
 Replicated state machine and Paxos

Jinyang Li (NYU) and Frans Kaashoek

Fault tolerance => replication

•  How to recover a single node from power
failure?
– Wait for reboot

•  Data is durable, but service is unavailable temporarily

– Use multiple nodes to provide service
•  Another node takes over to provide service
•  How to make sure nodes respond in the same way?

Replicated state machine
(RSM)

•  RSM is a general replication method
– Lab 8: apply RSM to lock service

•  RSM Rules:
– All replicas start in the same initial state
– Every replica apply operations in the same order
– All operations must be deterministic

•  All replicas end up in the same state

RSM

•  How to maintain a single order in the
face of concurrent client requests?

opA opA opB opB

opA opB opB opA

RSM using primary/backup

•  Primary/backup: ensure a single order of ops:
–  Primary orders operations
–  Backups execute operations in order

opA opB
primary backup

opA opB

opA opB

When does primary respond?

•  After majority of backups have commit to op
–  Run two-phase commit
–  Lab 8: no persistent state; can avoid messages 2

and 3

1. opA

primary backup

opA 2. Prepare opA

4. Commit opA

3. OK opA

backup

5. Result opA

Caveats in Hypervisor RSM
•  Hypervisor assumes failure detection is perfect
•  What if the network between primary/backup

fails?
–  Primary is still running
–  Backup becomes a new primary
–  Two primaries at the same time!

•  Can timeouts detect failures correctly?
–  Pings from backup to primary are lost
–  Pings from backup to primary are delayed

Paxos: fault tolerant agreement

•  Paxos lets all nodes agree on the same
value despite node failures, network
failures and delays

•  Extremely useful:
– e.g. Nodes agree that X is the primary
– e.g. Nodes agree that Y is the last

operation executed

Paxos: general approach

•  One (or more) node decides to be the
leader

•  Leader proposes a value and solicits
acceptance from others

•  Leader announces result or try again

Paxos requirement

•  Correctness (safety):
– All nodes agree on the same value
– The agreed value X has been proposed by

some node
•  Fault-tolerance:

–  If less than N/2 nodes fail, the rest nodes
should reach agreement eventually w.h.p

– Liveness is not guaranteed

Why is agreement hard?
•  What if >1 nodes become leaders simultaneously?
•  What if there is a network partition?
•  What if a leader crashes in the middle of solicitation?
•  What if a leader crashes after deciding but before

announcing results?
•  What if the new leader proposes different values than

already decided value?

Paxos setup

•  Each node runs as a proposer, acceptor
and learner

•  Proposer (leader) proposes a value and
solicit acceptence from acceptors

•  Leader announces the chosen value to
learners

Strawman

•  Designate a single node X as acceptor (e.g.
one with smallest id)
–  Each proposer sends its value to X
–  X decides on one of the values
–  X announces its decision to all learners

•  Problem?
–  Failure of the single acceptor halts decision
–  Need multiple acceptors!

Strawman 2: multiple acceptors
•  Each proposer (leader) propose to all acceptors
•  Each acceptor accepts the first proposal it receives and

rejects the rest
•  If the leader receives positive replies from a majority of

acceptors, it chooses its own value
–  There is at most 1 majority, hence only a single value is chosen

•  Leader sends chosen value to all learners
•  Problem:

–  What if multiple leaders propose simultaneously so there is no
majority accepting?

Paxos solution

•  Proposals are ordered by proposal #
•  Each acceptor may accept multiple

proposals
–  If a proposal with value v is chosen, all

higher proposals have value v

Paxos state

•  Acceptor maintains across reboots:
– na, va: highest proposal # and its

corresponding accepted value
– np: highest proposal # seen

•  Proposer maintains:
– myn: my proposal # in current Paxos

•  Each round of Paxos has an instance #

Proposer
•  PROPOSE(v)

choose myn > np
send PREPARE(myn) to all nodes
if PREPARE_OK(na, va) from majority then

 va = va with highest na, or choose own v otherwise
 send ACCEPT (na, va) to all
 if ACCEPT_OK(na) from majority then
 send DECIDED(va) to all

Acceptor
•  PREPARE(n)

If n > np
 np= n

 reply <PREPARE_OK, na,va>

•  ACCEPT(n, v)
If n >= np

 na = n
 va = v

 reply with <ACCEPT_OK>

This node will not accept
any proposal lower than n

Paxos operation: 3 phase example

Prepare,N1:1

N0 N1 N2

nh=N1:0
na = va = null

nh=N0:0
na = va = null

nh= N1:1
na = null
va = null

ok, na= va=null

Prepare,N1:1

ok, na =va=nulll
nh: N1:1
na = null
va = null

nh=N2:0
na = va = null

Accept,N1:1,val1
Accept,N1:1,val1

nh=N1:1
na = N1:1
va = val1

nh=N1:1
na = N1:1
va = val1

ok
ok

Decide,val1 Decide,val1

Paxos properties

•  When is the value V chosen?
1.  When leader receives a majority prepare-ok

and proposes V
2.  When a majority nodes accept V
3.  When the leader receives a majority accept-

ok for value V

Understanding Paxos

•  What if more than one leader is active?
•  Suppose two leaders use different

proposal number, N0:10, N1:11
•  Can both leaders see a majority of

prepare-ok?

Understanding Paxos

•  What if leader fails while sending accept?
•  What if a node fails after receiving accept?

–  If it doesn’t restart …
–  If it reboots …

•  What if a node fails after sending prepare-ok?
–  If it reboots …

Using Paxos for RSM

•  Fault-tolerant RSM requires consistent replica
membership
– Membership: <primary, backups>
– RSM goes through a series of membership changes
<vid-0, primary, backups><vid-1, primary, backups> ..

•  Use Paxos to agree on the <primary, backups>
for a particular vid
– vid == paxos instance #

Lab8: Using Paxos for RSM

vid1: N1

vid2: N1,N2

vid3: N1,N2, N3

vid4: N1,N2

All nodes start with
static config vid1:N1

N2 joins
A majority in vid1:N1
accept vid2: N1,N2

N3 joins
A majority in vid2:N1,N2
accept vid3: N1,N2,N3

N3 fails

A majority in vid3:N1,N2,N3
accept vid4: N1,N2

Lab7: Using Paxos for RSM

vid1: N1

vid2: N1,N2

vid1: N1

vid2: N1,N2

N1

N2

N3 vid1: N1

N3 joins

Lab7: Using Paxos for RSM

vid1: N1

vid2: N1,N2

vid1: N1

vid2: N1,N2

N1

N2

N3 vid1: N1

N3 joins
vid2: N1,N2 Prepare, vid3, N3:1

Lab8: re-configurable RSM

•  Use RSM to replicate lock_server
•  Primary in each view assigns a

viewstamp to each client requests
– Viewstamp is a tuple (vid:seqno)
–  (0:0)(0:1)(0:2)(0:3)(1:0)(1:1)(1:2)(2:0)(2:1)

•  All replicas execute client requests in
viewstamp order

Lab8: Viewstamp replication

•  To execute an op with viewstamp (vs), a
replica must have executed all ops < vs

•  A newly joined replica need to transfer state
to ensure its state reflect executions of all
ops < vs

•  Primary in new view is last primary, if alive
•  Otherwise, backup lowest ID
•  Resume responding to client after backups and

primary are in sync

Lab8: Using Paxos for RSM

vid1: N1 N1

N2 vid1: N1

N2 joins

myvs:(1:50)

