
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Spring 2009

Quiz I Solutions

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you finda question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/14) II (xx/21) III (xx/20) IV (xx/21) V (xx/14) VI (xx/10) Total (xx/100)

Name:



Grade histogram for Quiz 1

 0

 1

 2

 3

 4

 5

 6

1-
5

6-
10

11
-1

5
16

-2
0

21
-2

5
26

-3
0

31
-3

5
36

-4
0

41
-4

5
46

-5
0

51
-5

5
56

-6
0

61
-6

5
66

-7
0

71
-7

5
76

-8
0

81
-8

5
86

-9
0

91
-9

5
96

-1
00

max = 100

median = 67

µ = 66.8

σ = 16.2



6.824 SPRING 2009, Quiz 1 Solutions Page 3 of 11

I Remote procedure call

Ben Bitdiddle makes the following changes to your RPC clientfrom lab 1:

Each time a request is retransmitted, he assigns it a new sequence number. His client remembers only
the most recent sequence number assigned to each RPC, and if areply with an unknown sequence
number arrives, it is ignored. Additionally, the client automatically re-binds to the server if the server
crashes.

Then Ben modifies your RPC server to ignore all RPCs with a sequence number less than or equal to the
highest sequence number it received from the same client so far. For example, if it receives a request with
sequence number 5 from clientA, it will ignore any subsequent requests it receives fromA with sequence
numbers less than or equal to 5. Note that the RPC client’s retransmission code increases the timeout with
each retransmission, so RPCs will eventually complete if the server is up.

In the following problems, assume a single client with one thread, and no crashes. However, the network
may drop, delay, duplicate, or reorder messages.

1. [7 points]: Recall that the SETATTR operation changes a file’s length andupdates the modifi-
cation time, then returns the file’s new attributes. Explainhow the behavior of SETATTR could be
different with the at-least-once RPC package the staff provided for Lab 1 versus Ben’s RPC package.

The SETATTR RPC may be executed more than once with both packages. However, Ben’s package
guarantees that the value returned (and hence the modification time) corresponds to the lastexecution.

For example, suppose the client does a SETATTR followed by a GETATTR on a file. If no other
clients modify the file, one might expect both calls to returnthe same modification time, which is what
will happen with Ben’s RPC package. With at-least-once RPC,however, SETATTR might return the
modification time from the firstof two executions of the call, in which case the subsequent GETATTR
will return a different modification time.

2. [7 points]: Circle the FUSE operations below that can fail or produce incorrect results with Ben’s
RPC package, but work with your at-most-once RPC. Then underline one and describe what goes
wrong with that operation.

LOOKUP READ WRITE MKDIR REMOVE

MKDIR and REMOVE might fail with Ben’s package because it cancause duplicate requests to be
executed. When the server processes a duplicate REMOVE request, for example, it sees that the file
is already deleted and returns an error. LOOKUP, READ, and WRITE are idempotent and therefore
don’t have this problem.

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 4 of 11

II Short questions: Tra, Bayou, and DryadLINQ

3. [7 points]: On Monday, Alyssa and Ben fully synchronize their filesystems using Tra. On
Tuesday, Alyssa makes some changes on her computer, and on Wednesday, Ben makes some changes
on his computer. Then they fully synchronize again, and Tra reports no conflicts. Ben remarks that
the results are different than they would be if they had performed the same operations on a shared
YFS server (with sequential consistency). Give a simple example of operations Alyssa and Ben might
have performed to lead to this situation, and briefly explain.

Here’s a simple example:

Alyssa:cp x y
Ben:cp y x

Supposex originally contained"foo" andy originally contained"bar". The result with sequential
consistency isx="foo" andy="foo", but the result with Tra isx="bar" andy="foo".

The key point is that Tra only tracks write-write conflicts, not read-write conflicts.

Some students found answers involving special cases with deletes, but it’s more complicated to con-
struct an example where Tra doesn’t report a conflict.

4. [7 points]: Suppose that while David is disconnected from the network, he uses Bayou’s meeting
room scheduler application to reserve the Stata center playground for a 6.824 post-quiz party. MIT
Daycare reserves the playground for the same time slot, and neither of them specify alternative times.
Under what specific circumstances would David get a confirmedreservation for the playground?1

David gets a confirmed reservation if his update reaches the primary before any conflicting updates.

5. [7 points]: Section 3.3 of the DryadLINQ paper gives DryadLINQ’s implementation of MapRe-
duce. Name an optimization in Dryad that the original MapReduce doesn’t have that might give Dryad
better performance than MapReduce for the word frequency counting program you sketched for the
reading response question. Briefly explain how the optimization helps for this program.

Valid answers include any of the dynamic optimizations performed by DryadLINQ, except for re-
executing slow processes. (MapReduce mainly performs static optimizations.)

1P.S. Daycare won’t let us use it—sorry.

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 5 of 11

III Mutexes and condition variables

Cy D. Fect has implemented a simplified implementation of thelock server from Lab 1. In Cy’s version,
there’s a fixed table of 1024 locks; locks are never added or removed. Each lock has an associated condition
variablecv and a mutexmutex. There is also aglobal cv and aglobal mutex for the entire lock
server. Furthermore,acquire() andrelease() only take a single argument and don’t return a value.
class lock_server {

struct lock {
pthread_cond_t cv;
pthread_mutex_t mutex;
bool held;

} locks[1024];
pthread_cond_t global_cv;
pthread_mutex_t global_mutex;

public:
lock_server(); // initializes everything appropriately
void acquire(lock_protocol::lockid_t lid);
void release(lock_protocol::lockid_t lid);

}

Unfortunately, Cy is having trouble writing theacquire() andrelease() RPC handlers. For each
of the following implementations, explain what problems can be caused by the incorrect use of mutexes or
condition variables. If nothing can go wrong, simply write “CORRECT,” and if there are multiple problems,
describing one is enough. Ignore efficiency and issues like handling errors due to lack of memory; focus on
the correctness of the synchronization.

The first one has been done for you to give you an example of the kind of answer we’re looking for. To save
you time, the parts that vary from one question to the next have been highlighted; the other lines of code are
identical in all of the problems.

void lock_server::acquire(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
if (locks[lid].held)

pthread_cond_wait(&global_cv, &global_mutex);
locks[lid].held = true;
pthread_mutex_unlock(&global_mutex);

}

void lock_server::release(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
locks[lid].held = false;
pthread_cond_broadcast(&global_cv);
pthread_mutex_unlock(&global_mutex);

}

ANSWER:

INCORRECT
Thread A acquires lock 1.
Threads B and C try to acquire 1 and wait on globalcv.
Thread A releases lock 1 and broadcasts.
B and C both wake up, and both now think they own the lock.

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 6 of 11

6. [5 points]:

void lock_server::acquire(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
while (locks[lid].held)

pthread_cond_wait(&global_cv, &global_mutex);
locks[lid].held = true;
pthread_mutex_unlock(&global_mutex);

}

void lock_server::release(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
locks[lid].held = false;
pthread_cond_signal(&global_cv);
pthread_mutex_unlock(&global_mutex);

}

INCORRECT
Thread A waits for lock 1.
Thread B waits for lock 2.
Lock 1 is released, and thread B gets signaled, but sees lock 2is still held and waits again.
Thread A continues to wait even though lock 1 is free.

7. [5 points]:

void lock_server::acquire(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
while (locks[lid].held)

pthread_cond_wait(&global_cv, &global_mutex);
locks[lid].held = true;
pthread_mutex_unlock(&global_mutex);

}

void lock_server::release(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
locks[lid].held = false;
pthread_mutex_unlock(&global_mutex);
pthread_cond_broadcast(&global_cv);

}

CORRECT

It’s fine to callpthread cond broadcast() after releasing the lock. This just means that any
waiters will wake up slightly later; the important part is that the setting and checking of theheld
flag happens atomically. The example at the end of Section 5.3of the threading paper does this, too.

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 7 of 11

8. [5 points]:

void lock_server::acquire(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
while (locks[lid].held)

pthread_cond_wait(&locks[lid].cv, &global_mutex);
locks[lid].held = true;
pthread_mutex_unlock(&global_mutex);

}

void lock_server::release(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
locks[lid].held = false;
pthread_cond_signal(&locks[lid].cv);
pthread_mutex_unlock(&global_mutex);

}

CORRECT

This is similar to question 6, except that there is one condition variable per lock. It’s okay to use
pthread cond signal() here because there’s no chance of waking the “wrong” waiter.

9. [5 points]:

void lock_server::acquire(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
pthread_mutex_lock(&locks[lid].mutex);
while (locks[lid].held)

pthread_cond_wait(&locks[lid].cv, &locks[lid].mutex);
locks[lid].held = true;
pthread_mutex_unlock(&locks[lid].mutex);
pthread_mutex_unlock(&global_mutex);

}

void lock_server::release(lock_protocol::lockid_t lid) {
pthread_mutex_lock(&global_mutex);
locks[lid].held = false;
pthread_cond_broadcast(&locks[lid].cv);
pthread_mutex_unlock(&global_mutex);

}

INCORRECT
The thread callingacquire() waits onlocks[lid].cv while holdingglobal mutex, so
otheracquire() andrelease() operations are unable to proceed and the system deadlocks.

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 8 of 11

IV Entry consistency

Alice hears about a new consistency mode, called entry consistency. If a lockl protects shared dataD, then
entry consistency is defined as follows:

• An acquire ofl on processorp is not allowed to complete until all updates toD before the last release
of l are visible atp.

10. [4 points]: Write some pseudocode for a simple program that would operate correctly with
sequential consistency but incorrectly with entry consistency. (Briefly explain your answer.)

One example:
CPU 0:
foo = 42;
foo is set = true;

CPU 1:

while (!foo is set)
;

print foo;

Any program that is correctly annotated with locks will workwith entry consistency, so you had to
give an example that was not correctly annotated.

11. [4 points]: Give an example program that might induce less communication under entry consis-
tency than lazy release consistency. (Briefly explain why.)

In the following example, we have to send the updates for bothx andy from CPU 0 to CPU 1 in LRC,
whereas in entry consistency, we only have to send the updates fory.
CPU 0:
acquire(lx);
x++;
release(lx);
acquire(ly);
y++;
release(ly);

CPU 1:

acquire(ly);
y++;
release(ly);

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 9 of 11

12. [8 points]: Alice implements a protocol for entry consistency. Show themessages that Alice’s
protocol might send when a program acquires a lock. (Briefly explain how the protocol differs from
the one for lazy release consistency.)

The protocol is the same as LRC, except that there is a versionvector per lock, and onlyupdates
associated with the lock being acquired are transferred.

It occurs to Alice that she could make a distinction in operations that updateD and operations that only read
D by using reader/writer locks. If two operations take out a read lock for the same critical section, then both
operations can be executed in parallel. To take advantage ofthis, she defines reader/writer entry consistency.
The parts that differ from plain entry consistency are underlined:

• Before a lockl in write mode is granted to processorp, no other processor may holdl.

• An acquire ofl on processorp in read or write modeis not allowed to complete until all updates toD

before the last release ofl in write modeare visible atp.

13. [5 points]: Give a program that can induce less communication under reader/writer entry
consistency than under plain entry consistency, where all locks are treated as write locks. (Briefly
explain why this program introduces less communication.)

CPU 0:
acquire write(lx);
x++;
release(lx);

acquire read(lx);
print(x);
release(lx);

CPU 1:

acquire read(lx);
z = x;
release(lx);

This example can induce less communication in two ways. First, CPU 0 doesn’t need to send a vector
timestamp to CPU 1, since CPU 0 itself most recently releasedthe lock in write mode. Second, CPU 1
doesn’t have to send the new value ofz (which arguably should have been protected by a write lock
anyway.)

This optimization can be applied to LRC, too.

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 10 of 11

V Logging with checkpoints

14. [7 points]: In the Cedar system, the VAM updates are not recorded with write-ahead logging.
How is the content of the VAM recovered? After recovery, doesthe VAM have an accurate list of all
free disk blocks? (Briefly explain your answer.)

The VAM is reconstructed from the file name table, and is accurate after recovery. (Blocks referenced
in the file name table are marked allocated, and all other blocks are marked free.)

15. [7 points]: In FSD, creating a file might involve the following sequence of events:

1. An application callscreate(filename, file contents).

2. Cedar writes the data and leader pages to disk.

3. Thecreate call returnsOK.

4. Later, Cedar records the file name table changes in the log.

5. Cedar updates the file name table on disk.

6. The VAM is written to disk later when the system is idle.

Lem E. Tweakit thinks there is no need to write the data and leader pages synchronously, and modifies
Cedar so that creates result in the following sequence of events:

1. An application callscreate(filename, file contents).

2. Thecreate call returnsOK.

3. Cedar writes the data and leader pages to disk.(changed)
4. Later, Cedar records the file name table changes in the log.

5. Cedar updates the file name table on disk.

6. The VAM is written to disk later when the system is idle.

In Lem’s version of FSD, this order is always followed, the log is flushed just as frequently as before,
and everything else is the same. Give an example of what can gowrong with Lem’s modified FSD
that the original FSD handles correctly, or explain why Lem’s changes cause no new problems. Don’t
worry about concurrency, operations other thancreate, hardware failures, or bugs.

Lem’s changes don’t cause problems. A potential concern is thatcreate returnsOK before the data
and leaders are written, so if the system crashes before Step3 in Lem’s version, the file won’t be there
after recovery. However, this can happen in the original FSD, too!

The key insight is that Step 4, where the log record is written, is the commit point in both versions.
That is, if there is a crash before Step 4, the file will notbe present after recovery; if there is a crash
after Step 4, then the file willbe present after recovery. (Identifying where the commit point is is a
good way to understand any system that provides atomic updates.)

Name:



6.824 SPRING 2009, Quiz 1 Solutions Page 11 of 11

VI 6.824

16. [4 points]: Describe the most memorable error you have made so far in one of the labs. (Provide
enough detail so that we can understand your answer.)

Most common answers:

12 concurrency bugs (many of which were covered on the quiz!)
8 miscellaneous issues with STL
6 problems with FUSE

We would like to hear your opinions about 6.824, so please answer the following two questions. (Any
relevant answer will receive full credit!)

17. [3 points]: What is the best aspect of 6.824?

Most common answers:

31 labs
6 papers

18. [3 points]: What is the worst aspect of 6.824?

Most common answers:

11 issues with papers: too many (6), too old (2), other (3)
11 issues with labs: too open-ended (3), not enough comments(3), C++ / STL / RPC (3), other (2)
10 quiz

End of Quiz I

Name:


