Access Networks”, IEEE Journal on 
Selected Areas in Communications, Vol. 17, No. 8, pp. 1353-1368, 
August 1999. 
[4] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan, 
“WTCP: A Reliable Transport Protocol for Wireless Wide-Area 
Networks”, in Proc. ACM ACM/IEEE International Conference on 
Mobile Computing and Networking (MobiCom), August 1999. 
[5] K. Ramakrishnan, S. Floyd, and D. Black, “An Addition of 
Explicit Congestion Notification (ECN) to IP”, Internet Draft <draft-
ietf-tsvwg-ecn-03.txt>, work-in-progress, March 2001. 
[6] S. Kalyanaraman, D. Harrison, S. Arora, K. Wanglee, and G. 
Guarriello, “A One-bit Feedback Enhanced Differentiated Services 
Architecture”, Internet Draft <draft-shivkuma-ecn-diffserv-01.txt>, 
work-in-progress, March 1998. 
[7] G. Bianchi, “Performance Analysis of the IEEE 802.11 
Distributed Coordination Function”, IEEE Journal on Selected Areas 
in Communications, Vol. 18, March 2000. 
[8] D. Chiu and R. Jain, “Analysis of the Increase and Decrease 
Algorithms for Congestion Avoidance in Computer Networks”, 
Computer Networks, 1989. 
[9] S. Nanda, D. J. Goodman, U. Timer, “Performance of PRMA: A 
Packet Voice Protocol for Cellular Systems”, IEEE Trans. Veh. 
Technology, Vol. 40, August 1991. 
[10] D. Bansal and H. Balakrishnan, “TCP-friendly Congestion 
Control for Real-time Streaming Applications”, Technical Report, 
MIT-LCS-TR-806, MIT Laboratory for Computer Science, May 
2000 
[11] C. E. Perkins and E. M. Royer, “Ad-hoc On Demand Distance 
Vector Routing”, Proc. IEEE Workshop on Mobile Computing 
Systems and Applications, February 1999 
[12] J. Broch, D. Maltz, D. Johnson, Y-C Hu, and J. Jetcheva, “A 
Performance Comparison of Multihop Wireless Ad Hoc Network 
Routing Protocols”, Proc. ACM/IEEE International Conference on 
Mobile Computing and Networking (MobiCom), October 1998. 

Fig. 21. The delay of each 
packet in a UDP real-time 
flow from the SWAN wireless
testbed without rate control. 

Fig. 22.  Delay of each
packet in a UDP real-time
flow from the SWAN wireless
testbed without rate control. 

 

Fig. 23. The distribution of
packet delay. 

 

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.


