Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Spring 2009

Quiz | Solutions

All problems are open-ended questions. In order to receiditcyou must answer the question
as precisely as possible. You have 80 minutes to answerufzs g

Write your name on this cover sheet AND at the bottom of eacgfe jdi this booklet.

Some questions may be much harder than others. Read thedmoaifjh first and attack them jin
the order that allows you to make the most progress. If youdiggiestion ambiguous, be surre
to write down any assumptions you make. Be neat. If we carderstand your answer, we can't
give you credit!

THISISAN OPEN BOOK, OPEN NOTESQUIZ.

I (xx/14) | 11 (xx/21) | 111 (xx/20) | 1V (xx/21) | V (xx/14) | VI (xx/10) | Total (xx/100)

Name:

Grade histogram for Quiz 1

max
median

= 100
= 67

= 66.8
= 16.2

6.824 SPRING 2009, Quiz 1 Solutions Page 3 of 11

| Remote procedure call

Ben Bitdiddle makes the following changes to your RPC clfemin lab 1:

Each time a request is retransmitted, he assigns it a nevesegumumber. His client remembers only
the most recent sequence number assigned to each RPC, areply avith an unknown sequence
number arrives, it is ignored. Additionally, the client antatically re-binds to the server if the server
crashes.

Then Ben modifies your RPC server to ignore all RPCs with aessoginumber less than or equal to the
highest sequence number it received from the same clierrs&dr example, if it receives a request with
sequence number 5 from cliedt it will ignore any subsequent requests it receives fréwith sequence
numbers less than or equal to 5. Note that the RPC clientan&mission code increases the timeout with
each retransmission, so RPCs will eventually completeeifsirver is up.

In the following problems, assume a single client with ormedld, and no crashes. However, the network
may drop, delay, duplicate, or reorder messages.

1. [7 points]: Recall that the SETATTR operation changes a file’s length gdhtes the modifi-
cation time, then returns the file’s new attributes. Explainv the behavior of SETATTR could be
different with the at-least-once RPC package the staffigenl/for Lab 1 versus Ben’s RPC package.

The SETATTR RPC may be executed more than once with bothtgpackdowever, Ben's package
guarantees that the value returned (and hence the modditétne) corresponds to the lastecution.

For example, suppose the client does a SETATTR followed b TAGIR on a file. If no other
clients modify the file, one might expect both calls to rethensame modification time, which is what
will happen with Ben’s RPC package. With at-least-once Rit@ever, SETATTR might return the
modification time from the firgif two executions of the call, in which case the subseque MAGER
will return a different modification time.

2. [7 poaintg]: Circle the FUSE operations below that can fail or producerirect results with Ben’s
RPC package, but work with your at-most-once RPC. Then lindeone and describe what goes
wrong with that operation.

LOOKUP READ WRITE MKDIR REMOVE

MKDIR and REMOVE might fail with Ben’s package because it camse duplicate requests to be
executed. When the server processes a duplicate REMOVEstedor example, it sees that the file
is already deleted and returns an error. LOOKUP, READ, andiV&are idempotent and therefore
don’t have this problem.

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 4 of 11

Il Short questions. Tra, Bayou, and DryadL INQ

3. [7 points]: On Monday, Alyssa and Ben fully synchronize their filesystemsing Tra. On
Tuesday, Alyssa makes some changes on her computer, anddme¥day, Ben makes some changes
on his computer. Then they fully synchronize again, and &ports no conflicts. Ben remarks that
the results are different than they would be if they had peréal the same operations on a shared
YFS server (with sequential consistency). Give a simplergta of operations Alyssa and Ben might
have performed to lead to this situation, and briefly explain

Here's a simple example:

Alyssa:.cp X y
Ben:cp y X

Suppos« originally contained' f 00" andy originally contained' bar " . The result with sequential
consistency ix="f 00" andy="f 00", but the result with Tra ix="bar " andy="f 00" .

The key point is that Tra only tracks write-write conflictsf read-write conflicts.

Some students found answers involving special cases wétedgebut it's more complicated to con-
struct an example where Tra doesn't report a conflict.

4. [7 points]: Suppose that while David is disconnected from the netwalydes Bayou’'s meeting
room scheduler application to reserve the Stata centegpdapnd for a 6.824 post-quiz party. MIT
Daycare reserves the playground for the same time slot, @ititen of them specify alternative times.
Under what specific circumstances would David get a confirmaedrvation for the playgrount?

David gets a confirmed reservation if his update reaches timgpy before any conflicting updates.

5. [7 points]: Section 3.3 of the DryadLINQ paper gives DryadLINQ’s impkamtation of MapRe-
duce. Name an optimization in Dryad that the original MaplReddoesn’t have that might give Dryad
better performance than MapReduce for the word frequenaptow program you sketched for the
reading response question. Briefly explain how the optitidnehelps for this program.

Valid answers include any of the dynamic optimizationsgraréd by DryadLINQ, except for re-
executing slow processes. (MapReduce mainly perforrris sfatimizations.)

!p.S. Daycare won't let us use it—sorry.

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page5 of 11

[l Mutexesand condition variables

Cy D. Fect has implemented a simplified implementation ofltio& server from Lab 1. In Cy’s version,
there’s a fixed table of 1024 locks; locks are never addedmoved. Each lock has an associated condition
variablecv and a mutexrut ex. There is also @l obal _cv and agl obal _nut ex for the entire lock
server. Furthermorgcqui r e() andr el ease() only take a single argument and don't return a value.
cl ass | ock_server {
struct lock {
pt hread_cond_t cv;
pt hread_mut ex_t nut ex;
bool hel d;
} | ocks[1024];
pt hread_cond_t gl obal _cv;
pt hr ead_mut ex_t gl obal _mut ex;

public:
| ock_server(); /1 initializes everything appropriately
voi d acquire(lock _protocol::lockid t lid);
void rel ease(l ock_protocol::lockid_t lid);
}

Unfortunately, Cy is having trouble writing trecqui r e() andr el ease() RPC handlers. For each
of the following implementations, explain what problems ¢ caused by the incorrect use of mutexes or
condition variables. If nothing can go wrong, simply wri@ORRECT,” and if there are multiple problems,
describing one is enough. Ignore efficiency and issues kkellng errors due to lack of memory; focus on
the correctness of the synchronization.

The first one has been done for you to give you an example ofitidect answer we're looking for. To save
you time, the parts that vary from one question to the nex¢ teen highlighted; the other lines of code are

identical in all of the problems.
void | ock_server::acquire(lock_protocol::lockid t lid) {
pt hr ead_mut ex_| ock(&gl obal _mut ex) ;
if (locks[lid].held)
pt hread_cond_wai t (&gl obal _cv, &gl obal nutex);
I ocks[lid].held = true;
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;

}
void | ock_server::rel ease(lock _protocol::lockid t lid) {
pt hread_nut ex_| ock(&gl obal _rut ex) ;
| ocks[lid].held = fal se;
pt hr ead_cond_br oadcast (&gl obal _cv);
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;
}
ANSWER:

INCORRECT

Thread A acquires lock 1.

Threads B and C try to acquire 1 and wait on glolad

Thread A releases lock 1 and broadcasts.

B and C both wake up, and both now think they own the lock.

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 6 of 11

6. [5 pointg]:

void | ock_server::acquire(lock_protocol::lockid t lid) {
pt hr ead_mut ex_| ock(&gl obal _mut ex) ;
whil e (1 ocks[lid].held)
pt hread_cond_wai t (&gl obal _cv, &gl obal nutex);
| ocks[lid].held = true;
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;

}
void | ock_server::rel ease(lock _protocol::lockid t lid) {
pt hread_nut ex_| ock(&gl obal _rut ex);
I ocks[lid].held = fal se;
pt hr ead_cond_si gnal (&gl obal _cv);
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;
}
INCORRECT

Thread A waits for lock 1.

Thread B waits for lock 2.

Lock 1 is released, and thread B gets signaled, but sees |kt held and waits again.
Thread A continues to wait even though lock 1 is free.

7. [5 pointg]:

void | ock_server::acquire(lock_protocol::lockid_ t lid) {
pt hr ead_mut ex_| ock(&gl obal _mut ex) ;
whil e (locks[lid].held)
pt hread_cond_wai t (&gl obal _cv, &gl obal nutex);
| ocks[lid].held = true;
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;

}
void | ock_server::rel ease(lock _protocol::lockid t lid) {
pt hread_nut ex_| ock(&gl obal _rmut ex) ;
I ocks[lid].held = fal se;
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;
pt hr ead_cond_br oadcast (&gl obal _cv);
}
CORRECT

It's fine to callpt hr ead_cond_br oadcast () after releasing the lock. This just means that any
waiters will wake up slightly later; the important part isahthe setting and checking of timel d
flag happens atomically. The example at the end of Sectioof & threading paper does this, too.

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 7 of 11

8. [5 points]:

void | ock_server::acquire(lock_protocol::lockid t lid) {
pt hr ead_mut ex_| ock(&gl obal _mut ex) ;
whil e (1 ocks[lid].held)
pt hread_cond_wait (& ocks[lid].cv, &global mnutex);
| ocks[lid].held = true;
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;

}
void | ock_server::rel ease(lock _protocol::lockid t lid) {
pt hread_nut ex_| ock(&gl obal _mut ex);
I ocks[lid].held = fal se;
pt hread_cond_si gnal (& ocks[1id].cv);
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;
}
CORRECT

This is similar to question 6, except that there is one comdivariable per lock. It's okay to use
pt hr ead_cond_si gnal () here because there’s no chance of waking the “wrong” waiter.

9. [5 pointg]:

void | ock_server::acquire(lock_protocol::lockid_ t lid) {
pt hr ead_mut ex_| ock(&gl obal _mut ex) ;
pt hread_mut ex_| ock(& ocks[Ilid]. nutex);
whi l e (1 ocks[lid].held)
pt hread_cond_wait (& ocks[lid].cv, & ocks[lid].nnutex);
| ocks[lid].held = true;
pt hr ead_mut ex_unl ock(& ocks[i d]. mutex);
pt hr ead_mut ex_unl ock(&gl obal _mut ex) ;

}
void | ock_server::rel ease(lock_protocol::lockid_ t lid) {
pt hr ead_mut ex_| ock(&gl obal _rmut ex) ;
I ocks[lid].held = fal se;
pt hread_cond_broadcast (& ocks[lid].cv);
pt hr ead_mnut ex_unl ock(&gl obal _mnut ex) ;
}
INCORRECT

The thread callingacqui r e() waits onl ocks[1i d]. cv while holdinggl obal _nut ex, so
otheracqui r e() andr el ease() operations are unable to proceed and the system deadlocks.

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 8 of 11

IV Entry consistency

Alice hears about a new consistency mode, called entry siemgly. If a lockl protects shared dafa, then
entry consistency is defined as follows:

e An acquire ofl on processaop is not allowed to complete until all updatesfivbefore the last release
of [are visible aip.

10. [4 points]: Write some pseudocode for a simple program that would operatrectly with
sequential consistency but incorrectly with entry corsisy. (Briefly explain your answer.)

One example:
CPU O: CPU 1:
foo = 42;
foo.isset = true;
while (!foo. s_set)
print foo;
Any program that is correctly annotated with locks will wawi¢th entry consistency, so you had to
give an example that was not correctly annotated.

11. [4 pointg]: Give an example program that might induce less communitatimer entry consis-
tency than lazy release consistency. (Briefly explain why.)

In the following example, we have to send the updates forbatidy from CPU 0to CPU 1in LRC,
whereas in entry consistency, we only have to send the upttate.
CPU O: CPU 1:
acquire(lx);
X++;
rel ease(l x);
acquire(ly);
y++,
rel ease(ly);
acquire(ly);
y++,
rel ease(ly);

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 9 of 11

12. [8 poaints]: Alice implements a protocol for entry consistency. Showrtlessages that Alice’s
protocol might send when a program acquires a lock. (Briefplan how the protocol differs from
the one for lazy release consistency.)

The protocol is the same as LRC, except that there is a vexgotor per lock, and onlypdates
associated with the lock being acquired are transferred.

It occurs to Alice that she could make a distinction in ogerat that updaté and operations that only read
D by using reader/writer locks. If two operations take outadrck for the same critical section, then both
operations can be executed in parallel. To take advantatpspshe defines reader/writer entry consistency.
The parts that differ from plain entry consistency are ulided:

e Before alockl in write mode is granted to procesggmo other processor may hald

e An acquire ofl on processop in read or write modés not allowed to complete until all updatesio
before the last release bin write modeare visible ap.

13. [5 pointg]: Give a program that can induce less communication underer&adter entry
consistency than under plain entry consistency, whereoells are treated as write locks. (Briefly
explain why this program introduces less communication.)

CPUO: CPU 1.
acquirewite(lx);
X++;
rel ease(l x);
acqui reread(lx);
zZ = X
rel ease(l x);
acquireread(lx);
print(x);
rel ease(l x);
This example can induce less communication in two wayst, ERBU 0 doesn't need to send a vector
timestamp to CPU 1, since CPU 0 itself most recently releétsetbck in write mode. Second, CPU 1
doesn't have to send the new valuezafwhich arguably should have been protected by a write lock

anyway.)
This optimization can be applied to LRC, too.

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 10 of 11

V Logging with checkpoints

14. [7 paints]: In the Cedar system, the VAM updates are not recorded wittevahead logging.
How is the content of the VAM recovered? After recovery, dibesVVAM have an accurate list of all
free disk blocks? (Briefly explain your answer.)

The VAM is reconstructed from the file name table, and is atelafter recovery. (Blocks referenced
in the file name table are marked allocated, and all other kdoare marked free.)

15. [7 paints]: In FSD, creating a file might involve the following sequenéevents:

An application callereat e(fil enanme, filecontents).
Cedar writes the data and leader pages to disk.

Thecr eat e call returnsCK.

Later, Cedar records the file name table changes in the log.
Cedar updates the file name table on disk.

The VAM is written to disk later when the system is idle.

o gk wnNPE

Lem E. Tweakit thinks there is no need to write the data anddiepages synchronously, and modifies
Cedar so that creates result in the following sequence ofteve

An application callereat e(fil enanme, filecontents).
Thecr eat e call returnsOK.

Cedar writes the data and leader pages to ¢stanged)

Later, Cedar records the file name table changes in the log.
Cedar updates the file name table on disk.

6. The VAM is written to disk later when the system is idle.

o s~ wnN P

In Lem’s version of FSD, this order is always followed, thg Ie flushed just as frequently as before,
and everything else is the same. Give an example of what cavrgng with Lem’s modified FSD
that the original FSD handles correctly, or explain why Legtianges cause no new problems. Don’t
worry about concurrency, operations other tieareat e, hardware failures, or bugs.

Lem’s changes don't cause problems. A potential concetmaictr eat e returnsOK before the data
and leaders are written, so if the system crashes before&tepem’s version, the file won't be there
after recovery. However, this can happen in the original F-&io!

The key insight is that Step 4, where the log record is writtetthe commit point in both versions.
That is, if there is a crash before Step 4, the file will hetpresent after recovery; if there is a crash
after Step 4, then the file wile present after recovery. (Identifying where the commiittgs is a
good way to understand any system that provides atomic epgdat

Name:

6.824 SPRING 2009, Quiz 1 Solutions Page 11 of 11

VI 6.824

16. [4 points]: Describe the most memorable error you have made so far infdhe t@abs. (Provide
enough detail so that we can understand your answer.)

Most common answers:

12 concurrency bugs (many of which were covered on the quiz!)
8 miscellaneous issues with STL
6 problems with FUSE

We would like to hear your opinions about 6.824, so pleasevanghe following two questions. (Any
relevant answer will receive full credit!)

17. [3 points]: What is the best aspect of 6.824?
Most common answers:

31 labs
6 papers

18. [3 paints]: What is the worst aspect of 6.8247
Most common answers:

11 issues with papers: too many (6), too old (2), other (3)
11 issues with labs: too open-ended (3), not enough comrt@n&++/ STL / RPC (3), other (2)
10 quiz

End of Quiz |

Name:

