
In GPS World, April 2000, pp. 20-30.

topographical surface represent-
ing height through elevation
markers or contour lines.
Increasingly, such maps can be
viewed online, enabling the user
to change scale or center of inter-
est dynamically. When the
semantic content of the map is
available for further processing
— for example by programs that
suggest travel routes, estimate
fuel usage, or generate synthetic
vistas from points on or above
the map using computer graphics
techniques — the map data are
enhanced in a fundamental
sense, essentially becoming a
model of the environment.

Today, modern maps mimic
reality ever more closely,
enabling a host of new applica-
tions. Using a process known as

basis of geographic information
systems (GIS). As the sheer
magnitude of geospatial data
increases, techniques for reduc-
ing the cost and increasing the
speed and efficiency of map pro-
duction have gained importance.

Modern navigation tech-
niques, including GPS data, are
critical in this regard: GPS pro-
vides straightforward tagging of
observations, for example pho-
tographs or environmental fea-
tures, with location information
that places each observation in
context on the Earth’s surface.

Traditional paper maps include
information about road net-
works, land usage, and points of
interest, often draped over a

n cave drawings depicting
the hunt, early cosmogonies
in stone, and paper charts of
mountain passes and mar-

itime routes, people have long
sought to capture useful repre-
sentations of their environment
in maps.

Whether constructed from
memory or meticulously com-
piled from observation, maps
enable myriad cultural functions,
including delineating property
boundaries, planning the move-
ment of people and goods,
taxation and representation, as
well as zoning and developing
communities.

Modern maps, in electronic
form and supplemented with a
variety of associated data and
applications programs, form the

geometric modeling — acquiring
a representation of an object in a
form useful for computer simula-
tion — we can create three-
dimensional (3D) models of the
urban environment for use in
visualization, simulation, and
computer-aided design (CAD).

Indeed, 3D CAD models are
the starting point for many real-
istic simulations. Architects and
urban planners, for instance, use
3D models to visualize the rela-
tionships between existing and
planned buildings. Emergency

and military personnel use 3D
models for training and rehearsal
in urban theaters. These models
even form part of popular culture
in advertising, movies, and elec-
tronic games.

How are 3D
models captured in electronic
form? Much as word processing
software enables typists to tran-
scribe paper documents into
electronic files, geometric mod-
eling software enables skilled
human operators to input 3D
model data.

This method of model entry
is manually intensive, usually
accounting for a significant frac-
tion of the time and expense
involved in developing a given
visualization or simulation capa-
bility. Modeling an extended
urban area poses particular chal-
lenges of scale, demanding the
capture and faithful representa-
tion not only of coarse structural
information, but also of fine-
scale geometric details, such as
windows and variations in
appearance related to underlying
surface color and material
properties.

To exploit the rich information
inherent in terrestrial (near-
ground) photographs, researchers
in photogrammetry and com-
puter vision have developed
many techniques for extracting
geometric and appearance infor-
mation directly from images.

These efforts typically rely on
a “human in the loop” — manual
intervention by a skilled operator
— for one or more tasks, includ-
ing establishing a working coor-
dinate system, initializing or
constraining estimates of camera
placement, indicating the struc-
tures to be modeled, or distin-

guishing buildings from their
attendant clutter. Because a
human operator is indispensable
to such systems, and the under-
lying computer performance can
inexorably increase, the human
eventually becomes the funda-
mental factor limiting system
performance.

To overcome
this limitation — and make sys-
tem performance solely a func-
tion of the underlying sensor,
storage, and processing technol-
ogy — we at the Massachusetts
Institute of Technology (MIT)
Computer Graphics Group have
pursued the City Project, aiming
to develop efficient techniques
for fully automated capture of
high-fidelity, textured geometric
models of urban environments.
Streamlining the model produc-
tion process should have consid-
erable potential payoff for a
number of applications based on
3D CAD models.

Eliminating the human in the
loop, though, is a significant
challenge from both an engineer-
ing and research standpoint.
Although a number of automated
algorithms have been proposed
for various subtasks, their oper-
ating assumptions and regimes
of effectiveness vary so widely

major components: a sensor that
observes the urban environment
to produce georeferenced
imagery, and a suite of algo-
rithms that refine and process the
sensor observations to extract a
model of the observed structures,
appropriately situated in a global
coordinate system.

In developing the sensor, our
challenge lay in capturing
images georeferenced with suffi-
cient accuracy to enable fully
automatic image registration and
subsequent extraction not only of
coarse structural elements but
also of fine detail.

Our goal is to capture high-
resolution digital representations
of built structures over areas of
square kilometers, to a feature
size of a few centimeters.
Presently, automated computer
vision techniques for completely
general scenes are widely
believed to be decades away
from realization. To achieve full
automation in the near term, we
made four important tradeoffs.

First, we focused
our efforts on recovering models
of urban scenes. On one hand,
this is a significant restriction; it
means we cannot handle mari-
nas, deserts, or jungles. On the
other hand, urban scenes are
quite common, forming the sur-
roundings of much of the

Finally,
whereas existing manual model-
ing systems typically require
modest, intermittent computa-
tional resources, we purposefully
crafted our techniques to take
full advantage of the significant
storage and computational
resources embodied by modern
computer systems. Our system
currently expends hours of sus-
tained processing to recover even
simple environments, but we
anticipate that as computers
become faster and more capa-
cious, our techniques will even-
tually outperform even skilled
human operators.

A major component of the City
Project is the development of our
pose camera, a sensor with a
unique physical design. We call
the sensor “Argus,” after the
100-eyed creature of Greek
myth, for its ability to observe
the environment from a multi-
tude of positions and directions.

Specifically tailored for use in
crowded urban environments
where mobility is a concern,
Argus is a heavy-duty, three-
wheeled cart propelled by an
operator on foot. It is equipped
with a high-resolution, com-
puter-controlled digital camera
mounted on an electrically actu-
ated pan/tilt head that rotates
about the camera’s optical center.

world’s population. Our strategy
is to get an end-to-end recon-
struction system working for
simple urban scenes, then gradu-
ally tackle increasingly complex
environments as our sensor and
related algorithms mature.

Second, we com-
bined a digital camera with GPS
and other navigation instrumen-
tation to produce a new kind of
sensor we call a pose camera,
which stamps each acquired
image with the approximate
location, orientation, and time of
its acquisition. This georeferenc-
ing information enables us to
insert imagery into a spatial
index as it is acquired. Thus, we
can determine which observa-
tions are likely to be related
without performing expensive
pairwise image analysis.

Our third tradeoff
was to acquire many thousands
of urban images, rather than just
a few dozen as with earlier,
manually operated modeling
systems. Although buildings are
typically static, we observe them
under changing lighting and
environmental conditions, and
among a clutter of people, vehi-
cles, and foliage. Only by corre-
lating many observations can we
overcome these variations to reli-
ably and automatically register
the image observations and
recover models of building
structure and appearance.

that no straightforward composi-
tion of existing techniques yields
a functioning automated system
for model recovery.

For example, existing algo-
rithms often assume only a
small number of images to be
processed, and that most pairs of
images are related, thus expend-
ing computational resources in
proportion to the square of the
number of input images, or
worse. This is clearly an unten-
able strategy for datasets consist-
ing of thousands or millions of
input images, many of which
observe little or nothing in
common.

We have therefore pursued an
alternative approach with two

the City Project are unique.
Other projects acquire a combi-
nation of images and position
data, but none acquire the same
quantity of data, nor do others
acquire images or pose data at a
granularity comparable to ours.

For example,vehicle-mounted
systems have been developed to
record time-tagged video from
cameras fixed to the vehicle
along with continuous GPS data.
The video frames are later corre-
lated to the GPS solution, and
the video stream can be roughly
spatially indexed for inspection.

Argus is different; it images
the acquisition area from many
discrete viewpoints. And the
dynamics of Argus, which is
deployed at a walking pace, but
can change direction quite
quickly, present a different chal-
lenge to the integrated naviga-
tion system than would a vehicle.

The entire assembly is placed
atop a telescoping stalk that
raises to a height of 3 meters,
enabling Argus to see over most
people, shrubbery, and vehicles
— each of which are considered
obstacles in our application.

Argus acquires high-resolu-
tion, georeferenced color images
called pose images, which serve
as input to our CAD model
reconstruction system. Pose
refers to a rigid object’s position
and attitude, that is, the six
degrees of freedom that describe
the object’s location and orien-
tation in a 3D coordinate system.
A pose image is simply the com-
bination of an image and the
camera’s pose when the image
was taken, along with a date and
(GPS-based) timestamp.

Argus uses a variety of navi-
gation sensors to estimate cam-
era pose, including a differential
GPS receiver (the crucial link to
a global coordinate system), an
inertial measurement unit (IMU),
and wheel encoders that report
motion with respect to the
ground (see Figure 1). An
onboard processor records image
and navigation data, controls
most aspects of the cart’s opera-
tion, and provides visual feed-
back to the operator.

When Argus returns to the
laboratory, we reconnect it to our
network, uploading and register-
ing the collected pose-imagery

satellite photography, which
benefit from improved GPS visi-
bility but suffer in other ways.
These techniques provide
monocular views, often of each
area only once or a few times,
and typically from a great dis-
tance and at high obliquity (if
viewed from above) or with sig-
nificant occlusion (if viewed
from the side).

In contrast, Argus observes
the world at high resolution from
ground level, in and among the
scene’s urban canyons. Most
building surfaces are likely to
appear in several images, from
several vantage points. When
Argus observes a building facade
from many views, our algorithms
can overcome obstructions from
people, trees, and other objects,
essentially “erasing” the block-
ing elements.

As far as we know, Argus and

and extracting model geometry
on our lab’s computation cluster.
Our ultimate goal is an online
system, in which Argus moves
around an area while onboard
processing performs image regis-
tration and geometry extraction,
generating 3D CAD models of
the captured area on the fly.

Traditional cameras supply
either a wide field of view (such
as with a fisheye lens), or high
effective resolution (with a tele-
photo lens), but not both. Argus
uses a pan/tilt head to achieve
both high resolution and a large
field of view (FOV) simultane-
ously. This eliminates the classi-
cal ambiguity between sensing
translational and rotational
motion inherent in limited-FOV
imagery, enabling some of our
computer vision algorithms to
succeed where their counterparts
on standard imagery would fail.

These advantages come at the
cost of increased mechanical
complexity and increased acqui-
sition time as the camera “tiles”
the sphere with many distinct
images. However, our pan/tilt
mount is electrically actuated,
allowing the camera to be moved
through each tiling much faster
than would be possible with a
human operator.

Our approach differs from
methods based on aerial and

1 meter and 1 degree, respec-
tively. Finally, offline image-
based registration techniques
refine the pose estimates to
within a fraction of a meter and a
fraction of a degree.

Because our aim was developing
new end-to-end computer vision
techniques, rather than develop-
ing new support technologies,
we used commercial-off-the-
shelf (COTS) parts wherever
possible. This kept our costs and
development time relatively low.

We also designed Argus to be
propelled by a person, not a
vehicle, so its physical configu-
ration was constrained by typical
urban (and suburban) pedestrian
spaces: sidewalks, ramps, gates,
paths, doors, and other routes
that people take. And of course,
it was necessary that the sensor
fit into an elevator and be
maneuverable in and out of our
lab.

In its current form, the Argus
system comprises four main
parts: navigation, imaging,
mechanical, and the control soft-
ware that links it all together. We
began acquiring components in
1996, with the navigation system
consisting of the GPS receiver,
IMU, and wheel encoders, along
with software to combine their
data streams using a Kalman fil-
ter. Each of the navigation sen-

Argus, using GPS at walking
speed in this noisy environment,
is also subject to dropout (caused
by satellite obscuration) and
multipath (caused by signals
arriving along different paths
from the same satellite, see Fig-
ure 2), producing position esti-
mates good only to a few tens of
meters.

In spite of these obstacles, the
operating modes of Argus also
yield some advantages. Because
Argus rolls continuously along
the ground, the wheel encoders
function as odometers and sense
when it is stopped. When Argus
is moving, its navigation system
combines the data stream from
the wheel encoders and IMU for
dead reckoning over short
timescales. By fusing comple-
mentary GPS, IMU, and odome-
try data through Kalman filter-
ing, Argus produces position and
heading estimates good to about

sors is powerful but exhibits sig-
nificant individual limitations.

Our first GPS
receiver was a small, credit card-
sized, user-grade unit that fit
inside our control computer. This
receiver had a small antenna that
could be mounted rigidly with
the camera and IMU.

As we tested our initial con-
figuration, we found that urban
canyons degraded GPS accuracy
significantly. This prompted
our decision to incorporate a
survey-grade, L1/L2 full cycle
carrier, L1, C/A-code, nine-
channel GPS receiver, which
had a larger antenna and a 19-
inch ground plane. The new
receiver had to be mounted on
the base of the Argus platform,
and the new antenna in front of
the camera tower; thus, the
antenna no longer moved with
the camera.

Another GPS receiver was
deployed as a base station atop
our office building, connected to
our lab’s network. A computer
on the roof receives and stores
raw GPS data for later download
and differential GPS solutions.
The increase in signal and satel-
lite tracking quality was well
worth the added complexity of
compensating for the changed
position of the camera and GPS
receiver on Argus, and handling
an additional receiver on the
roof.

To determine design targets for
Argus, we considered our accu-
racy and operational require-
ments. Our goal is to resolve and
localize centimeter-scale build-
ing features from a standoff of
about 10 meters. Optics with
angular resolution of roughly 1
milliradian per pixel (such as a
1-radian FOV projected onto a
1,000-pixel raster) supply the
necessary resolution.

Localizing an observed fea-
ture to 1 centimeter requires that
the camera position — latitude,
longitude, and altitude — be esti-
mated to a centimeter, and the
camera attitude — heading,
pitch, and roll — be estimated to
1 milliradian, or about a twenti-
eth of a degree. (1 radian, about
57.3 degrees, is the angle swept
by a circular arc whose length is
equal to the radius of the circle.)

In a rural,
open field, our GPS receiver reli-
ably estimates its position to a
fraction of a meter. However,
Argus operates in a busy urban
environment, a challenging
venue for GPS receivers. The
MIT campus in Cambridge, and
nearby Boston, are electronically
noisy environments due to high-
power radio and television trans-
missions emanating from
Boston’s Prudential building, as
well as the area’s high volume of
cellular calls.

GPS suffers dropouts in urban
environments because of satellite
signal blockages and multipath
solution degradation. Moreover,
GPS is a point position sensor
and gives no direct information
about the direction in which the
camera is pointing.

To overcome these limita-
tions, we incorporated an inertial
measurement unit into Argus.
The IMU provides linear acceler-
ation and angular velocity mea-
surements for each of three
mutually orthogonal axes. The
IMU’s output can be integrated
over short timescales to provide
camera position, attitude, and
velocity information. However,
the IMU cannot be integrated
over long timescales while
retaining accuracy.

Most gyrocompasses and iner-
tial navigation systems are large,
bulky, power-hungry, and expen-
sive, and thus would be impracti-
cal for our project. They are
designed for aviation use where
high linear velocities allow the
gyro outputs to be calibrated,
or for automobile applications,
where the gyro’s orientation is
partially constrained (for exam-
ple, always parallel to the
ground).

We eventually located a dual-
gyro, military-grade IMU that
was small and light enough to
attach rigidly to the camera and

we were able to overcome the
inadequacies of each individual
component and achieve a whole
greater than the sum of the parts
(see Figure 3).

The final control component of
Argus is the software system,
running on a 450-MHz Pentium
II dual processor under Windows
NT. Most of the software is writ-
ten in C++, with some interface
components in Visual Basic and
some visualization components
in OpenGL, a cross-platform
standard for 3D graphics.

The navigation software was
originally written to run in
HyperKernel, a real-time exten-
sion and programming interface
for Windows NT. HyperKernel
provides a simple model for
device input/output (I/O) under
Windows NT, which we used for
communicating with the IMU’s
ISA interface board. However,
after encountering difficulties
with programs running in Hyper-
Kernel and because of its need
for special setup within Win-
dows NT, we gradually moved
the navigation calculations out
of HyperKernel, leaving in it
only the bare minimum of IMU
I/O code.

The navigation software con-
siders each GPS satellite’s mes-
sages individually. This allows
the software to calculate fine-

worked well at walking speed.
We worked with the IMU’s sup-
plier to develop an ISA (Industry
Standard Architecture) expan-
sion board that allowed us to
interface with the IMU. This
board also monitors the GPS
receiver’s one-pulse-per-second
output, which is used to synchro-
nize all Argus data streams and
to timestamp all acquired pose-
imagery.

Argus’s two
wheel encoders provide another
source of translational data. They
are connected to the cart’s two
rear wheels, measuring move-
ment parallel to the local ground
plane and total distance traveled
from a given starting point.
Using the differences of mea-
surements over small time peri-
ods, we can treat the wheel
encoders as a speedometer.

In combination, the IMU and
odometry sensors provide a
dead-reckoning system that can
overcome GPS data gaps when
not enough satellites are in view.
In addition, the Kalman filter
automatically accounts for
slowly increasing position errors,
recovering properly when the
satellites later become visible.

Ultimately, integrating the
GPS, IMU, and wheel encoder
data with a Kalman filter
allowed us to meet our system
requirements. By fusing infor-
mation from all of the sensors,

grained error measurements for
each satellite, an improvement
over relatively simple indications
of error such as horizontal dilu-
tion of precision (HDOP). The
IMU control module transmits
data by way of shared memory to
the rest of the navigation soft-
ware, running as a normal Win-
dows NT program. Eventually
we wrote our own Windows NT
device driver for the IMU, allow-
ing us to run the navigation sys-
tem on both processors.

We encountered several other
challenges in developing
Argus.For example, “smart
motors” drove the cart’s mechan-
ical systems for leveling and
camera pointing. These small
stepper motors contain integrated
microprocessors and provide
their own control language, a
version of BASIC.

We used the control language
to avoid handling many of the
details of motor control in the
Argus software. However, the
motor control language had its
own set of idiosyncrasies, and
significant effort was required to
achieve reliable motor control.

One of our toughest
challenges was obtaining good
GPS data. We originally had
severe multipath problems with
our user-grade GPS receiver.
However, even after switching to

Using the small GPS antenna,
we settled on a solution in which
the antenna was mounted with a
gimbal on top of the camera
bracket. The antenna swivels and
moves with the camera, while
the gimbal keeps it level and out
of the way of the camera. Once
we switched to using the second
receiver, we mounted its large
antenna and ground plane on the
front of Argus. Although GPS
signals from satellites behind
Argus are corrupted by the plat-
form’s frame, the navigation sys-
tem is not too badly affected; it
tracks each GPS satellite, dis-
carding signals that arrive from a
region directly behind Argus.

Subtle aspects
of the system, such as handling
the bias term, must be imple-
mented and verified carefully. It
is tempting to attribute poor nav-
igation solutions to multipath.
However, especially in the face
of harsh environments, it is nec-
essary to systematically test and
verify each component of the
system, from data acquisition
through navigation software.

Poor GPS data can result from
a wide variety of errors, or even
a combination of error sources.
In our case, we faced a firmware
bug, clock bias discontinuities,
poor satellite geometries, multi-
path interference, and interfer-
ence from the platform itself. As

qualities. A poor signal may
prompt a pause, a turn, or a move
to another location. The control
software also avoids aiming the
camera directly at the sun, which
would saturate the camera’s
charge-coupled device (CCD)
and corrupt subsequent image
processing.

A typical outing with Argus is
relatively straightforward. In the
lab, the student operator boots
the control computer and powers
up the various subsystems. She
runs through a pre-outing check-
list, verifying that the batteries
are charged, that the mechanical
subsystem is properly aligned,
and that the navigation sensors
are operational.

The student then configures
the control software, with a
glance at the system logs on the
computer screen. Finally, she
ensures that the GPS base station
is activated and logging data.
The operator then wheels Argus
down the hall, through a door
into the second-floor lobby, and
into the elevator for the trip to
the first floor. She then takes
Argus outside using the wheel-
chair ramp. Often an assistant,
carrying a notebook and other
gear (such as a cell phone for
communicating with the lab),
accompanies the operator,
because maneuvering Argus can
take two hands.

Once outside,
the operator starts the navigation
system, spinning up the IMU.
From a starting location, ideally
one with good GPS coverage,
she then walks a small circular
path, during which Argus ini-
tializes its position and heading
estimates and other model
parameters.

Finally, about 10 minutes
after power-up, the operator
starts acquiring pose images. In a
process of “punctuated acquisi-
tion,” she wheels Argus to a
sequence of locations. At each
location, she releases the dead-
man brake to prevent rolling and
initiates an image acquisition
sequence by pressing a single

we gained experience, we
learned to tease apart the error
sources. By systematically
addressing each in isolation, we
eliminated the errors intrinsic to
the platform, eventually obtain-
ing a useful GPS solution.

Our final
challenge was developing the
software to monitor and control
the array of devices on Argus:
the GPS, IMU, wheel encoders,
motors, camera, display, and
storage subsystem. The software
system also includes an extended
Kalman filter, which calculates
an online navigation solution and
provides a variety of statistics
about the solution’s quality.

The most visible software
component is the Argus display,
which presents the state of all
subsystems to the operator. For
example, there is a graphical dis-
play of the pan-tilt head motor
activity and the image acquisi-
tion and processing subsystem,
which shows each pose image as
it is acquired. This display
allows the operator to verify that
Argus is successfully acquiring
pictures. Alternatively, it may
reveal that the camera requires
adjustment.

There is also a 3D display of
the navigation solution, along
with the locations of the GPS
satellites in the sky and their cor-
responding individual signal

the high-end GPS receiver, we
still observed kinematic errors
on the order of tens of meters.
Upgrading the receiver firmware
eliminated a bug, making our
solution much more accurate.

Other parts of the GPS data
had to be handled carefully to
avoid introducing errors. For
example, GPS clock bias discon-
tinuities introduce errors that are
hard to diagnose, as they occur
intermittently. On days with
good reception and coverage, the
clock bias term exhibits few dis-
continuities, producing good
position solutions even when the
bias term is mishandled.

Placing the
GPS antenna also tested our
ingenuity. There is an inherent
conflict between the camera’s
need for an unobstructed hemi-
spherical field of view around
Argus, and the GPS antenna’s
need for an unobstructed view of
the satellites.

To simplify the navigation fil-
ter, we wanted the GPS antenna
in a fixed position on Argus. We
couldn’t place the antenna near
the bottom of Argus, where the
metal superstructure, motors, and
electronic equipment would
block or interfere with the GPS
signal. But we could not fix the
antenna on the top of Argus, as
it would be in the way of the
camera.

key or clicking a mouse.
Argus starts each acquisition

sequence by extending three pins
to the ground, stabilizing and
leveling itself. The motorized
pan/tilt head then sweeps
through a predefined set of cam-
era orientations tiling a roughly
hemispherical field of view.

At each orientation, Argus
acquires several high-resolution
digital images at different expo-

images acquired (typically
40–80). During acquisition, the
operator and her assistant fend
off curious passers-by while
monitoring the subsystem status
displays.

When the operator finishes
collecting pose imagery, she
wheels Argus back to the lab and
plugs it into network and power
outlets (its battery is typically
nearly depleted upon return). She

sures. Each image is merged
with a pose estimate provided
by the navigation subsystem,
and written to onboard storage
as a pose-image. Upon complet-
ing the sequence, Argus retracts
its leveling pins. The operator
then moves Argus to the next
location.

Argus occupies each location
for about five minutes, depend-
ing on the number of pose-

then transfers the image and nav-
igation data from Argus and the
GPS base station onto our file
server. The data then flow into a
cluster of work stations running
our pose refinement and model
reconstruction algorithms.

At present, we are assessing the
performance of Argus through a
procedure to evaluate and vali-
date the accuracy and precision
of our navigation solution.

We designed a
course of roughly 20 well-sepa-
rated waypoints around the MIT
campus, each visible to at least
two other waypoints.We hired a
surveying firm to determine
independently the true position
of each waypoint, and thus the
heading vector between any two
intervisible points.

Our experimental procedure
involves traversing the course
many times throughout the day,

allowing for variations in the
effective GPS constellation. At
each waypoint, Argus is pre-
cisely positioned over a survey
mark on the ground, and its cam-
era is centered (with the help of
automatic image feedback) on a
small target positioned above
another survey mark.

We can then compare the
variance and drift of the com-
puted navigation solutions with
the true locations of the way-
points. The estimated variances
reported by the Kalman filter can
also be checked against the true
variances for accuracy. Thus our
waypoint procedure yields a rig-
orous characterization of the
overall accuracy and precision of
the Argus sensor.

plans for improving the platform
include incorporating onboard,
vision-based updates directly
into the navigation systems.

During the spring and sum-
mer, we will collect and process
several thousand pose images
covering most of the MIT cam-
pus, or about 1 square kilometer.
We expect a total input datasize
to approach several terabytes
(trillion bytes) of image data, and
the extracted model to include
several hundred structures, each
with detailed geometry and tex-
ture information.

The authors gratefully acknowl-
edge the support of the National
Science Foundation (through
Career Award IRI-9501937), the
Defense Advanced Research
Projects Agency (under contract
DACA76-97-K-0002), the
Office of Naval Research (under
MURI award SA 1524-
2582386), the MIT Lincoln
Laboratories (under grant ACC-
233), and Intel Corporation. For
more information about the City
Project and citations for all work
mentioned in this article, see
<http://city.lcs.mit.edu/city>.

The developers of the Argus
employed a wide variety of equip-
ment. For GPS, they used a
Motorola (Northbrook, Illinois)
Oncore receiver and a Trimble
(Sunnyvale, California) 7400MSi
system. The IMU was a Longbow
model from GEC-Marconi (War-
rendale, Pennsylvania), developed in
cooperation with Korbin Systems
(Andover, Massachusetts). The
wheel encoders are from Encoder
Technology International (Fall-
brook, California). Both a DCS-420
digital camera from Kodak
(Rochester, New York), housed in a
Nikon N-90 camera body, and a
Wintriss (San Diego, California)
OPSIS 1300 ASC color camera with
digital I/O board were used. Ani-
matics (Santa Clara, California) sup-
plied the smart motors. Peace River
Studios (Cambridge, Massachusetts)
worked with the Argus team to

We have repeatedly
traversed a subset of the valida-
tion waypoints with Argus.
Using the procedure outlined
above, we measured how much
the reported pose varied across
different visits to each waypoint.

Interim tests in our urban
campus indicate an overall preci-
sion of about 1 meter in position
and about 1 degree (20 milliradi-
ans) in heading, both to a one-
sigma error bound. We are now
working to establish comparable
results for the absolute accuracy
of the sensor.

The quality of the navigation
solution depends on the dead-
reckoning drift rates of the IMU
and wheel encoders. These drift
rates are consistent from day to
day. The navigation solution also
depends on the quality of GPS
data, as it is the only source of
absolute position information.
The quality and frequency of
the GPS updates varied signifi-
cantly across different times and
locations.

Typically, eight GPS satellites
orbit above the horizon. In our
dataset, however, only two satel-
lites were visible on average,
with a maximum of five visible
at any time.

The Kalman filter requires
only two visible satellites to
make use of GPS data. Even
then, it could perform GPS
updates less than 60 percent of
the time. A full GPS solution,
requiring four or more satellites,
was possible only 18 percent of
the time.

Argus tracked, on average,
only two of the eight satellites
above the horizon (see Figure 4).
The GPS data exhibited severe
multipathing in our urban envi-
ronment, resulting in a raw GPS
accuracy of only 20–30 meters.
Despite these limitations, the
final navigation solution reduced
this error by more than an order
of magnitude and produced
heading information to about a
degree of precision.

In the next few
months, we plan to complete rig-
orous evaluation and validation
of the navigation system. Future

design and build the pan/tilt head
and physical cart structure. The
HyperKernel software is by Nema-
tron (Ann Arbor, Michigan). Culli-
nan Engineering (Boston, Massa-
chusetts) provided surveying
services, and GeoTrans coordinate
transformation software from the
Army Corps of Engineers was
used.

Seth Teller obtained a B.A. in
Physics from Wesleyan University,
and a Ph.D. in Computer Science
from the University of California at
Berkeley, focusing on accelerated
rendering of complex architectural
environments. After postdoctoral
research at the Computer Science
Institute of the Hebrew University in
Jerusalem and Princeton Univer-
sity’s Computer Science Depart-
ment, he joined MIT’s Electrical
Engineering and Computer Sciences
Department, and MIT’s Lab for
Computer Science (LCS), founding
the Computer Graphics Group there.
He pursues research in computer
graphics, computer vision, and com-
putational geometry, with the com-
mon theme of acquiring, represent-
ing, manipulating, and interacting
with complex geometric datasets.

Michael Bosse is a Ph.D. candidate
in the Computer Graphics Group at
LCS, where he has been developing
the navigation system for Argus. He
earned his B.S. and M.S. in 1997
from Boston University, where he
built a vision-aided navigation sys-
tem for an autonomous helicopter.
His interests include computer
vision, robotics, and navigation.

Douglas S.J. De Couto is a Ph.D.
candidate in the Parallel and Dis-
tributed Operating Systems group at
LCS. He received his B.S. and
M.Eng. in Computer Science in 1998
from MIT, where he worked on
Argus as a member of the Computer
Graphics Group at LCS. His current
work is on large mobile computer
networks that take advantage of GPS
(and other) location information to
route data. His interests are mainly
in computer systems.

