
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.824 Distributed System Engineering: Fall 2007

Quiz II

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. This quiz is designed to be taken in80 minutes, but you can take 110.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you finda question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

I (xx/10) II (xx/15) III (xx/10) IV (xx/20) V (xx/20) VI (xx/20) VII (xx/5) Total (xx/100)

Name:



Grade histogram for Quiz 2

Average: 82.7



6.824 FALL 2007, Quiz 2 Page 3 of 11

I Logging

1. [5 points]: Why do Frangipani servers (as described in the paper “Frangipani: A scalable dis-
tributed file system” by Thekkath et al.) keep a private log inPetal? If a client creates a file, writes
some data, and then closes the file, what does Frangipani guarantee about the state of the file system
after recovery if a server fails during this set of operations? (Briefly explain.)

Servers keep a private log in Petal so that if they crash, another server can use that log to recover
the file system state being modified by the failed server. Frangipani guarantees nothing about the file
data, as this is not logged. It does guarantee that for the filesystem meta-data, all operations that
were written out successfully to Petal will be applied in thesame order they were executed in. But it
makes no guarantees about the atomicity of the operations.

2. [5 points]: The design of YFS is inspired by Frangipani, though it differs in several important
ways. For the same sequence of operations as in the previous question, what does YFS (as specified
through lab 8, not including any lab 9 extensions) guaranteeabout the state of the file system in the
presence of server failures? (Briefly explain.)

YFS guarantees nothing about the state of the file system after the crash, since there is no mechanism
for recovery. Furthermore, there’s not even a requirement that YFS store its data on disk, so an extent
server crash could wipe out all data.

Name:



6.824 FALL 2007, Quiz 2 Page 4 of 11

II Replicated state machine

Ben Bitdiddle observes that reading the list of servers thatconstitute the replication state machine from a
file is lame. He proposes that next year’s lab 7 use a plan that is simpler than Paxos but less lame than a
configuration file. Ben’s proposed plan is:

• As in lab 7, the replicated state machine has a master server that starts first. It assigns sequence
numbers to each client request to be processed by the serversin the replicated state machine. The
master processes a client’s request after all slaves have processed the request and then sends a response
to the client.

• When a new server starts, it joins the replicated state machine by sending a join request to the master.

• The master sends a join message to all the existing slaves in the replicated state machine. The master
stamps this message with the next unused sequence number (like other client requests) so that all
slaves can process the message in the same global order.

• The slaves process the join message when its turn in the global order comes up, and add the node to
the list of servers that constitute the replicated state machine. (Servers ignore duplicate join requests.)

• When all slaves have processed the join message, the master responds to the joiner with an OK re-
sponse, including the sequence number for the next message in the global order, a list of servers that
constitute the replicated state machine, and the master’s state.

• On receiving the response from the master, the joining server updates its list of nodes, initializes its
sequence number, installs the state, and listens for the next message in the global order from the
master.

• The master processes concurrent client requests serially.

• Failed servers (including the master) are handled as in lab 7.

Name:



6.824 FALL 2007, Quiz 2 Page 5 of 11

3. [8 points]: Assume server failures happen only between processing client requests (i.e., the master
processes each client request, including joins, successfully) and that network partitions don’t happen.
Is it important that the join messages are globally ordered with respect to other client requests? (Ex-
plain briefly.)

No, having join messages be globally ordered with respect tothe other client operations is not impor-
tant. By processing requests serially until they are completed, the master ensures that the messages
are processed in some global order, and by assumption in the problem statement the master cannot
fail while processing a request. This guarantees all slaveswill see the join before the master crashes.

4. [7 points]: In lab 8, failures (including network partitions) may happen at any time. Could we
have used Ben’s protocol in lab 8 to add new servers to the replicated state machine (instead of using
Paxos)? (Explain briefly.)

No. In this case, the master can die at any time, notably whileit is processing joins. Thus, a join mes-
sage could reach only a subset of the other replicas, which could result in the new master not having
learned about the new node (even though some other replicas may know about it). Furthermore, the
new node will not have gotten a response from the master, and will not believe it is in the current view
– even if some subset of the replicas have elected it master!

Name:



6.824 FALL 2007, Quiz 2 Page 6 of 11

III Two-phase commit

5. [5 points]: Argus (as described in the paper “Guardians and Actions: Linguistic Support for Ro-
bust, Distributed Programs” by Liskov and Scheifler) provides the programmer with a strong version
of at-most-onceremote method invocation: if the invocation times out or returns a connection error,
the program can be sure that the remote handler was not invoked. These semantics seem ideal but are
typically not provided by systems (e.g., YFS, Java RMI, Birrell RPC, etc.) because it is a challenge
for these systems to tell whether a remote server failed right before it processed a request or right
after. How did the Argus designers overcome this challenge and provide at-most-once RPC? (Explain
briefly.)

An RPC is implemented as a sub-action in Argus, so when the server side invokes the handler, any
effects on the object’s state are applied to a copy of the object. These effects won’t be committed to
the primary version of the object until the client receives aresponse and the top-level action commits.
If the reply doesn’t happen successfully for any reason, theRPC can abort and its effects will not be
seen by the program.

6. [5 points]: What is a down side of the Argus solution? (Explain briefly.)

This requirement makes Argus significantly more complex than a system like YFS, as the RPC layer
now must log state to disk, and have some way of rolling back changes on the receiver if the sub-
action fails to commit. There is also a performance hit, since an RPC now requires two rounds of
communication (the two-phase commit that implements the sub-action) rather than just one.

Name:



6.824 FALL 2007, Quiz 2 Page 7 of 11

IV Paxos

Attached as an appendix to the quiz is the pseudocode for the Paxos algorithm that you implemented in lab
8.

7. [7 points]: In phase 2 the leader must receive responses from a majority of nodes inviews[vid h].
Would responses from exactly half of the nodes inviews[vid h] be sufficient? (Give a brief ex-
planation and illustrate your answer with a scenario.)

There are two answers to this question: yes and no. If you assume that all phases can now proceed
after hearing responses from only half ofviews[vid h], then the answer is no, because the network
could partition the set of nodes in half, resulting in multiple leaders getting elected. If there are four
nodes in a system, and a network failure partitions communication such there are two groups of two
nodes each and the groups cannot communicate with each other, then both groups can elect separate
leaders since they each consist of half the nodes.
However, if you assume that phase 3 still requires a majorityof responses fromviews[vid h], then
it is fine to have fewer responses in phase 2. This will preventthe leader from being able to send out
decide messages, and will require Paxos to abort and restart.

8. [7 points]: Consider a round of Paxos initiated by a leader that wishes toadd a new node to the
current view. In phase 2, would it be sufficient if half of the nodes inviews[vid h] plus the new
member that will be part of the next view responded? (Give a brief explanation and illustrate your
answer with a scenario.)

No, the majority must be from the previous view. As in the “no”answer to the last question, a network
partition into two equal-sized groups would allow each halfto add a different joining node to its view,
if two nodes joined the network on different sides of the partition.

Name:



6.824 FALL 2007, Quiz 2 Page 8 of 11

9. [6 points]: In phase 1 why does the response to a prepare includesn a andv a? (Give a brief
explanation and illustrate your answer with a scenario.)

In phase 2, the leader must propose whatever value has been previously accepted in this Paxos round
with the highest sequence number (by invariant P2 in Lamport’s “Paxos Made Simple” paper). If the
previous leader dies without initiating phase 3, the next leader must propose the same value. However
it might only be able to learn about it from some other node during phase 1; thus the information must
be included in the response during phase 1.

Name:



6.824 FALL 2007, Quiz 2 Page 9 of 11

V SUNDR

10. [10 points]: The strawman design in the SUNDR paper (“Secure Untrusted Data Repository” by
Li et al.) stores fetch operations in the log (which don’t modify data). Why are the fetch operations
stored in the log? Give a brief explanation and illustrate your answer with an attack that will violate
fork consistency if SUNDR didn’t store fetches in the log.

If SUNDR didn’t store fetch operations, then modify operations that depend on a previous fetch
operation could be merged into the view of a client that may have previously seen a different fetch
operation. Here’s a specific example:

– File F1 has been modified twice: F11 and F12.

– Client C1 fetches F11.

– Client C2 fetches F12.

– Client C1 modifies F1, creating version F13.

– Client C2 fetches F13.

The problem here is that C1 and C2 were forked (which is allowed) when the server showed them
different versions of the file, but by the end they are merged back together again. Thus when C2 reads
the version of the file, it has no idea that C1 has made its modifications based on the old version of a
file, and this violates fork consistency.
One common incorrect answer stated that the server could show a client version 2 of the file, and then
at some later point in time show the same client version 1 (if there were no intervening writes). This
is simply a fork attack, but from the point of a view of a singleclient (imagine the client rebooted and
lost all state between the two fetches).

11. [10 points]: Clients in the strawman design sign new log entries. This signature covers all the
previous entries that the new entry depends on. Why are entries signed? Why does the signature cover
preceding entries? Give a brief explanation and illustrateyour answer with an attack that will violate
fork consistency if SUNDR’s signatures didn’t cover preceding entries.

Entries are signed to guarantee that the client created the entry, and that it has not been forged
by the server. The signature covers preceding entries so that clients can detect whether the server
subsequently drops any entries from the log – this would cause the signature on entries following the
missing entry to be incorrect, and thus the client would knowthat the server is cheating.

Name:



6.824 FALL 2007, Quiz 2 Page 10 of 11

VI BFT

Phil Tollerenz thinks the Practical BFT algorithm (as described in the paper “Practical Byzantine Fault
Tolerance” by Castro and Liskov) is too heavyweight, and looks for some optimizations. He wants to
toleratef Byzantine failures, and he plans to run it on a lossy network that can arbitrarily re-order and delay
messages.

12. [10 points]: Phil’s first thought is that a majority of correct nodes should be sufficient for
agreement, and ponders running his system with only 2f+1 replicas. Briefly explain how this could
lead to incorrect behavior.

Nodes that exhibit Byzantine failures can decide to arbitrarily delay their responses, or decline to
respond at all. Since BFT is designed to run in an asynchronous network, it is impossible to tell
network delays apart from these Byzantine failures. Thus, in order to toleratef actual failures, BFT
needs to be prepared to handle an additionalf network delays. Therefore, it requires 3f+1 replicas.
Imagine thatf = 1, so that with Phil’s change there would be 3 nodes in the system (A, B, and
C). If the network delays the response from C for an arbitrarily long time, and B is malicious, then
no quorum of non-Byzantine nodes is possible, even though there are onlyf Byzantine failures in
the system. Note that A cannot tell that C is not maliciously withholding its response, so from A’s
perspective it is entirely possible that B is acting Byzantine.

13. [10 points]: Phil wonders whether he can safely save bandwidth by eliminating any all-to-all
communication in the BFT protocol. Instead of having a replica broadcast its messages to all other
replicas in the system, it will send its messages only to the primary. Briefly explain how this could
lead to incorrect behavior.

If the master acts maliciously, it could easily hide responses from some of the replicas when it starts
the next round of the protocol. If the replicas never communicate with each other correctly, there is
no way for them to identify that the master is misbehaving.

Name:



6.824 FALL 2007, Quiz 2 Page 11 of 11

VII 6.824

14. [3 points]: Katabi et al. describe their experiences with a distributedfile system in the Ana-
logicFS paper; however, in many ways YFS is a much more real system than AnalogicFS, which has
been widely regarded as “fake” by its many critics. What haveyou learned from building YFS that
less experienced programmers like Leopold Katabi and Rudy Rhea might miss out on?

To quote one student’s response: “Something tells me that even with all their impressive talk, Katabi
et al. don’t have any real code to show for it.”

15. [2 points]: Did you learn anything in 6.824? Please give a score on a scalefrom 0 (nothing) to
10 (more than I had hoped for), and briefly explain.

11.

End of Quiz II—Enjoy the break!

Name:


