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Abstract

Protocols to implement a fault-tolerant computing system are
described. These protocols augment the hypervisor of a virtttal-
machine manager and coordinate a primary virtual machine with
its backup. The result is a fault-tolerant computing system. No
modification to hardware, operating system, or application pro-
grams is required. A prototype system was constructed for HP’s
PA-RISC instruction-set architecture. The prototype was able to
run programs about a factor of 2 slower than a bare machine
would.

1. Introduction

One popular scheme for implementing fault tolerance

involves replicating a computation on processors that fail inde-

pendently. Replicas are coordinated so that they execute the

same sequence of instructions and produce the same results.
This paper describes a novel implementation of that scheme. We

interpose a software layer between the hardware and the operat-
ing system. The result is a fault-tolerant computing system

whose implementation did not require modifications to hardware,

to the operating system, nor to any application software.

The benefits of our approach concern engineering and

time-to-market costs. We are driven by two observations. First,
for a given instruction-set architecture, a manufacturer typically

will build a series of realizations, where cost/performance

improves over the series. Second, implementing replica coordi-

nation is subtle, whether done by hardware or software. Given

these observations, we note the following three problems:

(1) When replica coordination is implemented in hardware, a

design cost is incurred for each new realization of the

architecture. Because designing replica-coordination

hardware takes time, support for fault-tolerance necessar-

ily lags behind the cost/performance curve.
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(2) Adding replica coordination to an existing operating sys-

tem is bound to be difficult, since mature operating sys-

tems are invariably complicated. In addition, modifica-

tions must be devised for every operating system sup-

ported by a given platform.

(3) If replica coordination is left to the application program-
mer, then the same problems must be solved by the pro-

grammers of every application. Moreover, all of these
programmers must be acquainted with the nuances of
replica coordination. Or, all of the programmers must be

constrained to use a given interface (e.g. causal group

broadcasts) or abstraction (e.g. transactions).

These difficulties caused us to explore alternatives to the hard-

ware, the operating system, and the application programs as the

place for implementing replica coordination in a computing sys-

tem.

A hypervisor is a software layer that implements viriual
machines having the same instruction-set architecture as the

hardware on which the hypervisor executes. Because the virtual

machine’s instruction-set architecture is indistinguishable from

the bare hardware, software run on a virtual machine cannot tell
whether a hypervisor is present. Perhaps the best known hyper-

visor is CP-67 [MS70], developed by IBM Corp. for 360/67 and

later evolved into VM/370 [IBM72] for System 370 mainframes.

Hypervisors for other machines have also been constructed

[PK751 [K82]. An excellent survey of research on virtual
machines appears in [G74].

There are a variety of reasons for using a hypervisor. A
hypervisor allows multiple operating systems or multiple ver-

sions of the same operating system to coexist on a single (hard-

ware) processor. Even when virtual machines all execute the

same operating system, a hypervisor provides an isolation that
simplifies protection and sbanng [PK74] [K82]. Our research is

not concerned with the virtues and costs of hypervisors, though.
We are concerned with the virtues and costs of augmenting a

hypervisor to support replica coordination and, in that manner,

support fault-tolerance.

Use of a hypervisor to implement replica coordination is
attractive—at least, in theory-since it addresses the three prob-

lems described above. Replica coordination implemented in a

hypervisor instantly becomes available to all hardware realiza-

tions of the given instruction-set architecture, including realiza-
tions that did not exist when the hypervisor was written. This
addresses problem (1). For problem (2), we observe that imple-
menting replica coordination in hardware means that a single
implementation will suffice for every operating system that
executes on that instruction-set architecture, Finally, problem (3)
is addressed because implementing replica coordination in a
hypervisor frees the application programmer from this task with-
out imposing an interface or abstraction.
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The question, then, is whether hypervisor-based replica-

coordination is practical. What is the performance penalty?

This paper addresses these issues by describing the protocolsl

and performance of a prototype implementation of hypervisor-

based fault-tolerance. The prototype executes programs about a

factor of 2 slower than a bare machine would.

The rest of this paper is organized as follows. In $2, we

describe the protocols. These protocols ensure that the sequence

of instructions executed by two virtual machines running on dif-
ferent physical processors are identical. The protocols also coor-
dinate 1/0 issued by these virtual machines. Our prototype is

discussed in 53. To construct this prototype, we implemented a
hypervisor for HP’s PA-RISC architecture and augmented that
hypervisor with our replica-coordination protocols. We report in
$4 on our prototype’s performance. In addition to discussing

performance measurements, we describe the consequences of
variations that might improve performance of the prototype.

Finally, $5 discusses related work; a summary and future
research directions are given in $6.

2. Replica-Coordination Protocols

In the primary/backup approach to fault-tolerance

[AD76], n processors implement a system that can tolerate n- 1

faults. One processor is designated the primary and the others

are designated backups. To obtain service, clients make requests

of the primary. The primary responds to each request and

informs the backups of its actions so that a backup can take over

if the primary fails.z

Our implementation of fault-tolerant virtual machines

uses the primary/backup approach in the hypervisor. A t-~ault-
tolerant virtuul machine consists of a primary virtual machine,

executed by one processor, and t backups, each executed by
other processors. The t-fault-tolerant virtual machine continues

operating as long as t or fewer of the processors experience hard-
ware failures. Protocols ensure that

(1) if the primary’s processor has not failed, then backup vir-

tual machines generate no interactions with the environ-
ment, and

(2) after the primary’s processor has failed, exactly one

backup virtual machine generates interactions with the
environment and in such a way that the environment is
unaware of the primary’s failure.

lThe protocols are the subject of a pending patent applica-

tion.

‘Notice that the primary/backup approach works only

when processors exhibit failstop behavior—--in response to a fail-

ure, the primary must halt and do so detectably [SS83]. Arbi-

trary behavior in response to a failure is not tolerated. Today’s

hardware approximates the failstop model with sufficient fidelity

so that it is reasonable to make this assumption unless the system

must satisfy the most stringent fault-tolerance requirements.

Moreover, a single backup (i.e. n= 2) usually suffices, because

the time to integrate a new backup into the system is typically

short and, therefore, the risk of a second failure in that interval is

acceptably low.

The environment for a virtual machine comprises the I/O devices

accessible to that virtual machine.

Our protocols use a single backup and implement a

l-fault-tolerant virtual machine; generalization to t-fault-tolerant
virtual machines is straightforward. The protocols cause the

backup virtual machine to execute exactly the same sequence of

instructions as the primary virtual machine, where each instruc-

tion executed by the backup has the same effect as when it is

executed by the primary. The protocols also ensure that the envi-
ronment does not see an anomalous sequence of I/O requests if

the primary fails and the backup takes over while an I/O opera-
tion is in progress.

One obvious assumption, required so that the backup vir-
tual machine can take over for tbe primary, concerns the accessi-

bility of I/O devices:

VO Device Accessibility Assumption: I/O devices

accessible to the processor executing the primary virtual

machine are also accessible to the processor executing the

backup virtual machine.

A second assumption is necessary because certain instruc-

tions will have to be simulated by the hypervisor. Such instrtrc-

tions may have different execution times under the hypervisor

than when executed directly by hardware. The use of a hypervi-
sor may also affect the amount of real memory available to pro-
grams. We, therefore, assume that correctness of the operating

system and other programs is not affected by executing this soft-

ware on a virtual machine:

Virtual Machine Assumption: System and user soft-

ware executes correctly under the hypervisor.

Other assumptions, discussed below, concern the effects

of executing various classes of instructions. We ignore here the
problem of replacing the backup after it fails or becomes the pri-

mary, since that problem is orthogonal to replica-coordination
and is fairly straightforward to solve.

2.1. Identical Instruction Streams

In our scheme, a given instruction must have the same
effect whether it is executed by the primary virtual machine or
the backup. This requires two assumptions about instruction

execution, Both assumptions are satisfied by HP’s PA-RISC

[HP87] and most other modern processors.

Define the virtual-machine state to include the memory

and registers that change only with execution of instructions by
that virtual machine. Main memory, address translation regis-
ters, the program counter, and the general-purpose registers are

all part of the virtual-machine state, but a time-of-day clock, the
interval timer, I/O status registers, and the contents of I/O

devices would not be. We partition the instruction set into ordi-

nary instructions, whose behavior is completely determined by
the virtual-machine state, and environment instructions, whose
behavior is not. Examples of ordinary instructions include those
for arithmetic and data movement; examples of environment

instructions include those for reading the time-of-day clock,
loading the interval timer, and for performing I/O.

In order that the primary and backup virtual machines
execute exactly the same sequence of instructions, both virtual
machines are started in tbe same state. We then require that
every instruction have the same effect when it is executed by the
primary as when it is executed by the backup. By definition, the
effects of executing ordinary instructions depend only on the
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virtual-machine state. Thus, ordinary instructions can be
executed directly by the hardware at the primary and backup pro-
vided:

Ordinary Instruction Assumption: Executing the same

ordinary instruction on two processors in the same virtual-

machine state has exactly the same effect.

Two ADD instructions, for example, must calculate the same

sums when given identicaI arguments. And, two identical divide

instructions having a divisor of O must both cause a trap at identi-

cal points in the instruction stream.

Another assumption ensures that when executing an envi-

ronment instruction, the hypervisor at the primary and backup

virtual machines have an opportunity to communicate.3 This

allows both hypervisors to change the virtual-machine state in

the same way. For example, the assumption allows an instruc-

tion executed by the backup for reading the time-of-day clock to
return the same value as returned when that instruction was

executed—perhaps at a slightly different time—by the primary.

Environment Instruction Assumption: Environment

instructions are simulated by the hypervisor (and not

executed directly by the hardware). The simulation

ensures that a given environment instruction executed on

two processors in the same virtual-machine state has

exactly the same effect on the virtual-machine state.

To guarantee that the primary and backup virtual

machines execute the same sequence of instructions, we must

ensure that identical interrupts are delivered to each and at the
same points in their instruction streams. The presence of a
hypervisor helps here. The primary’s hypervisor can buffer and

forward I/O interrupts it receives to the backup’s hypervisor.

And, the primary’s hypervisor can send to the backup’s hypervi-

sor information about the value of the interval timer at the pro-

cessor executing the primary virtual machine. ‘fhtrs, by commu-
nicating with the primary’s hypervisor, the backup’s hypervisor
learns what interrupts it must deliver to the backup virtual

machine,

However, even caretid use of an interval timer cannot

ensure that the hypervisor at the primary and backup receive con-

trol at exactly the same points in a virtual machine’s instruction
stream. This is because instruction-execution timing on most

modem processors is unpredictable, Yet, interrupts must be

delivered at the same points in the primary and backup virtual

machine instruction streams. We must employ some other mech-

anism for transferring control to the hypervisor when a virtual

machine reaches a specified point in its instruction stream.

The recovery register on HP’s PA-RISC processors is a
register that is decremented each time an instruction completes;

an interrupt is caused when the recovery register becomes neg-

ative. With a recovery register, the hypervisor can run a virtual

machine for a fixed number of instructions and then receive con-
trol and deliver any interrupts received and buffered during that
epoch. A hypervisor that uses the recovery register can thus

ensure that epochs at the primary and backup virtual machines

swe are thus assuming a communications link between the

processors executing the primary and backup hypervisors.

Should these processors become partitioned by a communica-
tions failure, our scheme no longer works.

each begin and end at exactly the same point in the instruction
stream. Interrupts are delivered only on epoch boundaries.

A recovery register or some similar mechanism is, there-

fore, assumed.

Instruction-Stream Interrupt Assumption: A mecha-

nism is available to invoke the hypervisor when a speci-

fied point in the instruction stream is reached.

In addition to the recovery register on HP’s PA-RISC, the DEC

Alpha [S92] performance counters could be adapted, as could

counters for any of a variety of events [G94]. Object-code edit-

ing [ML89] [GLW95] gives yet another way to ensure that the

primary and backup hypervisors are invoked at identical points in
a virtual machine’s instruction stream. In this scheme, the object

code for the kernel and all user processes is edited so that the

hypervisor is invoked periodically. Or, one can simply modify

the code-generator for a compiler to cause invocation of the
hypervisor periodically whenever a program produced by that

compiler is executed.

By virtue of the Instruction-Stream Interrupt Assumption,

execution of a virtual machine is partitioned into epochs, and

corresponding epochs at the primary and the backup virtual

machines comprise the same sequences of instructions. Inter-

rupts are not delivered during an epoch—they are buffered and
delivered only at epoch boundaries. We have only to ensure that

the same interrupts are delivered at the backup as at the primary
when each epoch ends. The solution to this is for the primary

and backup hypervisor to communicate, and at the end of an
epoch i to have the backup’s hypervisor deliver copies of the

interrupts that primary’s hypervisor delivered at the end of its

epoch i.4

We now summarize the protocol that ensures the primary

and backup virtual machines each performs the same sequence

of instructions and receives the same interrupts. To simplify the

exposition, we assume that the channel linking the primary and

backup processors is FIFO. We also assume that the processor
executing the backup detects the primary’s processor failure only
after receiving the last message sent by the primary’s hypervisor

(as would be the case were timeouts used for failure detection),

Counter eP is maintained by the primary’s hypervisor and eb by
the backup’s hypervisor to store the number of the epoch cur-
rently being executed by the primary and backup virtual machine

respectively.

The protocol is presented as a set of routines that are

implemented in the hypervisor. These routines may be activated
concurrently. We write TmeP to denote the virtual interval timers

and time-of-day clocks at the processor executing the primary
virtual machine and write Tmeb for the same registers at the

backup virtual machine. Each epoch, Tmep is sent to the

backup’s hypervisor so that hypervisor can desynchronize its

clocks (denoted here by assignment Tmeb : = TmeP) and thus

41t would be possible to deliver interrupts at the primary as

soon as they are received, thereby ending epochs dynamically, if

the recovery register at the primary can be read by the hypervi-

sor. Since the backup lags the primary, the hypervisor at the

backup would always set its recovery register to receive control

and deliver interrupts at the same point in its instruction stream
as the primary.



will schedule interval timer interrupts at the end of the same

epochs as the primary’s hypervisor.

First, we treat the case where a processor running the pri-

mary virtual machine has not failed.

Po:

Pl:

P2:

P3:

P4

P5:

P6:

If eP=.E and primary’s hypervisor processes an environ-

ment instruction:

- primary sends [E, Vd] to backup, where Val is the value

produced by executing the environment instruction

If e~ = E and primary’s hypervisor receives an interrupt
Int:

- primary sends [E, M] to backup5;

- primary buffers Int for later delivery

If ep=E and the epoch ends at the primary:

- primary sends [TrneP] to backup;

- primary awaits acknowledgment for all messages

previously sent to backup;

- primary adds to buffer any interrupts based on TmeP;

- primary delivers all interrupts buffered during epoch E;

- primary sends [end, E] to backup;

-eP :=eP+l;

- primary starts epoch E+ 1

If backup’s hypervisor receives an interrupt M destined

for the backup virtual machine then it ignores Int.

If backup’s hypervisor receives a message [E, hrt] from

primary:

- backup sends an acknowledgment to the primary;

- backup buffers Int for delivery at end of epoch E

If eb = E and the epoch ends at the backup:

- backup awaits [TmeP] message from primary;

- Tmeb : = Tmep;

- backup awaits [end, E+ 1] message from primary;

- backup adds to buffer interrupts based on Tmeb;

- backup delivers all interrupts buffered for delivery at

end of epoch E;

-eb :=eb+l;

- backup starts epoch E+ 1

If eP= E artd backup’s hypervisor processes an environ-
ment instruction:

- return value is the one sent by primary according to PO

Now consider the case where the processor executing the
primary virtual machine fails. Suppose the failure occurs after

starting epoch E+ 1 but before the sending (in P2) of [end, E+ 1]

to the backup’s hypervisor. The backup has no obligations con-
cerning execution after the point in epoch E+ 1 where the pri-
mary fails, so the backup can simply continue executing instruc-
tions (and continue ignoring interrupts from the backup proces-
sor) until the end of epoch E+ 1. However, after the backup

sIf Znt is completion of a read operation, then the PrimW’s

hypervisor also sends to the backup a copy of any data returned

by the read.

virtual machine reaches the end of epoch E, itwill not receive

the expected [end, E+ 1] message from the primary’s hypervisor.

A failure detection notification will take the place of this mes-

sage. Fhally, the backup is promoted to the role of the primary

at the start of epoch E +2, so that there is exactly one primary

during each epoch.

P7: If eb=E and the epoch ends at the backup:

- backup awaits detection of failed primary;

- backup adds to buffer interrupts based on Tmeb;

- backup delivers all interrupts it buffered (in P5) for

delivery at end of epoch E;

- eb :=eb+l;

- backup starts epoch E+ 1;

- backup is promoted to primary for epoch E+2

It is important to understand what PO through P7 do and

do not accomplish. PO through P7 ensure that the backup virtual
machine executes the same sequence of instructions (each having

the same effect) as the primary virtual machine. PO through P7

also ensure that if the primary virtual machine fails, then instruc-
tions executed by the backup extend the sequence of instructions

executed by the primary.

PO through P7 do not guarantee that interrupts from I/O

devices are not lost (nor is the protocol intended to prevent lost

I/O interrupts). If the processor executing the primary virtual

machine fails before successfully relaying an I/O interrupt that
has been delivered to the primary’s hypervisor, then that interrupt

will be lost. The next subsection extends the protocol to cope
with lost I/O interrupts and the more general problem of ensuring

that the environment does not see anomalous behavior in
response to a failure.

2.2. Interaction with an Environment

The state of the environment is affected by executing I/O

instructions. We must ensure that the sequence of I/O instruc-

tions seen by the environment is consistent with what could be

observed were a single processor in use, even though our l-fault-

tolerant virtual machine is built using two processors. The prob-
lem is best divided into two cases:

(i) epochs the primary completes without failing, and

(ii) epochs, called failover epochs, during which the primary
fails.

These two cases suffice because, according to P7, the backup vir-
tual machine is promoted to a primary for the epoch following

the one in which the primary fails. So, every epoch is one that a

primary completes or one during which the (original) primary
has failed.

Case (i) is simple. During these epochs, I/O instructions
from the backup virtual machine are suppressed by the backup’s
hypervisor. Recall, due to P5, the backup virtual machine does
not start its epoch E until after the primary has completed that

epoch (because the [end, E] message is awaited). The backup’s
hypervisor therefore knows at the start of epoch E that the pri-
mary has completed this epoch without failing. The hypervisor

at the backup can thus suppress I/O attempted by the backup vir-

tual machine during this epoch. And, the environment will see
only the primary’s issuance of each I/O instruction.

Case (ii) is problematic because it gives rise to an instance
of the unsolvable two generals problem [G79]. No protocol can
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exist to inform the backup’s hypervisor about whether or not a

particular 1/0 instruction was attempted by the primary virtual

machine before failing. This is because we are assuming that the

operation used by the primary hypervisor to initiate an UO opera-

tion is distinct from that used to communicate with the backup

hypervisor. In a protocol where communication with the backup
hypervisor occurs after the I/O instruction is issued, the pri-

mary’s failure after the 1/0 but before the communication would

cause the backup to conclude (erroneously) that the I/O was not
started; in a protocol where the notification is sent before the I/O

instruction is issued, the primary’s failure after the send but

before the I/O would cause the backup to conclude (erroneously)
that the I/O instruction was issued.

Thus, it is impossible to ensure that each 1/0 instruction
issued by the primary during a failover epoch is seen exactly

once by the environment. Our solution is to exploit the reality

that I/O devices are themselves subject to transient failures, and
device drivers already cope with these faihrres. All I/O devices

are assumed to comply with the following interface:

101: If an I/O instruction is issued and performed, then the pro-

cessor issuing the instruction subsequently receives a
completion interrupt.

102: If the processor issuing an 1/0 instruction receives an

uncertain interrupt, then the I/O may or may not have

been performed.

The SCSI bus used with HP’s PA-RISC machines and the I/O

archhecture for DEC’S Alpha both satisfy these requirements, as
would I/O devices accessed over a communications network.
With the SCSI bus protocol, the CHECK_CONDITION com-

mand complete interrupt status has the same semantics as the
uncertain interrupt of 102.

An operating system’s driver for an 1/0 device satisfying
101 and 102 may have to retry I/O instructions. Specifically,

whenever an uncertain interrupt is received, a pendkg 1/0

instruction must be repeated. The environment (i.e. I/O device)
must therefore tolerate repetition of I/O instructions. And, we

exploit this tolerance in handling I/O operations issued by the

primary virtual machine for which neither a completion nor an

uncertain interrupt has been relayed to the backup’s hypervisor
prior to the primary’s failure.

P8: The backup’s hypervisor generates an uncertain interrupt
for every I/O operation that is outstanding when the

backup virtual machine finishes a failover epoch (i.e. just

before the backup is promoted to primary).

The effect of P8 is to cause certain I/O instructions to be

repeated. However, as far as the environment is concerned, this

repetition might be a consequence of transient events that caused

I/O devices to return uncertain interrupts. The environment,

therefore, sees a sequence of I/O instruction that is consistent

with what could be observed were a single real processor in use.
Not surprisingly, I/O devices encountered in practice-disks and
network adapters—have no difficulty with this.

3. A Prototype System

In order to evaluate the performance implications of

bypervisor-based fault-tolerance, we constructed a prototype.
This involved implementing a hypervisor and then augmenting
that hypervisor with the protocols of 62. OUr prototype cons~sts
of two HP 9000/720 PA-RISC processors connected by both a
SCSI bus and by an Ethernet. We chose these processors
because a recovery register was then available to control epochs.

A disk connected to the SCSI bus serves as a representative I/O

device; a remote console is attached to the Ethernet and is avail-

able for control and debugging of the system. See Figure 1.

3.1. The Hypervisor

A hypervisor must not only implement virtual machines

whose instruction-set architecture is indistinguishable from the
bare hardware, but it must do so efficiently, A virtual machine

should execute instructions at close to the speed of the hardware.
Typically, efficiency is achieved by taking advantage of a dual-
mode processor architecture, whereby running in supervisor

mode allows both privileged and non-privileged instructions to

be executed, but running in user mode allows only non-

privileged instructions to be executed. The hypervisor executes

in supervisor mode and receives control on any incoming inter-

rupt or trap. All other software, including the operating system

kernel of the virtual machine, executes in user mode. Whenever

the virtual machine is in a virtual supervisor mode and attempts
to execute a privileged instruction, a privilege trap occurs and the

hypervisor simulates that instruction.

Implementation of a hypervisor for HP’s PA-RISC is not

completely straightforward, however. Two aspects of the instruc-

tion-set architecture prevent efficient virtualization: the memory

architecture and the processor’s privilege levels. Fortunately, the
difficulties can be overcome by constructing a hypervisor that

supports only a single instance of a somewhat restricted virtual

machine-one that suffices for running HP’s UNIX system, HP-

UX. Our hypervisor is approximately 24K lines of code (of
which 5K are assembly language and the rest are C).

Memory Architecture. On HP’s PA-RISC architecture, address
translation uses a set of space registers, Space registers define

logical address segments. Instructions that read the registers are

non-privileged and a subset of the space registers may even be

written to using non-privileged instructions. Thus, the hypervi-

sor cannot intercept non-privileged accesses to space registers,
which makes it difficult to support multiple virtual machines. In

particular, if the hypervisor is not invoked when a virtual

machine changes a space register, then one virtual machine may
infer the existence of another from the values in the space regis-

ters.

The problem need not be addressed with a hypervisor that
supports only a single virtual machine. This, then, is what we do

in our prototype. We include the hypervisor in the address space

of the virtual machine’s kernel; the hypervisor appears to be a
device driver to the kernel. Because there is only a single virtual

SCSIB”,F=’1 Ethernet

I

I i

Ix_22EJl

F]gure 1. The Prototype
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machine, the hypervisor need not be involved in storage manage-
ment and changes to the space registers. The only exception is

reads and writes to access rights for memory-mapped 1/0 pages,

which the hypervisor must still control. This control is obtained

by the hypervisor intercepting and changing the access rights for

these pages as they are inserted into the TLB.

processor Privilege Levels. HP’s PA-RISC instruction-set

architecture defines four privilege levels. Privilege level O is

equivalent to the supervisor mode described above; levels 1
through 3 differentiate levels of access control and do not permit
execution of privileged instructions.

The probe, gate, and branch-and-link instructions reveal

the current privilege level of the processor. Execution of a

branch-and-link instruction, for example, causes the current priv-
ilege level to be stored in the low-order bits of the return address.
Thus, probe, gate, and banch-and-link, can enable a virtual
machine to discover that its privilege level is not the same as the

current privilege level of the hardware.

We addressed this problem by analyzing the use of privi-

lege levels and the probe, gate, and branch-and-link instructions

by HP-UX. On a bare machine, the HP-UX kernel executes at
privilege level O and all other HP-UX software executes at privi-

lege level 3. Privilege levels 1 and 2 are not used by HP-UX. In

our protoype, the hypervisor executes at privilege level O, virtual

privilege level O is executed at real privilege level 1, and virtual

privilege level 3 is executed at real privilege level 3. This map-

ping of virtual privilege levels to real privilege levels works only

because HP-UX does not use all of the privilege levels. Thus, a

number of problems that might be caused by the access control

architecture simply do not arise in supporting HP-UX.

To deal with the return addresses from banch-and-link

instructions, we checked all uses of this instruction by HP-UX to

see if the low-order bits of a return address were actually used.

In the assembly-language portion of the HP-UX kernel, we

found a single instance during the boot sequence where the
branch and link instruction was being used as a load-position

independent way of determining the current physical address.

This code assumes that the low-order bits were O (supervisor

mode), since this code always runs in supervisor mode. A solu-

tion (hack) was to modify this code fragment and mask out the
privilege bits of the return address. For the rest of HP-UX,
which is written in C and other high-level languages, we

observed that the procedure-linkage routine generated by the
high-level language compilers was not sensitive to the execution
mode bits in the return address. Thus, HP-UX never detects the
presence of our hypervisor, although if it looked, it could.

3.2. Replica-Coordination in the Hypervisor

To augment our hypervisor with the replica-coordination
protocols, we investigated whether the various assumptions given

in $2 could be satisfied.

The I/O Device Accessibility Assumption is easy to sat-
isfy because multiple hosts may reside on the same SCSI bus.

Once bus termination considerations are resolved, the primary
and backup machines can be chained together on a single SCSI
bus, allowing both to access the disk. This is what we do.

The Virtual Machine Assumption was satisfied because

we used that as the correctness criterion for our hypervisor
implementation. Software intended to be executed on any real-
ization of an architecture should satisfy the Vktual Machine
Assumption with no difficulty.

We (as well as a number of HP engineers) were surprised

to find that the Ordinary Instruction Assumption does not hold

for the HP 9000/720 processor. In the HP PA-RISC architecture,

TLB misses are handled by software. When the translation for a
referenced location is not present in the TLB, a TLB miss trap

occurs. If the reference is for a page already in memory, then the

required information is read from the page table and the entry is

inserted into the TLB. If, on the other hand, the reference is for

a page that is not in memory, then the page must be retrieved

from secondary storage; the TLB is updated (by software) once
the transfer is complete.

The TLB replacement policy on our HP 9000/720 proces-
sors was non-deterministic. An identical series of location-
references and TLB-insert operations at the processors running

the primary and backup virtual machines could lead to different
TLB contents. Since TLB miss traps are handled by software,

differences in TLB contents become visible when a TLB miss

trap occurs at one of the virtual machines and not at the other.

Our solution to this problem was to have the hypervisor

take over some of the TLB management. The hypervisor inter-

cepts TLB miss traps, performs the page table search and, if the
page is already in memory, does the TLB insert operation. Only

for pages that are not already in memory does the virtual

machine software receive a TLB miss trap. Thus, it appears to

the virtual machine as if the hardware were responsible for load-

ing TLB entries for pages that are in memory.

Strictly speaking, our hypervisor implements a virtual

machine that is different from the PA-RISC instruction-set archi-

tecture. But the difference is one that does not affect HP-UX.
(However, an HP-UX release with a bug in its TLB miss handler

could be affected, because the bug might never be encountered
when run in a virtual machine but might be when run on the raw
hardware.)

The Environment Instruction Assumption concerns

instructions that cause I/O. HP’s PA-RISC instruction-set archi-

tecture has memory-mapped I/O. I/O controller registers are

accessed through ordinary load and store instructions. To satisfy
the Environment Instruction Assumption, our hypervisor alters

the access protection for the memory pages associated with these

I/O controller registers so that a load or store attempted by the
virtual machine (executing in user mode) causes an access trap to

occur. The access trap transfers control to the hypervisor.

Finally, the Instruction-Stream Interrupt Assumption is

handled by using the recovery counter of the HP PA-RISC.

4. Performance of the Prototype

Performance measurements of our prototype give insight
into the practicality of the protocols. We also formulated (and

validated) mathematical models for hypervisor-based fauk-

tolerance, to better understand the effects of various system
parameters.

Normalized performance was identified as the figure of
merit. A workload that requires N seconds on bare hardware has

a normalized performance of N’IN if that workload requires N’
seconds when executed by a primary virtual machine that com-
municates with a backup virtual machine, as implemented by our

hypervisor. Thus, a normalized performance of 1.25 for a given
workload indicates that, under the prototype, 2570 is added to the
completion time. We desire a normalized performance that is as

small as possible; a normalized performance of 1 is the best we

might expect. Note that normalized performance does not reflect
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the use of two processorsto accomplishthework of one.

Epoch length was our paramount concern. Whh short

epochs, intermpts are not significantly delayed by hypervisor

buffering but the number of epochs for a given task—and the
associated overhead—is increased. Whh long epochs, fewer

epochs transpire but hypervisor delays for interrupt delivery may

become significant. (The HP 9000/720 on which these experi-

ments were performed is a 50 MIPS processor, so a typical
instruction should execute in .02 #sec.)

4.1. CPU-Intensive Workload

Our first investigations concerned a CPU-intensive work-

load. The dominant process executed 1 million iterations of the

Dhrystone 2.1 benchmark. This process was assigned the high-

est possible real-time priority; epoch length was set at 4K

instructions. The experiment was repeated 20 times. The coeffi-

cient of variation for the parameters measured was less than

0012, giving us confidence in the validity of using their aver-
ages.

The normalized performance for this CPU-intensive

workload with 4K epochs was 6.50-the overhead was very

high. An average of 15.12 ,usec. was required for the hypervisor

to simulate each privileged instruction; approximately 8

#sec. for hypervisor entry/exit and 7 psec. for the actual work.

Epoch-boundary processing (i.e. rule P2) consumed an average

of 442,59 #sec. This meant that epoch boundaries added

approximately 46 seconds to the the 8.8 sec. required for execut-

ing the benchmark of 4. 2X108 instructions.

Increasing the epoch length reduces the time devoted to
epoch-boundary processing. The normalized performance

AT’=(EL) for the CPU-intensive workload as a function of
epoch-length EL can be approximated by the following:

NPC(EL):

where

RT:

n~i~:

h,i~:

VI:

h.w,~:

Cother:

real time required to execute workload on bare
hardware (8.8 sec.)

number of workload’s instructions simulated by
hypervisor

average time for hypervisor to simulate an
instruction (15. 12 pee.)

number of virtual machine instructions executed
for workload (4. 2X108)

average epoch-boundary processing time
(442.59 #3C.)

delays caused by communication between primary

and backup hypervisors (41 msec. was measured)

A graph of NPC(EL) for epoch length EL between lK
and 32K instructions appears as Figure 2. Also indicated on that

graph are measurements we made of our prototype for epoch

lengths IK, 2K, 4K, and 8K. The measurements agree with what
the equation predicts, validating NPC(EL) for predicting perfor-
mance of this workload.

The graph of Figure 2 shows that normalized performance
improves as epoch length increases. When there are 32K

instructions in an epoch, a normalized performance of 1.84 is

predicted-a substantial improvement from the normalized

Measured and Predicted Performance
1 1

/?
22.24

f — CPU Predicted

04 J
0 5000 10000 15CO0 20000 25000 30000 35000

Epoch Length (EL)

Figure 2. CPU-Intensive Worldoad

performance of 6.50 that we observed for 4K epochs. However,

long epochs cause delays in interrupt delivery. The impact of

this delay gives a practical upper-bound for epoch length. HP-

UX, for example, requires that epoch lengths not exceed 385,000

instructions (10 msec), because of the way the clock is main-
tained by the kernel. For epoch lengths of 385,000 instructions,

our model predicts a normalized performance of 1.24 for the

CPU-intensive workload. This performance would be quite
acceptable, especially since the hypervisor’s simulation of

instructions accounts for .18 of the .24 overheads For long

epochs, then, our replica-coordination scheme is responsible for
adding only 6~0 overhead beyond that incurred for implementing

a virtual machine.

4.2. Input/Output Workloads

We would expect a workload in which I/O occurs to per-
form differently than the above CPU-intensive workload. First,

I/O involves a significantly higher proportion of instructions that
must be simulated by the hypervisor. Second, there is the added

cost in P1 for transferring the result of a disk read from the pri-
mary’s hypervisor to the backup’s hypervisor. The primary vir-

tual machine may not proceed until this data has been received
by the backup’s hypervisor (see rule P2 of the protocol).

When analyzing an I/O-intensive workload involving a
disk, care must be taken to ensure that requests actually pro-

pogate beyond any buffer pools that an operating system, like

HP-UX, might maintain, For reads, we must also be careful that
performance measurements are unaffected by disk-block

prefetches; for writes, we must prevent overlapping the data

transfer with subsequent computation.

This leads to the following I/O benchmarks. A large file

is pre-allocated on the disk. Then, for measuring the perfor-

mance of reads, the benchmark randomly selects a disk block,

issues a read, and awaits the data. This is iterated 2048 times.

The benchmark for writes is analagous-a disk block is ran-
domly selected, a write is issued, and then the write completion
is awaited. Notice that a rather high percentage of the

6Anecdotal evidence [C95] for a mature VIW370 installa-

tion places normalized performance at around 1.40. The signifi-

cantly higher cost for VM1370 is undoubtedly due to supporting

multiple virtual machines as well as differences in the workload.
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instructions concern I/O. These instructions will be privileged

and therefore must be simulated by the hypervisor.

We ran 20 experiments in which the write version of the

I/O benchmark was executed. The coefficient of variation for the

parameters measured was less than .25% giving us confidence in

the validity of using averages. The normalized performance with

4K epochs was found to be 1.67. This normalized performance

includes the impact of the hypervisor on the the block selection

calculation and memory-mapped I/O loads and stores to initiate

the write. Therefore, we also measured the disk write times with
and without the hypervisor present, When the benchmark is

executed on bare hardware, a disk write takes an average of 26
msec. to complete; when the hypervisor and replica-coordination
protocols are present, a disk write takes an average of 27.8 msec.
Thus, disk write performance does not really suffer when epochs

are length 4K. However, as we shall see, with significantly

larger epochs, interrupt delivery is delayed and disk write perfor-

mance can suffer.

To measure the performance of disk reads, the read ver-

sion of our I/O benchmark was used. This experiment was also
repeated 20 times. The coefficient of variation for the parame-

ters measured was less than 3’%0, giving us confidence in the

validity of using their averages.7 The benchmark is not com-

pletely successful in selecting disk blocks not in the buffer-
pool-of the 2048 read requests issued, only on average 1729

caused actual disk reads. We computed a normalized perfor-

mance for the experiments (with 4K epochs) of 2.03. Because
processing a read request requires the primary’s hypervisor to

forward a copy of the data read to the backup, disk reads are

expected to take significantly longer with our replica-

coordination protocols in place. When the benchmmk is

executed on bare hardware, an 8K disk block read takes an aver-
age of 24.2 msec. to complete; when the hypervisor and replica-
coordination protocols are present, a disk read takes an average

of 33.4 msec. A 10Mbps Ethernet is used in transferring the disk
block from the primary to the backup; this requires 9 messages
for the data and 1 message for an acknowledgement.

Normalized performance NPW(EL.) for the write version

of the I/O benchmark can be approximated by:

ivP~(.EL):
nW(cpu(EL)+xferW +delayW(EL))

RT

where

RT: real time required to execute workload on bare

hardware

raw: number of writes (2048 for the benchmark)

Cpu(lz): elapsed time required to select a disk block and

initiate the transfer of a disk block when the

hypervisor is present and EL is the epoch length

7This coefficient of variation is much larger than obtained

with the other workloads because of the high variance associated

with processing interrupts for communications between the pri-

mary and backup hypervisor. The other workloads involve con-

siderably less communication.

xferw:

delay:

elapsed time between initation of disk write

the receipt of the corresponding interrupt

(26 msec.)

elapsed time between the completion interrupt

and its delivery to the virtual machine when ~he

epoch length is EL

And, normalized performance NPR(EL) for the read version of

the I/O benchmark can be approximated by:

NP~(EL):
nR(cpu(EL)+xfer~ +delay~(EL))

RT

where

RT:

n~;

cpu(E.L):

xferR:

delay:

real time required to execute workloadl on bare

hardware

number of reads (1729 for the benchmmrk)

elapsed time required to select a disk block and

initiate the transfer of a disk block when the

hypervisor is present and EL is the epoch length

elapsed time between initation of dk.k read

the receipt of the corresponding intemupt

(24.2 msec.)

elapsed time between the completion interrupt

and its delivery to the virtual machine when the

epoch length is EL

A graph of NPW(EL) and NPR(EL) for epoch length EL

between lK and 32K instructions appears as Figure 3. Measure-

ments for our prototype when executed with epoch lengths 1K,

2K, 4K, and 8K are also marked on the graph. The measure-
ments are each within 1.9% of what is predicted by NPW(EL)

and NPR(EL).

As with the CPU-intensive workload, longer epochs lead

to better normalized performance. This is because the cpu(EL)
term dominates in our models. But another trend is also visible.
Increases to epoch length EL causes delay w(,EL) and

dekzyR(EL) to increase, because interrupts from the disk are

buffered for a longer period by the hypervisor. Tlris trend

explains the slight upward drift of normalized performance for
larger epoch lengths. In a benchmark where more computation

were done before each I/O operation, the dominance of the
cpu(EL) term would ameliorate the normalized pefiformance.

Measured and Predicted Performance
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Figure 4. Faster Communication

Normalized performance for the I/O workload experiments never

goes as low as for the CPU-intensive workload, because of the

high precentage of hypervisor-simulated instructions in doing

I/o.

4.3. Faster Replica-Coordination

The predominant overhead for the replica-coordination

procotols comes from rule P2, where the primary’s hypervisor

must await acknowledgments for all messages previously sent to
the backup’s hypervisor. This suggests that speeding-up the

communication between the primary and backup processors
might improve performance. Figure 4 is a graph of normalized

performance if a 155Mbps ATM link is used for communication
in place of the 10Mbps Ethernet. There is some improvement—

for epoch length 32K, normalized performance for the Ethernet
is predicted to be 1,84 and normalized performance for the ATM

link is predicted to be 1.66. (This assumes I/O controller set-up

time and the software driver execution time is the same for both

technologies.)

A second improvement results from appreciating that it is

not strictly necessary for the primary’s hypervisor to await the
acknowledgments, as we are requiring in P2. Suppose (i) a mes-
sage sent by the primary’s hypervisor is not delivered to the
backup’s hypervisor and (ii) the primary passes through P2 with-

out waiting. Now an interrupt Int that has been delivered to the

primary virtual machine might never be delivered to the backup

virtual machine (if there is a lost message from primary to

backup). The computation at the backup virhtrd machine, there-

fore, might diverge from the primary.

Obviously, no problem occurs unless the processor
executing the primary virtual machine fails. In fact, no problem

occurs even if the processor fails—provided the primary virtual

machine has not revealed to the environment that Int was deliv-

ered. If the delivery of Int is not revealed to the environment,
then subsequent actions by the backup virtual machine—

whatever they may be—are consistent with with what could be

observed were there a single processor. Thus, it suffices that the

acknowledgments formerly awaited in P2 be received prior to
I/O by the primary virtual machine, since I/O is the only way in
which the state of a virtual machine is revealed to the environ-

ment,

The modifications to the protocol of $2 are straightfor-
ward. First, in P2, the primary’s hypervisor need no longer await

acknowledgments for messages it sent to the backup’s hypervi-
sor. Second, in order to initiate an I/O operation, the primary’s
hypervisor is required to have received acknowledgements for all

messages it has sent to the backup’s hypervisor.

We performed these modifications to the prototype and re-

ran our experiments for the CPU-Instensive workload of $4.1

and the two Input/Output workloads of $4.2. As before, the nor-

malized performance is an average obtained for 20 runs. The

results are given in Table 1. The column labeled “Old” refers to

the original protocol and “New” refers to the modified protocol.

The maximum epoch length reported is 8K instructions because

this is the longest epoch allowed by our prototype. During an
epoch, the backup hypervisor must buffer information sent to it

by the primary, and the space allocated for this buffering is lim-
ited.

As expected, the normalized performance improves sig-

nificantly when acknowledgements need not be awaited in P2.

The effect is most pronounced in the CPU-intensive workload,

because its normalized performance is most affected by the delay

at epoch boundries. In the I/O intensive workloads, some of the
delay at an epoch boundary is simply displaced to the I/O opera-

tion in each iteration of the benchmark.

5. Related Work

The availability of off-the-shelf microprocessors has
allowed fault-tolerant computing systems to be constructed sim-

ply by adding support for replica coordination to a bus or to sys-
tems software. Despite the engineering and time-to-market

costs, manufacturers continue to design and sell processors that

implement replica coordination in hardware. A design from Tan-

dem [CMJ88] and DEC’S VAXft 3000 are examples, See [SS92]

for a survey of hardware-implemented fault-tolerant computing

systems.

Workload

Epoch

Len CPU Intense Write Intense Read Intense

Old New Old New Old New

lK 22.24 11.67 1.87 1.70 2.32 1.92

2K 11.83 4.49 1.71 1.66 2.10 1.76

4K 6.50 3.21 1.67 1.66 2.03 1.72

8K 3.83 2.20 1.64 1.64 1,98 1.70

Table 1. Normalized Performance of Original and Revised Protocol

9



In some systems, like one offered by Stratus, the same
inputs are presented by the bus to the replicas and the bus is

driven by only a single replica (even though all replicas generate

the same outputs) [SS92]. In the pioneering work of Tandem
[B81], the applications themselves are responsible for ensuring
coordination between the processes comprising a process-pair,
the unit of replication there.

Other systems exploit a bus or broadcast network to
implement fault-tolerant processes on top of an operating sys-

tem. The work described in [BBG83] [BBGH089], and in
[PP83] exemplify this approach. Novell’s NetWare [MPN92]

[MMP94] is the most similar to our system. Both are structured

as “state machines” (in the sense of [L78][S90]) and both employ
a primary-backup scheme with failovers. However, in NetWare,

a rigid internal structure is forced on the operating system,

including the proscription of preemption, In our system, we do
not impose a structure or decomposition on operating system

internals, instead introducing a hypervisor. Also, our system per-

mits preemption. Finally, failovers are not masked from the
environment in NetWare. NetWare expects I/O that is lost during
a failover to be re-requested.

6. Summary

The system described in this paper implements replica

coordination above the hardware but below the operating system

by augmenting a hypervisor. The hypervisor does have a signifi-

cant performance impact but, as we have shown, the additional

cost of our replica-coordination protocols is not significant. For

epochs that are not too long (i.e. under 8K instructions) work-

loads involving I/O experienced a factor of approximately 2

slowdown. Our CPU-intensive workload requires much longer
epochs (e.g 32K instructions) before a factor of 2 slowdown is
achieved. But, longer epochs are not problematic for a CPU-

intensive workload because such a workload, by definition, is

unaffected by the delayed delivery of I/O interrupts entailed by
having longer epochs.

Without a doubt, much work remains to be done in under-

standing how epoch lengths and attendant interrupt delays

impact system performance. By building a prototype and exper-

imenting with it, we hoped to show:

(1) The approach has sufficient potential to justify further
implementation and experimentation.

(2) A recovery register can be quite useful for implementing
fault-tolerance and should be contemplated when defin-
ing an instruction-set architecture.

We believe that we have succeeded. Recent work of [E95] (that
we just learned about) is now exploring a variety of ways that a

recovery register can be employed in operating system and appli-

cations software, including support for fault-tolerance without
introducing a hypervisor.

It is difficult to compare the additional performance costs
entailed by our approach with the savings it brings to hardware

and software design costs. With our approach, new (faster) pro-

cessor realization can be exploited immediately, since a hypervi-

sor for a given instruction-set architecture should not require

modifications for each realization. And, all operating systems

for a given instruction-set architecture are made fault-tolerant in

a transparent manner without the need to modify each one ind-
ividually,

Augmenting a hypervisor is not the only way to support

replica coordination above the hardware but below system

software. One might modify a micro-kernel, for example, and

realize many of the same benefits as enjoyed when a hypervisor
is augmented. This alternative remains to be investigated.

Another question we have not dealt with concerns shared mem-

ory. One might imagine virtual processors that communicate

using shared memory. For some memory models, this is not dif-
ficult to support and it too is the subject of on-going work.
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