
 1

Tempo
A Distributed Media Player and Content Distribution System

Dan Schultz, Martijn Stevenson, and Tom Wilson
6.824 Final Project

Submitted May 12th, 2005

Abstract

Most popular music sharing implementations require powerful centralized servers to keep track of or
store the available content. We offer an alternative solution. This paper describes Tempo, a
decentralized digital content solution that lets users share their content on the fly as it is being
enjoyed. Our system focuses on a community approach to digital media, with multiple content
controllers and clients distributing files to other clients while the media plays. The major challenges
we faced in this project included efficiently distributing files to an arbitrarily large number of users in
a decentralized fashion, allowing multiple users to control media playback, and keeping playback
synchronized. We overcome these difficulties by using a BitTorrent-style distribution system,
utilizing stateless connections for control messages, and maintaining a synchronized group time for
time stamped messages.

1.0 Introduction

Imagine the following. You enjoy listening to
music, but you don’t have the time or the energy
to rip it from your CDs or download it from the
Internet. Thankfully, you have an established
circle of friends, family or coworkers who share
your particular tastes in music. If only there
were some way by which your friends could let
you listen in. Tempo provides this service.
This paper presents Tempo, a completely
distributed music-sharing tool without any
central file repositories or predefined controllers.
It is a music player, a DJ and a content
distributor rolled into one tool. To the user,
Tempo looks much like a standard digital music
player. The user can form playlists from which
he can play songs randomly or in order. In
addition, the user can now connect to groups of
users formed ad-hoc and listen in on a shared
playlist which features music coming from all of
the group’s controllers. Tempo allows users to
create online communities which focus on the
enjoyment of shared media.

When creating Tempo, we decided that our
system must satisfy the following five
properties:

1) It must be completely distributed. The

system cannot rely on centralized
servers, as these introduce single points
of failure.

2) It must support large numbers of clients
with relatively high turnover rates.
Clients may well be continually
disconnecting and reconnecting, so it is
important that Tempo handle this
gracefully.

3) It must allow distributed control of
playback. The whole point of the system
is that multiple users can control media
playback, so it must not rely on a central
controller.

4) It should minimize the delay between a
user adding content to the queue and all
users obtaining a copy of that content.

5) It should minimize the skew in playback
across clients. Ideally, all clients should
be in perfect sync with each other.

To enforce these properties, we created a system
where all of the clients are identical. While
individual Tempo clients act as servers in some
respects, there is never any system-wide central
control. This enforces properties (1) and (3). To
support property (2), we tried to minimize the

 2

amount of state that has to be maintained across
clients. By using stateless, transient connections
and a randomized gossip protocol to ensure
consistency, we were able to significantly reduce
the amount of communication overhead and
infrastructure required. This makes adding or
removing clients a straightforward and efficient
process, allowing us to meet our goal. Property
(4) is upheld by our file transfer system. We use
a modified version of BitTorrent, which allows
Tempo to use multiple servers for distributing
files without overloading them. This means that
files propagate through the system rapidly once
the transfer starts. Finally, we enforce property
(5) by using timestamps on every message. This
allows us to determine when the playback
command was executed, which means that we
can simply start playing the media at the
appropriate moment in the file. We ensure that
every client in the system maintains a consistent
group time using a time synchronization
protocol, described in section 3.4.

The sections that follow illustrate the most
important properties of our system. Section 2
describes prior work that influenced the design
of Tempo, while section 3 dives into the details
of that design. Section 4 discusses interesting
implementation details of Tempo, and section 5
presents an evaluation of how well we met our
goals. Finally, section 6 considers what future
work could be done to extend and improve the
Tempo system.

2.0 Related Work

Tempo draws inspiration from a wide variety of
sources. One of the important features of Tempo
is accessing other clients' media, so related work
in file-sharing is a great source of information
for us.

The file-sharing aspects of Tempo share
qualities with a multitude of applications,
including applications such as Kazaa, Gnutella,
and FreeNet. These applications let users search
for a file they wish to have and allow the user to
download the file from other users. Our system
is similar, except that we allow the searching
and downloading to occur without any user

interaction. When a Tempo client needs a file, it
automatically sees who has the file and begins
downloading it.

The BitTorrent system is also related to the way
our file-sharing works. BitTorrent breaks up
files into pieces and distributes the pieces
individually. When a user wants to download a
file, that file could come from any number of
users. The pieces are not necessarily sequential
and the pieces could all come from one other
user or each piece could come from a different
user. In order to maximize the speed of file
distribution, Tempo is designed to allow file
segmentation. We did not include this feature in
our prototype, but it could be added with
relatively little effort.

The music distribution portion of our system is
similar to several streaming and sharing systems
in use today. One of the most popular music
sharing systems is the iTunes music streaming
service, which utilizes Apple's Rendezvous
protocol. This system allows users to see the
shared music libraries of other users on the local
network. Users can play songs from any of the
shared music libraries. The main difference is
that the user playing a shared song does not get a
copy of the song. Also, there is no connection
between what the user playing the shared file is
listening to and what the user who owns that
shared file is listening to. Tempo allows users to
listen in on the music of another user.

In addition to the iTunes system, there are
several systems available that allow a user to
listen to a broadcast of music over a network. A
popular network broadcast application is
Shoutcast. In Shoutcast, a single controller
determines what songs should be played and any
number of users can listen to the songs that the
controller decides to play. The users listening
have no control of the songs being played. In
Tempo, any number of users can both listen to
and control the music being played on the
distributed system.

There are many systems that implement pieces
of the functionality desired for the Tempo
system. To date, however, none of these systems
have incorporated all of the facets of Tempo.

 3

3.0 Design

Our design for Tempo begins with a full-
featured media player that has all the bells and
whistles of typical media players. We add to this
a system for connecting one client to a network
of other clients and allowing all of the connected
clients to share a common media playlist. Our
system facilitates all the necessary file transfers
when particular media files are missing from one
or more client computers. Tempo also allows for
the shared control of the community’s playlist
and provides the ability for any user to add
songs for everyone in the community to hear.

When designing Tempo, we tried to keep our
major goals in mind. The overriding principles
were that the system must not rely on any
centralized servers, and that it must be able to
handle large numbers of users who may come
and go frequently.

3.1 Offline Operation

When a client is not connected to any other
clients over the network, Tempo will run in
offline mode. In this mode of operation, Tempo
looks and acts much like any other media player.
Tempo allows the user to play the files stored
locally on the client’s hard drive. The typical
media player controls are all present: buttons for
play, pause, previous file, and next file, sliders
for volume and balance, and a progress bar to
show the current position in the media being
played.

In the offline mode, the user also has access to
the necessary input boxes and control buttons to
connect to other clients if he so chooses. In this
way, the offline media player serves as the entry
point for connecting to media communities. The
player will seamlessly transition from offline
mode into connected operation.

3.2 Connecting

One of the nicest features of a distributed system
like Tempo is that new clients can enter the
system from any point of access. There are no
central servers in Tempo, so clients may connect

to any client who is either currently in a group or
alone and accepting connections. Every client
runs a thread that constantly listens for incoming
connections. This allows Tempo communities to
grow quickly.

Tempo is flexible about the authentication
schemes used when new clients join. One could
imagine a range of schemes, from a group
password to public-key cryptography. When a
new client connects, he will establish a reliable
TCP connection to a current client, over which
all setup communication takes place. After the
new client is accepted into the group and made
aware of other clients, this connection is
dismantled.

One of the major tradeoffs we had to consider in
our design was whether to maintain persistent
connections between clients in a community.
Currently, Tempo clients do not maintain any
open connections. While persistent TCP
connections would enhance communication
reliability, keeping open network sockets
requires a lot of memory and new client
overhead. The decision to use unreliable UDP
communication allows the system to grow to an
arbitrary number of clients. It also minimizes
connection establishment overhead, a desirable
feature for communities with a high turnover
rate. UDP is an unreliable protocol. In particular,
using UDP means that packet delivery is not
guaranteed, and packet arrival ordering is not
guaranteed.

The next two sections will describe how we
compensate for the lack of communication
reliability.

3.3 Maintaining Group State

The most difficult part of using unreliable
communication is that no message is guaranteed
to get to its intended recipient. This implies that
at any time, any client might be out of sync in
some way from the rest of the group. Our
solution to this problem is a consistency checker
that operates under a gossip protocol. Every
connected client runs a consistency thread that
contacts random other clients at regular

 4

intervals. Clients send hashes of all shared data
structures to other clients. In case the hashes
don’t match at the receiving end, the other client
will send back a sequence of messages
representing the most current group state (the
client list, the media list, or the last known
issued command).

For the system to work decently, we assume that
network connections are not intolerably lossy
(most messages get through) and that at any
point, most clients’ states are not wildly
divergent. Regardless of network conditions, the
system eventually converges to a consistent state
because clients are constantly sending each other
their latest updates. The system achieves
eventual consistency: client states don’t always
need to be consistent; they just need to be
consistent in due time.

3.4 Keeping Things In Order

The second obstacle unreliable communication
presents is that messages might arrive out of
order. This can be bothersome, especially
because all connected Tempo clients need to see
(and hear) the same media played in the same
order, at the same time. Our partial solution to
this problem was that we marked every message
(i.e. every event) with a timestamp. We display
clients and media as ordered by their creation
timestamps. Similarly, we check the timestamp
of every media control message (play, pause) to
ensure that we only perform the last issued
command.

For the timestamp scheme to work, however, we
require that the clients’ computer clocks all be
completely synchronized, or that clients have
some notion of group time. We chose the latter.
The design tradeoff here was between doing our
own time synchronization and using third-party
software that would likely set clients’ clocks.
We felt that it would be more convenient for
clients to not have to worry about their computer
clock, or to have to change it for that matter.
Additionally, maintaining a group time easily
lets us do playback synchronization! Our
particular solution, then, was to perform a time
handshake when a new client connects to the

system. Every client stores a time offset from the
group time, and thus all clients can perform
synchronous playback by skewing incoming
timestamps with their time offset and comparing
this to local time.

3.5 File Transfer

The primary goal of the Tempo file distribution
system is to quickly distribute files to all of the
users. Tempo strives to evenly spread the
communication load across clients, and to take
advantage of local copies of files to accelerate
the transfer. To accomplish this goal, we use a
BitTorrent-like system where clients contact a
known tracker for each file. File transfer in
Tempo uses two major subsystems: a Tracker
and a File Mover.

3.5.1 Tracker

Each client maintains a database of the files
which it has added to the queue. This is called
the Tracker, and for every file the client is
tracking, it maps the file’s unique ID to a list of
file segments (chunks) representing this media
file. For every chunk, the Tracker stores a server
list indicating which clients in the system
currently have a complete copy of this particular
chunk. These clients can now act as servers for
the file chunk. This allows Tempo to spread files
throughout the system more efficiently, since
every chunk can come from multiple sources.
Since every client knows which client added a
file to the queue, contacting the Tracker for a
particular file is a simple operation. Whenever a
client asks the Tracker to provide a server for a
chunk, the Tracker checks the requested chunk’s
server list and responds with the next available
server based on its load-balancing policy.

3.5.2 File Mover

Each Tempo client runs a File Mover (FM)
subsystem whenever they are connected to a
community. The FM subsystem continuously
monitors the queue for changes. If a new file is
added to the queue, the FM first checks to see if
the client already has any chunks of this file on
the local disk. It then contacts the Tracker

 5

running on the client which added the file. If any
chunks were found locally, the FM informs the
Tracker, which will add this client to the
appropriate chunk server lists.

For each chunk of the file which is not complete
locally, the FM goes through a series of steps.
First, it asks the Tracker for an available server.
The Tracker returns the server’s contact
information to the FM, which then contacts the
supplied server. When a file request comes in,
the server sends the chunk to the client. Once the
chunk is complete and stored on the local disk,
the FM informs the Tracker that it has the
chunk, and proceeds to download the next
incomplete chunk.

When designing Tempo, we initially considered
having all users retrieve files from a single
source (i.e., whichever client added the file to
the queue). While this would have greatly
simplified our system, we rapidly discarded it on
the grounds that a single server would quickly
be overloaded in a large system. We also
considered building a deterministic distribution
tree, with each client communicating with a
small number of other clients in a predetermined
fashion. While this scheme makes actually
transferring the files between users more
predictable and efficient by eliminating the
necessity of contacting a tracker, it also adds
significant complexity. With a tree distribution
system, detecting node failures is very difficult.
Additionally, in systems with a high turnover
rate, a distribution tree would have to be
reconfigured often, which causes many
headaches. We found that the BitTorrent model,
with a single tracker and many servers, was
sufficient to meet the goals of our system. Since
connections to the Tracker asking for referrals
are simple to process, the client running the
Tracker will not be overloaded by incoming
requests. And since we do not rely on any
predetermined distribution model, we do not
suffer from the reconfiguration overhead
inherent with trees.

3.6 Disconnecting

As with any connected system, clients in Tempo
can disconnect in two ways: gracefully (shut
down Tempo or press disconnect button) or
abruptly (trip over power cord). On a graceful
exit, a connected Tempo client sends a message
to the group to alert others of his departure.
After an abrupt severance from the network,
another client will eventually notice a client’s
absence when the file tracker distributes
downloading assignments. At this point, news of
the severed client’s departure will be publicized.

One decision we made here concerns what we
do with media left in the network queue after the
client that added it disconnects. In the case
where other clients have copies of the data, it
might be possible to reassign another client as
the content’s new owner and tracker. However,
consider the case where a client adds some
previously unseen media to the shared queue,
starts up the Tracker, and abruptly disconnects
before any other clients can get a copy. Only the
disconnected owner knew whether anyone else
had a copy of this data. To deal with risky cases
such as this one, we decided to simplify the
system and remove any media a client owns
from the network queue when that client leaves
the group. Conceptually, we feel that this is a
cleaner choice since all files in the queue now
belong to clients who are active.

After a graceful disconnect, a Tempo client
seamlessly transitions into offline operation, as
described in section 3.1. From there, the client
can use Tempo once again as a local media
player or to connect to a different Tempo
community.

4.0 Implementation

4.1 Overview

We constructed a prototype of the Tempo
system to attempt to meet all of the goals
outlined above in the introduction. We
implemented the prototype in approximately
3500 lines of Java code. We chose to implement
our system in Java instead of other languages

 6

such as C++ for several reasons. The most
important reason is that Java’s motto of “write
once, run anywhere” allows us to run our
prototype on Windows, Apple OS, or *nix based
systems. We also feel that ease of development
gives an edge to Java because of its simple
handling of multimedia through the Apple
QuickTime libraries for Java.

We decided to use the Java libraries for the
Apple QuickTime media player for handling all
media in Tempo. QuickTime is versatile as it is
able to handle many standard formats for media
types from music to images to movies. The
alternative would be to use the audio libraries
that come standard with Java. However, these
libraries do not natively support the MP3 file
format, which is problematic for a media
application.

In order to stay flexible while still meeting our
design goals, we tried to use good modular
design principles. This way, when we find
improvements that can increase performance of
the system, it should be simple to make these
improvements without affecting a large portion
of the underlying classes. For instance, if we
find a new algorithm for tracking files, we can
simply rewrite the Tracker, maintaining the
same interface and ensuring that other classes
will be unaffected.

Finally, we used multithreading along with the
necessary locking to improve performance.
Multi-threaded subsystems allow us to perform
various tasks concurrently and also prevent one
subsystem from delaying the methods running in
other subsystems.

4.2 File Distribution

The implementation of our file distribution
system bears particular note. In order to simplify
the code for our prototype, we did not feel it was
necessary to implement file chunking. In other
words, we use entire media files as the chunks.
However, this does not significantly impact the
performance of the Tempo system, as shown
below in 5.0.

To keep multiple connections (both incoming
and outgoing) from overloading Tempo’s
distribution system, we used a series of multi-
threaded objects. The File Mover system
maintains one thread for monitoring the queue,
another thread for downloading files, another
listening for referrals from trackers, and one
thread per referral connection. This allows
Tempo to get a great deal of concurrency out of
its FM system, greatly enhancing the system’s
performance.

The Tracker system is implemented with a
HashTable data structure mapping file IDs to
chunk server lists. Currently, the load-balancing
policy used by the Tracker is a simple round
robin scheduling process. As the Tracker refers
clients to servers, it places the server at the back
of the server list. While this algorithm may not
be the most desirable, it ensures that servers are
seeing roughly equal numbers of referrals, which
is sufficient to prevent any one server from
experiencing an overload situation.

5.0 Evaluation/Performance

We will now demonstrate that we achieved with
our implementation of Tempo the five properties
set forth in our introduction. Our test bed for all
performance data were four Pentium IV PCs of
varying speeds, three of which were linked by a
100 Mb/s Ethernet, and one of which used a 11
Mb/s wireless network. We will now go through
our goals one by one and examine the extent to
which we met them.

1) Our system must be completely
distributed.

Indeed, the system is completely distributed.
The only central points of failure are trackers,
clients who add media to the network queue and
monitor its distribution. In case of tracker
failure, we remove said media from the network
queue, and the system continues to function.

2) It must support large numbers of
clients with relatively high turnover
rates.

 7

While we had no more than four machines on
which to test our implementation, we can make
predictions about performance for larger client
groups. The majority of upkeep traffic related to
client turnover comes in bursts of UDP
messages. Clients publicize the arrival and
removal of members and media with UDP
messages sent to all other clients. Because these
messages are stateless, they require little
overhead. Our tests demonstrated that a Tempo
client could create and send 100,000 UDP
messages in an average of 4.183 seconds. Even
with ten thousand users in a group, this sort of
output rate should not adversely affect
performance.

3) It must allow distributed control of
playback. The whole point of the
system is that multiple users can
control media playback, so it must not
rely on a central controller.

This is solved in a similar manner to 2). Any
playback controller simply sends out a command
message to all clients, which we showed to be
feasible even for large client groups.

4) It should minimize the delay between
a user adding content to the queue
and all users obtaining a copy of that
content.

This was the focus of most of our performance
testing. The message delays and file transfer
overhead together represent how long a
connecting user has to wait before the first song
starts playing. Keep in mind that as playback
continues, any content acquisition rate greater
than the data playback rate will results in
uninterrupted playback.

First we measured how quickly our consistency
checker propagated information across the client
base. We purposely did not send out a message,
waiting to see how long it was before every one
of the four test clients had received the message
via random consistency hops. We varied the
consistency-checking interval between 50 ms
and 400 ms, noting reasonable results for all
these configurations. With our initial 100 ms
setting, it took an average of 1.690 seconds for

the consistency messages to travel two to three
hops from the source. Note that this is an
ultimate worst-case scenario that occurs when
only one UDP message gets to its intended
recipient. The log-scaled graph shows that we
can expect delays to increase logarithmically as
message intervals increase. Because the spread
of consistency information grows exponentially,
we can also expect the time delay to increase
logarithmically as more clients enter the system.

Average Time Delay for Complete
4-node Consistency Synchronization

0

500

1000

1500

2000

2500

50 100 200 400

Consistency Message Interval (ms)

D
el

ay
 (m

s)

Figure 1: This graph shows on a log-scale
how long it took on average for consistency
checkers to propagate information from one
source client to three other Tempo clients.

We did several tests to determine how long it
takes for a data file to spread itself across a
small Tempo community. We measured the time
from when the user pushes the “Add Song”
button to when the last user informs the Tracker
that the song has been downloaded successfully.
We call this time the latency. We used three
different setups for this trial. C1 had four
computers: three desktops and one wireless
laptop. C2 had consisted of only the three
desktops, and C3 was C2 plus one more desktop.
We conducted two types of test for each
community. First, we tested the latency with a
song that all of the computers had local copies
of. Second, we tested latency with a file that
none of the computers (except for the source)

 8

had local copies of. The results are summarized
in Table 1.

Clearly, C1 had the lowest performance. This is
easily explained by the presence of a computer
using a wireless (11 Mb/sec) connection,
compared to the wired (100 Mb/sec) connections
on the desktops. Even so, Tempo performed
quite adequately. Assuming the standard
conversion of approximately 1 Mb per minute of
music, Tempo was distributing at least 30
seconds of music every second. This
performance is perfectly acceptable.

Admittedly, these tests were performed over
MIT’s network, which is incredibly fast.
However, it is plain to see that Tempo is not
adding significant overhead to the file transfer
process. This means that Tempo should be able
to perform adequately even when the underlying
network is not particularly fast.

5) It should minimize the skew in
playback across clients. Ideally, all
clients should be in perfect sync with
each other.

As mentioned in 3.4, we use time handshakes to
tell all clients the group state. This means that as
far as the computers know, playback is perfectly
synchronized. We humans did qualitative
testing, listening to playback from multiple
computers to discover time skew. More often
than not, we found that Tempo clients
synchronized well enough for comfortable
listening, also across computers with wildly
varying clock times.

6.0 Future Work

While implementing our prototype, we came up
with several ideas for improvements we would
like to make and features that we would like to
add to Tempo. The first improvements fall in the
category of user interface refinements. For
instance, we would like to include a progress bar
to keep the user informed of files’ download
status in the network queue. Another example of
an interface refinement would be to allow users
to select which panes they wish to see. For
instance, some users may not be interested in
which users are connected to the community,
while others do not care for the equalizer.

Another improvement we would like to make is
in the Tracker. In our current implementation,
files are distributed in one big chunk. We
believe that as user communities grow, a better
balance of file distribution can be maintained if
files are broken into smaller chunks for
independent distribution. This change would
only affect the Tracker classes and would use
the same interface as the one chunk file Tracker.

Because the current Tempo implementation uses
the QuickTime libraries to handle media and
because QuickTime handles so many file types,
we began to consider the possibility of playing
movie files in our system. If we added a pane for
graphical output, users could watch movies
together just as they play music together in the
current implementation.

Finally, we would like to add the ability for
users to search for pre-existing communities.
Perhaps with the use of web server queries, we

Table 1: File Propagation Latency Results
Community File Location Latency (ms) Size (Mb) Average Speed (Mb/sec)

C1 All local 1234 NA NA
C1 None local 12,172 5.21 .428
C2 All local 768 NA NA
C2 None local 2547 2.52 .989
C2 None local 2375 3.42 1.44
C3 All local 847 NA NA
C3 None local 3047 5.70 1.87
C3 None local 22,079 77.3 3.501

 9

could allow users to search for communities that
fit their musical tastes, their geographic location,
their age group, or any number of other criteria.
This way, when someone downloads the Tempo
client, he will not need to know others in the
community from the start. He can simply search
for open communities and connect to any user in
the community of his choosing.

7.0 Acknowledgements

The designers and developers of Tempo would
like to thank Robert Morris and Athicha
Muthitacharoen for their design advice and
guidance during 6.824. The class rocked.

