
Aspen: Buy and Sell Spare CPU Cycles

Sam Davies, Martin Ouimet, Reuben Sterling
{sdavies, mouimet, benster} @mit.edu

Abstract— We describe a system that allows computer
owners who have unused cycles to rent out their machines
to people who want to run many computational jobs. The
system is designed to run 1-2 hour jobs with deterministic
results that do not require intermediate communication
between nodes or computation checkpoints. 1) We in-
troduce a payment and accounting scheme according
to a simple measure of worker machine quality: the
speed of computing jobs, 2) we implement policy to
detect cheating workers, 3) we safely handle worker
node failures through replication jobs across multiple
machines, 4) we allow untrusted CPU owners to modify
their worker client code, and 5) we check the correctness
of clients by comparing replicated results.

I. I NTRODUCTION

Aspen allows people in need of extra computing
resources to purchase computing time from other com-
puter owners. Typical uses of computing resources in-
clude Pharmaceutical research [8], indexing algorithms
[2], and machine learning [9]. Organizations involved
in this type of research could benefit from a need-based
computing grid [8].

Unlike other grid computing initiatives, Aspen en-
ables any computer owner to make his or her computing
resources available to anyone who needs extra re-
sources. Computer owners receive financial compensa-
tion in exchange for completing computations requested
by those in need of computing resources. Aspen creates
a free market for the exchange of computer resources,
where sellers and buyers set their own prices based on
the quality of the resources they offer or require.

Although many examples of grid computing ex-
ist today, they are limited in scope. Projects like
SETI@home [13] only benefit one organization and
require charitable users to offer their spare resources for
free. Projects like PlanetLab [12] make computation re-
sources available to the general population, but offer no
financial incentive to project participants. Furthermore,
PlanetLab operates in a community model and requires
users of resources to contribute to the resource pool
by offering their own computation resources. Aspen
is unique because it provides a financial incentive to
users who contribute computation resources and allows

any user with money to benefit from those available
resources.

Aspen is intended to facilitate distributed processing
of computations that are easy to parallelize. That is,
Aspen works best with computations that can be broken
down into small jobs whose results can be computed
solely as a deterministic function of their arguments.
For example, Aspen makes it easy for programmers
to distribute to different computers computations per-
formed inside the body of a loop. The types of com-
putations that are suitable for Aspen require that each
parallelizable unit of computation be deterministic and
run long enough to justify the overhead of network
communication.

Offering financial compensation to CPU owners in-
creases the potential computational resources, but adds
new challenges to the system; for example, there is a
substantially higher motivation for sellers to try to cheat
the system; Aspen detects cheaters by replicating jobs
and comparing the results and the completion times of
each job. Furthermore, Aspen has a responsibility to en-
sure that buyers of computing resources receive the re-
sources they are paying for. For example, the purchased
resources could potentially degrade over time; when
the system slows down, whether it is due to network
latency, load on the seller’s machine, or intentional
seller cheating, Aspen uses benchmark testing to detect
the performance degradation and to take corrective
action. In the event that a purposeful slowdown by the
seller (to earn more money) is detected, Aspen will not
charge the buyer of the resource and will not pay the
seller.

This paper is divided into 11 sections. The Goals sec-
tion identifies the key problems that Aspen addresses.
The Design section explains the main functionality of
the Brokerage System and Runtime Architecture and
specifies how parties on either side can participate in
the Aspen project. The Goals Revisited section explains
how the presented design meets the stated goals. The
Alternative Designs section lists a few of the alternate
approaches that were considered and explains why the
chosen approach is superior to the alternatives. The
Relevant Work section situates the contribution of the

Aspen project in relation to existing grid computing
projects. The Future Work and Conclusion sections
summarize the contributions of the Aspen project.

A. Terminology

This paper uses the following terms:
Consumer: A machine that must execute a large

suite of parallelizable jobs, has inadequate computation
resources, and requires other machines to perform its
computations in a timely manner. The consumer owner
wants to execute the aggregate computations faster than
his resources allow, and is therefore willing to pay
money for extra computation resources.

Worker: A machine that owns excess computational
resources and makes those resources available to con-
sumers. The worker owner offers his machine’s re-
sources to the Aspen community for a specified mini-
mum hourly price.

Job: A job is the smallest unit of computation on
Aspen and runs on a single machine. A consumer’s
parallelizable computation will be broken down into
many jobs. Jobs must be deterministic, and therefore
may not make use of sources of randomness such
as random number generators or multiple threads. We
introduce this restriction because Aspen uses redun-
dant computations to ensure correct results. A job is
expected to run on the order of 1 or two hours. A
Consumer is likely to run many jobs as part of a single
large computation. A simple example of this is style of
computation is the ”map” function [2] which applies
a single function to each item in a list and produces
a list of results. Aspen allows parts of the list to be
sent to different machines so that the function may be
run in parallel before the results are collated on the
consumer’s machine.

Aspen: In the context of the Aspen system design, the
term Aspen refers to one or more servers that, under the
control of the Aspen project, distribute jobs to workers,
return results to consumers, manage executing jobs, and
handle financial transactions.

Aspen System: The term Aspen system encompasses
the entire computation network, including Aspen, all
workers, and all consumers.

II. GOALS

In light of the enumerated challenges, Aspen seeks
to fulfill the following goals:

A. Make spare computing resources generally avail-
able, cost-effectively

Aspen should enable anyone with a fast and reliable
Internet connection to rent out spare CPU cycles. Fur-
thermore, it should allow anyone with a credit card or
a Paypal account to use these resources. The payment
to the Worker should cover at least the cost ofInternet
connectivity and the cost of electricity while Aspen is
using the system. The pool of resources Aspen offers
should be attractive and affordable so that running
computations through Aspen is a viable alternative to
running computations locally. We include in this cost
the extra effort necessary to modify existing code to
use the Aspen system.

B. Operate with untrusted Workers

Because Aspen allows any Worker to join the Aspen
system, Aspen does not have any control over a given
Worker machine. As a result, Aspen cannot trust that
all Workers will return the correct results of a compu-
tation. Furthermore, Aspen cannot trust that a Worker
is executing a given computation at the agreed speed.
Aspen should assume that the client software on some
workers could be incorrect. Aspen should detect faulty
or cheating workers and deal with them appropriately.

C. Operate reliably in a dynamic environment

Because Aspen does not have full control over
a given Worker machine, Aspen cannot ensure the
availability and reliability of a given Worker. It is
quite likely that the available resources of a Worker
will vary depending on a variety of factors (time of
day, machine load, network state, etc.). Aspen should
be able to operate reliably in the face of dynamic
Worker behavior. The dynamic Worker behavior takes
the form of failures and degraded resources. Aspen
should gracefully handle these situations and still return
the appropriate computation results to the Consumer.

D. Meet Consumers’ pricing and timing constraints

Because Consumers will pay money to execute com-
putations through Aspen, Aspen should ensure that
Consumers get what they pay for. Consumers should
be able to specify the speed of the machine they want
to use and the maximum price that they are willing
to pay. Aspen should ensure with high probability that
Consumers are indeed given the appropriate resources
and that Consumers are charged only for utilizing
resources that meet their speed and cost specifications.

Fig. 1. The life-cycle of an Aspen job, computing f(x). 1. The
consumer sends f and x to Aspen. 2. Aspen forwards copies to two
workers. 3. The workers send back y, the result of computing f(x).
4. Aspen forwards y back to the consumer.

III. D ESIGN

A. Introduction to Aspen

We now describe our system, Aspen, which meets
the above goals. The life-cycle of a job in the aspen
system is as follows. 1. A consumer owner decides to
run a computation job. She sends the binaries and the
data to Aspen. 2. Aspen replicates the job on two or
more worker machines which then perform the actual
computational work. 3. Aspen receives the results from
the workers. 4. Aspen returns the results back to the
sender. From the Consumer’s perspective, Aspen acts
as a black box computing engine. It hides all of the
details of worker tracking, cheating detection, and fault-
tolerance from the consumer.

B. Nature of Computations suitable for Aspen

Aspen is tailored for particularly simple distributed
computations that can be divided into a number of mod-
ular jobs. Each job must have the following qualities:

1) The time spent transmitting data and code should
be small compared to the time spent perform-
ing the computation. This requirement limits the
size of the combined consumer data and code.
If the combined size is too large, the network
bandwidth becomes the bottleneck, rather than
the actual computation.

2) Jobs must be computable independently, without
communication back to the consumer or any other
worker. Worker code does not send communica-
tion over the network until the job is finished
computing.

3) Jobs are deterministic. That is, the code defines a
pure function from each argument to one correct
result. We do not allow access to sources of
randomness such as accesses to the system clock
or multiple threads.

4) Jobs are relatively short. The longer a job
takes, the more susceptible it is to network or
worker failure. We therefore restrict maximum
job lengths to around 1 or 2 hours.

C. Market

Aspen creates a free-market for the rental of com-
putation. Workers advertise their speed and minimum
hourly wage. Consumers set price and speed constraints
that guide Aspen in selecting computers to run their
jobs. Aspen selects Workers based on the Consumer’s
constraints and those required by Aspen’s design goals.
Constraints specified by the Consumer are maximum
price and minimum speed.

D. Bundling Resources

Workers have many properties that may contribute
to the speed of a computation. Some properties vary
with time (such as CPU load and network usage),
while others vary with hardware (such as memory, CPU
architecture, cache size, etc.). Still other properties vary
in their mean time to failure. Due to these variations, it
is not always correct to say that one machine is faster
than another–for example, certain computations may
be sensitive to cache size, while other computations
may require high network overhead. The Aspen project
endeavors to bundle all of these variations into a single
quality metric to evaluate and compare workers on a
linear scale. We arrive at this evaluation by averaging
the result of a diverse and representative set of bench-
mark jobs.

In the Aspen model, the basic unit purchased by
a Consumer is an hour of computation on a single
Worker. However, consumers need not purchase exactly
one hour of resources; instead, when a Consumer sends
a job to the Aspen, he agrees to pay a certain hourly
wage, prorated depending on the job’s completion time.

E. Market Value

The market value of a Worker is based on the
computational speed of the Worker. The higher the
computational speed of a computer, the higher a price
its resources will fetch in the open market.

Aspen’s design is built around the potential for
untrusted workers, possibly running modified source
code. Consequently Aspen cannot rely on the Worker to
accurately report its own CPU speed or quality rating.
To achieve good estimates on both these values, Aspen
uses trusted external observations.

CPU speed is measured using benchmarking. When
a user initially registers his machine to be an Aspen

Worker, Aspen sends the machine a series of unfamiliar
benchmark jobs to test its performance. Aspen checks
that the Worker returns correct values. Based on the
latency of the benchmark jobs relative to the latency
of the same jobs run on a local machine of known
speed, Aspen estimates the effective CPU speed of
the Worker. At this point, the CPU owner enters a
contractual agreement to provide this same level of
computational power to consumers. Over time, if Aspen
detects that a Worker is offering resources that do not
meet the contractual agreement (for example, due to
a heavy local CPU load), Aspen reserves the right to
revoke payment for a job.

During benchmarking, it is in the Worker owner’s
best interest to demonstrate his machine’s true poten-
tial because of Aspen’s competitive incentive scheme,
which will be described in section III-F.

As a Worker continues to run jobs for the Aspen
system, Aspen will periodically re-benchmark workers
by replicating jobs on a local, trusted machine of known
speed, and comparing the untrusted Worker’s actual
execution time with its expected execution time.

A variety of events may occur to cause an assigned
job to fail: Worker crashing, network partitioning, or
cancellation of a job by a Worker’s owner. Aspen
records all node failures that it observes. When adver-
tising the quality of a machine to Consumers, Aspen
takes into account the machine’s mean time to failure.
Failure-prone machines are likely to contribute to job
slow-down just as slow machines are.

F. Worker Incentives

Aspen’s goal of timely execution and accurate pric-
ing requires that Workers execute code at the speed they
have agreed upon. Aspen tries to guarantee that Workers
abide by their agreement by paying Workers according
to a competitive incentive system. As described in
section III-A, all jobs run in Aspen are replicated on
at least two machines, one of which may be a local,
trusted, Aspen machine. The payment incentive system
works as follows:

If the replicated job is run on an Aspen-owned
machine:

1) The length of the job, with units in standard CPU
cycles, is estimated byL = tb ∗ sb, wheretb is
the length of time in hours taken by the Aspen
benchmarker machine to complete the job, andsb

is the estimated standard CPU speed of the Aspen
machine in standard cycles per hour.

2) The effective CPU speed of the Worker is calcu-
lated by sw = L/tw, whereL is the estimated
length of the job calculated in step 1, andtw is
the time the Worker took to complete the same
job.

3) The effective CPU speed of the Worker is com-
pared against the Worker’s advertised CPU speed.
If the Worker’s effective CPU speed is substan-
tially slower (15%) than the speed recorded
during benchmarking, the Worker does not get
paid for completing that job.

If the replicated job is run on another Worker:

1) In this scenario, both machines are untrusted, so
we must to choose one of them to consider as the
”trusted” machine, against which we can make
comparisons.

2) For both Workers, we calculateL = tw ∗ sw.
3) We select the computer which yielded the smaller

L (the lower amount of standard CPU cycles)
as our trusted computer. The other computer is
compared against the trusted one. IfLnotrust is
within 15% ofLtrust, then we pay both Workers.
If not, only the ”trusted” worker gets paid.

Using this comparison strategy, we provide an in-
centive for Workers to not overestimate their effective
CPU speed. It is in the Worker’s best interest to provide
a realistic account of his resources. Complications that
arise from this incentive system are addressed in section
III-G.

G. Detecting Cheaters

Because there is real money at stake, and because
we allow modified worker implementations, we must
be prepared for the possibility that workers may try to
cheat. A worker may try to cheat the system either by
(1) speeding up jobs that it believes are benchmark jobs
(thereby improving its published speed rating), or by (2)
slowing down jobs that it believes are not benchmark
jobs (thereby making Aspen think that the jobs took
longer than they actually should have).

A worker may speed up its benchmark results by
simply making up a return value and returning it as
fast as possible. To prevent this style of cheating, we
compare the deterministic results of jobs replicated on
different machines. If the replicated results differ, some-
thing must be wrong. If this situation is encountered,
Aspen will have to replicate the job on another external
machine or on an internal trusted machine to determine
the culprit. Once Aspen determines which worker is

Fig. 2. Worker compensation vs. worker speed. If the worker runs
jobs faster than its agreed speed dictates, the jobs will appear shorter
and the Worker will be compensated less (because he performs
less work). If a worker W1 runs a job significantly slower than its
agreement specifies (according to a threshold set by Aspen), then
another worker, W2, running a replication of the same job will
complete sooner (with respect to its own speed). This allows Aspen
to determine that W1 either has a loaded CPU or that he is cheating.
W1 should therefore receive no compensation.

responsible, it records the suspicious behavior, and does
not pay the Worker for the job.

Non-benchmark jobs take an unspecified amount of
time to execute. Aspen cannot trust the consumer to
tell us how long their job should take (they might
have made a mistake while analyzing their code, or
they might be trying to cheat). Furthermore, the halting
problem states that it is provably impossible to predict
the running time of an arbitrary program. Since Aspen
cannot afford to run every job on its own trusted
machines, Aspen must place some trust that the workers
will execute jobs at the agreed speed. However, Aspen
has a strategy to detect intentional or unintentional
worker slow-down.

As seen in Figure 2, and described in III-F Aspen
provides an incentive for workers to operate at the
speed they have agreed to during benchmarking. For
example, if a job takes 1 hour to complete on worker
W1, a 1 GHz machine, and it takes 2 hours on W2,
a 250 MHz machine, then Aspen knows that W1 ran
half as fast as it could potentially have run (assuming,
of course, that W2 was running at its agreed speed). It
must therefore be the case that W1 had a loaded CPU
or that the owner was intentionally cheating with an
altered worker implementation. In either case, W1 will
not be compensated for its work.

The speed of a worker is inherently variable due
to many different factors: a worker’s CPU load and
network bandwidth fluctuates over time, instructions
execute at different speeds on different CPU architec-

tures, workers may have different amounts of pageable
disk space, memory, and cache. We therefore introduce
a threshold to account for this variability. The threshold
defines the minimum acceptable speed of a worker in
comparison to its agreed speed.

However, due to this threshold, it is possible for a
worker to abuse the system if it knows the threshold,
by slowing down just enough to still be acceptable
(say 15%). If all registered workers behaved this way,
it would be possible for the system to undergo a
simultaneous slow-down creep. Aspen prevents this
instability by randomly choosing some jobs to run on
trusted Aspen-owned machines to determine the true
job length. While some workers may get away with
gaming the system for a short period of time, they do
not know when we may choose to verify their behavior,
and the odds are that they will eventually get caught.

H. Fault Tolerance

Aspen operates across an unreliable network with
unreliable machines. Furthermore, the owners of worker
machines may decide to temporarily disable the worker
client code (for example, when they are using their
machine for their own purposes). Aspen must therefore
be tolerant of workers who come and go. To accomplish
this, Aspen tracks the status of workers by pinging them
periodically. If a worker becomes unreachable for a
few minutes while running a job, Aspen assumes it has
failed, starts a new replication of the job, and does not
pay the failed worker.

Since workers may fail at any time, it is difficult to
guarantee the running time of a job. Though Aspen
does not know the expected running time of a job,
the consumer may have expectations about the total
running time. To try to keep jobs on time, Aspen must
keep track of worker reliability. Ultimately, Aspen’s
perceived usefulness will be affected by the reliability
of its workers and Aspen’s ability to handle unreliable
workers.

IV. GOALS REVISITED

A. Make spare computing resources generally avail-
able, cost-effectively

The purpose of this goal is to open Aspen to a large
pool of potential workers, and to allow anybody to be
a consumer. We can safely say that the current Aspen
model enables this type of open community. Further-
more, the free-market guarantees that prices will settle
in a fair range for both Consumers and Workers. In the
ideal market system, Workers would behave in such a

way as to become as attractive as possible to potential
Consumers. Consumers will likely be more interested
in paying Workers more if they have a higher guarantee
of expected performance on the Worker’s part. Aspen
tracks the historical behavior of each Worker and weeds
out any Workers that do not comply with their agreed
speed. It is not clear what the actual prices will be and
we certainly anticipate that the prices will vary based
on the type of Consumer and the type of computation
he/she would like to perform. Nevertheless, the free
market system will ensure that Workers will not be
utilized at a rate under the minimum rate they specify.
Furthermore, Aspen guarantees that Consumers will not
pay for resources that do not meet their specifications.
As both parties settle into an equilibrium that makes
both of them happy, the resulting cost should be cost-
effective with regards to each party’s expectations.

B. Operate with untrusted Workers

Since any computer is eligible to be a worker, Aspen
must be able to handle unexpected Worker behavior.
The unexpected behavior can take the form of cheating
by falsifying results and/or cheating by not adhering
to the original performance agreement. Aspen is able
to detect cheaters by replicating jobs on more than
one Worker and by replicating jobs on a trusted Aspen
machine. While complete cooperation between Workers
might enable Workers to cheat, periodic replications on
trusted Aspen machines will readily catch any cheaters.
Aspen’s competition-based incentive, however, makes
it in everybody’s best interest to play by the rules.
The replication approach enables Aspen to assume
nothing about new Workers, and it opens the possi-
bility that a Worker can completely rewrite the Aspen
Worker code. Furthermore, running benchmarks that
are indistinguishable from actual computation jobs will
enable Aspen even more enforcement capabilities. We
certainly hope that Workers will understand that they
cannot gain an advantage by cheating (quite the con-
trary) and that they can profit by playing by the rules.
If the enforcement works well enough and cheaters are
readily caught, honesty should prevail in the system,
further encouraging fair play.

C. Operate reliably in a dynamic environment

Because Workers aren’t trusted, Aspen must also be
able to deal with unexpected behavior that is unrelated
to cheating. Because Aspen does not control the Worker
machines, Aspen has no guarantees about the network
reliability and the ”up time” reliability. Consequently,

Aspen must deal with potential job failures due to
Worker failures or network failures. With the constant
pinging of Workers, Aspen keeps a clear picture of
which Workers are up/down and which Workers are
idle/busy. Aspen can easily detect that a Worker has
gone down. The failure tolerance scheme enables Aspen
to use replication and to recover from failed Workers.
The failure tolerance happens transparently from the
Consumer’s point of view. Restarting jobs should not
be too costly because of the nature of computations
performed in Aspen (lost work will be at most 1 hour).
In the case of restarting a job, a Worker crash is the
responsibility of the Worker and hence the Consumer
will not be charged for the running time before the
failure occurred.

Another important source of dynamic behavior is
the changing load on the Workers. Aspen can once
again detect that a Worker is not meeting its advertised
performance through replication. Aspen will also ensure
that a Consumer is not being charged for computing
resources that do not meet her specifications. Further-
more, by keeping a trust rating of Workers over time,
Workers who constantly fail to meet their advertised
performance and/or Workers who have demonstrated
poor reliability will become quite unattractive. The
free market system will drive those Workers down and
eventually their usage will become quite rare.

D. Meet Consumers’ pricing and timing constraints

Meeting the above three goals directly enables cer-
tain guarantees within Aspen. The final goal deals with
guaranteeing certain properties of the computation to
the Consumer. Because of the nature of the system,
Aspen will never be able to give 100% guarantees about
the performance or reliability of Workers. However,
through replication, fault-tolerance, cheating detection,
performance tracking, and compensation based on fair-
play, Aspen can achieve a high level of predictability.
The level of predictability will increase with the matu-
rity of the system. Aspen can guarantee that Consumers
will not pay for computations that have not completed
and for workers that do not meet a Consumer’s speed
specifications. As the system matures and as Consumers
become more sensitive to how long they expect their
computations to take, we envision that Aspen will be
able to fully guarantee that those expectations will be
met.

V. USABILITY

For Aspen to succeed, it is crucial that the system
be conceptually simple and easy to use for both the
consumers and workers.

A. Consumer

The consumer must be able to parallelize her code in
an intuitive and partially automated way. The following
code samples provide an example of the manual source
code modifications that are required to run code in
Aspen.

Old Code:

Compute c = new Compute();
// Each loop of this ’for’ block
// could be computed in parallel,
// but is currently serialized.
for(int i=1;i<xs.length;i++) {
ys[i] = c.f(xs[i]);

}

Command line:

aspenize
-source_class=Compute
-source_function=f
-target_class=Compute_aspen
-target_function=aspen_f

New Code:

import Aspen.*;
...
Aspen.authenticate("username",
Aspen.passwordPrompt());
// Will pay 4 cents per hour
Aspen.setMaxPrice(0.04);
// Should be at least as fast as
// on a 1 GHz CPU
Aspen.setMinSpeed(1.0);
//instantiate the "aspenized" class
Compute_aspen c = new Compute_aspen();
// Method call replaces the entire
// for’ loop in the original code
// Entire arrays are used as argument
// and return value.
ys = c.aspen_f(xs);

The old code sample simply loops over an array
of arguments, applies a function to these arguments
locally, and stores their results in another array. The
command line produces a new class, Computeaspen,

that extends Compute and has a new method aspenf().
This class automatically handles the details of sending
new jobs to Aspen and collating the results as they
return. In the new code, the consumer must authenticate
herself to Aspen with a username and password. She
must also specify a maximum acceptable price per
CPU-hour and minimum acceptable execution speed.
Aside from these changes, however, the consumer can
leave the rest of the code completely unchanged.

1) Debugging: Despite developers’ best testing ef-
forts on their local machines, unexpected errors are
bound to occur on remote machines. For example,
code that runs smoothly on a Consumer machine might
attempt operations that are restricted by the security
policy of a Worker machine (like disk access). Aspen
assists the software developer in correcting such errors
by propagating any exception or error thrown during
the execution of the code back to the Consumer.

B. Worker

In order for Aspen to succeed, it must be very easy
for CPU owners to participate. For that reason, instal-
lation and setup of the aspen worker client program
should be extremely simple, and the software should
require little or no user interaction. At installation time,
a CPU owner need only register their payment infor-
mation and their minimum desired hourly wage. After
installation, the client program will be automatically
started each time the machine reboots. Jobs that meet
the minimum hourly wage requirement will be started
without user intervention on the Worker machine. Fur-
thermore, the Aspen job will run as a low priority
process with limited memory resources, so that it will
not significantly hinder the regular availability of the
CPU to its owner. Aspen tracks the history of jobs that
were run on each Worker and keeps this information in
persistent storage. Worker owners are given access to
this information through the Aspen website.

VI. SECURITY

The notion of security in the Aspen system is very
broad. Each type of participant in the Aspen system
has different needs and expectations of what kinds of
assurances the system should provide.

A. Worker Security

Any situation where a machine runs foreign code
from untrusted sources creates critical security con-
cerns. Unrestricted foreign code could create, delete
or modify arbitrary files, generate unreasonable net-
work traffic, or even install unwanted software. Even

non-malicious code might accidentally corrupt memory
or files, hog processor cycles, or throw up dialog
boxes. Our system must give Workers a high level
of confidence that the arbitrary code they accept from
Consumers cannot harm their system or inconvenience
them in any significant way.

We handle such concerns in several ways. First,
Consumer code is run at a low priority so that its exe-
cution cannot usurp the host machine’s CPU resources.
Second, the foreign code only has access to a limited
memory address space. Next, we ”sandbox” the foreign
code so that it has very few system privileges. In our
prototype implementation, foreign code running on a
Worker is restricted to accessing and processing its
allocated memory, and returning a result. The code may
not access the disk, communicate across the network, or
utilize the GUI. Thus, the Worker may be assured that
foreign code may not cause damage to the machine or
usurp its resources beyond what is explicitly allocated.

A Worker would like to be assured that he is properly
compensated for any work he performs. Since the
Worker must trust Aspen to properly pay the Worker for
computation, the risk exists that a malicious third party
might try to fool the Worker into doing illegitimate
work without compensation. Aspen solves this problem
by implementing an authentication and authorization
certificate scheme between the Aspen servers and the
Worker. Workers will only accept connections from an
authenticated Aspen server and will only execute code
that has been signed by Aspen.

A Worker should also be somewhat concerned about
other machines claiming to be the Worker. Although a
Worker would not care if another machine performed
work for which he was being compensated, a malicious
machine might want to cause the Worker to have a
low rating by drawing jobs away from the Worker and
purposely failing to return results. Because of such
possibilities, the Worker may also wish to authenticate
himself to Aspen before he can receive a job.

B. Consumer Security

The Consumer has significantly different security
expectations than the Worker, since he is not exe-
cuting foreign code or receiving compensation. Since
a Consumer pays for each job he sends through the
Aspen system, he would like to be assured that no
other Consumer may spoof his identify and solicit
computation time with his money. To prevent such
spoofing, all jobs sent from a Consumer are qualified
with a username and password, which the user sets up

when he first registers with Aspen.

VII. PAYMENT SYSTEM

Aspen acts as a broker between private parties look-
ing to exchange money for services. Financial transac-
tions do not occur directly between the private parties,
but rather between the private parties and Aspen. Aspen
distributes income received from Consumers among
Workers, thereby hiding the source of the money. Aspen
takes a cut of all money traveling through its hands as
its source of income.

A Consumer owners may provide Aspen with a credit
card, a bank account, or a Paypal account from which
Aspen can draw funds. Consumer owners may also
set up a debit account with Aspen from which Aspen
may deduct money as jobs are performed. Workers may
provide Aspen with a bank account or Paypal account
to which Aspen may deposit funds.

Since individual transactions are likely to involve
very small sums of money, and because transactions of
the nature described above involve per-transaction fees,
Aspen waits for a significant balance to accrue on the
Workers’ account before paying them. We expect such
transactions will usually occur in monthly intervals.
Consumers may or may not be charged immediately
after their jobs complete. The many transaction fees
arising from many Consumer transactions may be offset
by potential income from investing money for the
period of time between collection from Consumers and
distribution to Workers.

VIII. A LTERNATIVE DESIGNS

In designing and implementing Aspen, we consid-
ered a number of different design alternatives which
we describe below.

A. SSH Model

An alternative way to provide distributed computa-
tion is via remote login. In this model, the consumer
would be granted access to executing commands from
a shell in real time (such as ssh or rlogin). If a
computation fails, the consumer could simply restart
it. While this model appears to have more flexibility, it
provides no means of verification and measurability.
Benchmarking will not work, since the worker may
decide to give 100% of its CPU to a benchmark
program, while it may decide to allocate only 1% of
its CPU to the consumer without any repercussions.

B. Inter-Job Communication

If workers executing related jobs were allowed to
communicate over the network, workers may be able
to execute large computations more efficiently (such
as distributed sorting). However, since network packets
are routed in a non-deterministic order, the results
may be non-deterministic. In general, it is difficult to
ensure determinism of processes communicating over
a network. Non-deterministic jobs prevent Aspen from
detecting cheaters.

C. Per-Instruction Payment

Rather than timing computations, we may have con-
sidered counting the actual number of machine instruc-
tions the machine executed. To prevent cheating, we
would compare the counts from the two machines. If
they differed, we would decide that the higher count
was cheating. However, since jobs may run on a wide
variety of worker machines, this measure does not di-
rectly measure what we are paying for: the computation
time necessary to run a job. For example, a multiply
instruction may take 3 cycles on one processor and 5
on another. Furthermore, we would like to allow for
dynamic optimizations of code ”hot spots” in software.
These dynamic optimizations may alter the number of
actual machine cycles used.

D. Long Jobs

Aspen relies on the assumption that jobs take a
relatively short time to complete (on the order 1 or 2
hours). While this assumption is valid for a large class
of problems, other classes of problems may require
each job to run for a longer time. For long running
jobs, the current fault tolerance mechanism would be
inappropriate because the cost of lost work would be
much more significant. If Aspen were to support long
running jobs, it would need to introduce a checkpoint
mechanism so that intermediate work steps can be
recorded to minimize the cost of Worker failure before
job completion. Putting a limit on the running time for
jobs enables Aspen to keep Consumer implementation
simple (no checkpoint required) and to make guarantees
with a higher level of confidence (as to what perfor-
mance a Consumer is getting from a given computer).

E. renting with more complicated quality statistics

One way that we may have built Aspen is to advertise
each individual characteristic of worker machines sepa-
rately: CPU speed, cache size, memory, hard disk space,
network speed, etc. This would have given users more

fine-grained control about what type of machine they
are hiring to do computation for them. We chose instead
to take the simple route, bundling all of these character-
istics into a single quality measure reflecting the overall
system’s performance for ”typical” jobs. This simplified
quality measure is valid if most user tasks use resources
in similar ways or if most worker machines offer similar
resources. We are operating under the assumption that
at least one of these conditions is true. Furthermore, it is
much more difficult to design benchmarks to remotely
verify the other system properties of a computer such
as cache size, disk space, etc. For the time being, we
believe that the simplest observable property–the job
completion time–is sufficient for the level of accuracy
desired by consumers.

F. scheduling jobs ahead of time

We may have considered a payment model that in-
volved reserving machines ahead of time for particular
time slots. This would allow for sophisticated schedul-
ing algorithms to take into account user’s urgency
preferences to prioritize jobs in times when Aspen is
under heavy load. However, since Aspen has no way of
predicting the true length of a job before it is run, we
have chosen to allocate computing resources on demand
in real time. In this way, machines may be used as
soon as they become available. We believe that as the
number of workers grows, there will always be some
number of available workers that meet the consumer’s
specifications.

IX. RELEVANT WORK

Internet-wide grid computing has been around since
the mid 1990s. The pioneer projects of Internet-wide
grid computing are the SETI@Home project [13] and
the Distributed.net project [3]. More recent projects of
the same flavor include the Folding@Home project [5].
These projects are special-purpose applications that re-
quire computer owners to go to the relevant project web
site and download the specific binaries for each project.
The motivation for computer owners to join the grids of
each project relies largely on a sense of goodwill and
a willingness to participate in the advancement of a
valuable cause (e.g. genetic code sequencing through
protein folding [5]). None of these projects involve
financial contributions for its participants. Furthermore,
these projects are specific to a single application and
have no aspiration to enable generic grid computing.

Conversely, various organizations have sought to
provide the general-purpose infrastructure that is re-

quired for generic Internet-wide grid computing [1].
Among these organizations, UNICORE [14], Gridbus
[7], Globus [6], and Legion [10] appear to dominate
the literature. The focus of these organizations has
been on defining the enabling technologies and pro-
tocols. However, these organizations do not provide a
brokerage service to mediate the relationship between
computer owners and organizations. Furthermore, none
of these infrastructures mention incentives for owners to
offer their computers or for commercial organizations
to utilize the computational grid.

Furthermore, other projects aim to create large node
communities that can be utilized for general purpose
computations. Such projects include PlanetLab [12]
and Emulab [4]. In the case of Emulab, the grid is
completely owned and managed by Emulab. In the
case of PlanetLab, the grid contains arbitrary nodes
around the Internet. However, both of these projects are
available for non-commercial research purposes only.
Moreover, these projects rely heavily on the goodwill of
participants in matters of security, resource utilization,
and reliability.

Internet-wide grid computing is becoming mature
technologically. The remaining piece of the puzzle lies
in popularizing grid participation both for commer-
cial organizations and for computer owners. Existing
projects such as the SETI@Home project have been
successful by relying mostly on the goodwill of partici-
pants. The Aspen project seeks to unleash the full power
of grid computing by providing financial incentives
to grid participants. Furthermore, the Aspen project
seeks to popularize grid computations among commer-
cial organizations by supplying an infrastructure where
organizations can execute computations reliably and
safely in a time and cost-effective manner. A survey
of the literature has shown that these issues have yet to
be addressed.

X. FUTURE WORK

The Aspen project team plans to pursue several
avenues to bring this product to fruition in the com-
ing months. We have already communicated with the
Microsoft iCampus awards team, as well as with the
Athena I/S staff about the possibility of installing a
large prototype testbed at MIT. We also hope to begin
deploying the final version of the software with the help
of commercial software developers.

One of the team members is already using the Aspen
system for a computer vision project.

XI. CONCLUSIONS

In this paper, we proposed a system that addresses
the practical issues of scaling distributed computation
to the global, internet-wide scale. We address issues of
measurement and markets for exchanging computation
for real money. We cover issues of cheating that may
arise from workers who are free to modify the code that
resides on their own machine, and we tolerate node and
network failures.

The Aspen team believes that this system has the
potential to be a practical solution to people who are in
need of more computing resources. We therefore plan
to follow through with the next stages of development
and deployment.

XII. REFERENCES

[1] Asadzadeh, P., Buyya, R., Kei, C. L., Nayar, D.
Venugopal, S. Global Grids and Software Toolk-
its: A Study or Four Grid Middleware Tech-
nologies. Grid Computing and Distributed Sys-
tems (GRIDS) Laboratory. The University of Mel-
bourne, Australia, 2004.

[2] Dean, J., Ghemawat, S. MapReduce: Simplified
Data Processing on Large Clusters. Google, Inc.
To appear in Proceedings of the 6th Symposium
on Operating System Design and Implementation
OSDI 2004, April 2005.

[3] Distributed.net. http://www.distributed.net/.
[4] Emulab. http://www.emulab.net.
[5] Folding@Home. http://folding.stanford.edu/
[6] The Globus Alliance. http://www.globus.org/.
[7] The Gridbus Project. http://www.gridbus.org/.
[8] Ricadela, A. Slow Going on the global grid.

Information Week. February 21st, 2005.
[9] Isbell Jr., C. L., Husbands, P. The Parallel Prob-

lems Server: an Interactive Tool for Large Scale
Machine Learning.

[10] The Legion Project. http://legion.virginia.edu/.
[11] The Mathworks. MATLAB Distributed Comput-

ing Toolbox User’s Guide. Version 1. November
2004.

[12] PlanetLab. http://www.planet-lab.org.
[13] SETI@Home. http://setiathome.ssl.berkeley.edu/.
[14] The UNICORE Grid System.

http://www.unicore.org/.

