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Abstract

The provenance of a file represents the origin and history of

the file data. A Distributed Provenance Aware Storage System

(DPASS) tracks the provenance of files in a distributed file sys-

tem. The provenance information can be used to identify po-

tential dependencies between files in a filesystem. Some appli-

cations of provenance tracking include (i) tracking the transfor-

mations applied to process raw data in scientific communities

and (ii) intrusion detection and forensic analysis of computer

systems. In this report we present the design and implemen-

tation of a provenance aware storage system, which efficiently

stores and retrieves provenance information for files in a dis-

tributed file system, while incurring minimal space and time

overheads.

1 Introduction

Provenance, from the French word for “source or origin”,
refers to a complete history or lineage of a document.
In computer terms, it consists of information about the
objects that a particular object is based on, the process
of creation/modification of an object, etc. For example,
consider a process P that reads from files A and B, per-
forms some computation, and writes to a file C. Then the
provenance of C consists of, the input files A and B, the
application P that modified the file, the command line
arguments and environment of process P, the processor
type on which P is running, etc.

Provenance is particularly useful for scientific com-
munities like Physics, Chemistry and Astronomy. Raw
data, generated by scientific experiments is further pro-
cessed and transformed multiple times, before it is pub-
lished. Before using the published data in their exper-
iments, scientists need to know whether they can trust
its source. At this end, they need to know where the
data came from, and the transformations it went through.
Also, if it turns out that there was a flaw during the data
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generation and transformation process, the originators of
a flawed data-set need to inform all users of the data of
the flaw. Moreover, it is often desirable to keep track of
enough meta-data, so the exact same experiment can be
recreated. The provenance of a file can be useful in all of
these scenarios.

Provenance can also be used for security purposes, to
conduct forensic analysis after a break-in. Intruders gain
access into systems by installing malicious wormback-
doors, that can then corrupt files in the system. Upon de-
tecting a suspicious file, we can examine its provenance,
backtrack through the file system and locate the worm
backdoor. We could also locate all the files in the system
which depend on the worm backdoor and thus identify
other possible corrupted files. BackTracker [5] is based
on a similar mechanism of intrusion detection.

A provenance aware storage system (PASS) maintains
the provenance information of a file in the file system,
along with the other meta-data of the file. Complete
provenance includes information about the applications
that modified the data, the input data, and the environ-
ment under which the application was executed. For this
project, we limit ourselves to capturing only the applica-
tion that modified a file, the host on which the file was
modified, together with the set of files that the process
read before the modification. The filesA1, . . . , An that a
process read before modifying a fileB are theancestors
of B, andB is adescendantof eachAi. One of our main
goals is to capture the ancestor-descendant dependencies
between files.

It is common for users to have their data on a central-
ized file system, so that they can access it by logging into
any machine. In order for the user to access the prove-
nance from any machine, the provenance has to be stored
along with the data in a centralized file server. A Dis-
tributed PASS (DPASS) is a distributed storage system
that stores the provenance of a file along with the data,
enabling the user to access the provenance remotely.
Note that since the provenance depends on the processes
that are running in the user’s machine, the recording of
the provenance must involve both the machine that the
user is logged in, and the machine which stores the file



system.

1.1 Challenges in Building a DPASS

• Automatic Provenance Generation: In a primi-
tive provenance tracking system, users who gener-
ate or modify a file, can be responsible for track-
ing its provenance. This solution however is unac-
ceptable, since users might neglect entering prove-
nance, might enter it incorrectly, or might find
it cumbersome to enter the provenance manually.
A PASS should automatically record provenance
of files without human intervention, and without
changing the existing applications, and program-
ming interfaces.

• Transporting Provenance: DPASS requires that
provenance be transmitted to the file server. It is
desirable to transport provenance without inventing
a new protocol or changing an existing protocol like
NFS.

• Storing minimal required information: A naive
approach to provenance recording, is to record ev-
ery read and write by a process. This approach
results in redundant dependencies, and incurs un-
acceptable storage and processing time overhead.
Thus, it is critical that a PASS should store only
the minimum required information that is sufficient
to reconstruct all relevant dependencies between the
files.

• Querying Provenance Efficiently: The prove-
nance should be efficiently retrievable by applica-
tions. While a simple log containing all the writes
and reads, is sufficient to capture any possible file
dependencies, it cannot be queried efficiently.

The rest of the report is organized as follows. Section
2 describes the provenance tracking algorithm and the
design of the database. Section 3 discusses the imple-
mentation details. Section 4 evaluates our system. Sec-
tion 5 describes the related work. We conclude in Section
6, and discuss future directions.

2 Provenance Tracking Algorithms
and Database Design

Our system captures all dependencies of the formA →
B that exist between any two filesA andB, denoting
that the contents ofB might have been derived from the
contents ofA. More precisely,A → B means thatB

was modified by a process that readA before modifying
B.

In this section, we first describe a naive algorithm for
tracking dependencies, followed by an improved algo-
rithm that we use in our system. We also describe the
format of the database used to store the provenance, and
explain how we construct provenance trees.

2.1 A Naive Algorithm

The naive algorithm to capture provenance is as follows:

• Each time a processP reads a fileAi, record this
event by appending a record to a buffer.

• Each timeP writes to a fileB, the data written toB
could potentially depend on each fileAi thatP has
read. On every write toB, for every fileAi in the
buffer ofP , record the dependencyAi → B.

Althought the above algorithm seems like a reason-
able way to record provenance, we will next explain the
main problems that render it inappropriate for our sys-
tem.

• The naive approach results in a lot of redundant
storage. For example, if the same file is read a
second time by a process, this information should
be captured only if the file has changed since the
last read. Thus, optimizations are needed to avoid
recording every single dependency on write.

• Since there are many redundant dependency entries,
the time required to build dependency trees is in-
creased.

• The naive algorithm could result in cycles while
building the provenance tree of a file. For exam-
ple, if processP reads fileA and writes to fileB
(resulting inA → B) and another processQ reads
B and writes toA (resulting inB → A), a cycle is
formed. This can send a provenance tree building
algorithm into a loop. It is desirable that dependen-
cies of the formA → B → A should be avoided.
This dependency can be eliminated by noting that
there are in facttwo different versions ofA involved
here, and the fileA thatQ has written to is no longer
the same as the fileA thatP read from. Hence, our
system needs to store additional timestamps to rec-
ognize the different versions of a file.

We will show that by carefully recording the depen-
dencies, the above problems can be avoided. In the next
section, we present aformal improvised algorithmthat



keeps track of a few timestamps with every read and
write, in order to avoid capturing redundant dependen-
cies and avoid cycles in the provenance tree of a file.

2.2 An Efficient Tracking Algorithm

2.2.1 Active file dependencies

For each fileAi that a processP has read or written, we
store a tuple(inodei, first-readi, mtimei, lp-writei), such
that:

• i-nodei is the i-node number of fileAi.

• first-readi is the time the first read system call was
issued byP on fileAi.

• mtimei is the modification time of fileAi. This is
updated every timeAi is read byP . The mtimei
of Ai changes between two reads if and only if
some other process has modifiedAi between the
two reads. Different mtimei of a file denote dif-
ferent version numbers of a file. mtimei is used to
identify if a process is reading a different version of
the same file. We denote a fileA with mtime= t by
A(t).

• lp-writei is the time when the provenance ofAi was
last recorded in the database. This corresponds to
the last write system call toAi before which new
files have been read by the processP .

We refer to the set of these tuples as theactive file de-
pendenciesof the process. The active file dependencies
of each process are stored in a separate buffer in memory.

Note that, when a process reads a fileAi, only the first
3 elements of the tuple are populated and when a process
writes to fileAi, only the lp-writei field is updated.

As we next explain, these timestamps are used to
eliminate redundant dependencies, and to avoid cycles
during the construction of provenance trees.

2.2.2 Provenance recording rules

Recall that a dependency of the formAj(tj) → Ai(ti)
means that the version of the fileAi at timeti depends
on the version of fileAj at timetj .

When a processP performs a write system call on a
file Ai, the system scans the active file dependencies of
P , extracts any new dependencies on whichAi depends
on and records it to the database. The exact rules for
recording provenance when a processP writes toAi at
time ti are as follows:

• Rule 1 If lp-writei = null, then this is the first write
of P to Ai. No file dependencies forAi have been
recorded so far, andAi depends on all the active
file dependencies ofP . All active dependencies of
P are recorded in the database. For every fileAj ,
with j 6= i, thatP has read from, we record the de-
pendencyAj(tj) → Ai(ti), wheretj is the version
number ofAj .

• Rule 2 If lp-writei 6= null, the provenance ofAi

has been recorded before, and thus only some of the
active file dependencies need to be recorded. For
every fileAj , with j 6= i in the active file depen-
dencies ofP , the dependence ofAi(ti) onAj(tj) is
recorded only if one of the following rules are satis-
fied:

– Rule 2.1first-readj > lp-writei, which means
that Aj is a new file thatP has read for the
first time after the last write toAi. SinceAj

had not been read before the previous writes
to Ai, Aj(tj) → Ai(ti) should be recorded.

– Rule 2.2 mtimej > lp-writei, which means
that the fileAj has been modified by some
other process and processP has read the mod-
ified version. SinceAj has been read after it
was modified, the write toAi implies thatAi

now depends on the new version ofAj . This
dependency on the newer version ofAj should
to be captured.

If any of the rules result inAi’s provenance being up-
dated in the database, the lp-writei field of Ai is updated
to ti, indicating that the provenance ofAi was last up-
dated atti.

2.3 The Database

The recorded dependencies are converted into key-value
pairs and stored persistently in a centralizedprovenance
database. Storing provenance in a database allows us to
build provenance trees efficiently as we have don’t have
to scan the whole database. Since inodes are recycled,
each file is assigned a uniquep-node numberwhen it is
created. A p-node number is never recycled. The details
of how p-node numbers are assigned and maintained will
be explained in Section 3.

Let pnr and pnw denote the p-node numbers of
Ar and Aw respectively. The dependencyAr(tr) →
Aw(tw) generated by processP on hostH is stored in
the provenance database as a tuple (pnw, tw, pnr, tr, H,
P ), wherepnw is used as the primary key.



Additionally, two secondary indices are maintained to
speed up certain kinds of queries. Theprocess database
is a secondary index on the process name to enable effi-
cient retrieval of files that have been modified by a par-
ticular application. When a tuple of the form (pnw, tw,
pnr, tr, H, P ) is stored in the provenance database, a
tuple of the form (P , pnw) with P as the key is stored
in the process database. Thedescendant databaseis an-
other secondary index maintained to efficiently retrieve
the descendants of a particular file. For a tuple (pnw,
tw, pnr, tr, H, P ) in the primary, the tuple (pnr, tr,
pnw, tw) with pnr as the key is stored in the descendant
database.

2.4 Retrieving the Provenance Information

DPASS supports two primary queries on the provenance
stored in the database.

• Retrieving the provenance tree of a file: This
query returns all the files in the system that a par-
ticular file X depends on, by tracing the ancestors
of a file to its foremost ancestors. Intuitively, this
amounts to backtracking the origins of a file.

• Retrieving the descendant tree of a file: This
query returns all the files in the file system that have
a fileX as their ancestor. For instance, if a fileX is
corrupted at timet, the descendant tree is useful to
determine all the files that have been derived using
this corrupted data.

Provenance tree building algorithm To build the
provenance tree of fileA with version timet, the query
application starts by retrieving all the immediate ances-
tors ofA before timet, i.e. tuples of the formB(t1) →
A(t2), wheret2 ≤ t. For each chosen ancestorB, the ap-
plication recursively retrieves all immediate ancestors of
B recorded beforet2. The recursion ends when no more
provenance records can be found. Clearly, this recursive
algorithm retrieves all the ancestors of a file.

Observe that since the mtime ofB at timet2 wast1,
it seems sufficient to query for the provenance ofB up
to timet1, and not up to timet2. We found however, that
this was not the case and that the mtime of a file does
not always indicate the time of the last write to a file.
For example,tar while untar-ing a file, sets the mtime
of a file to something much earlier than even the file’s
creation time usingutime . Hence we need to use the
time when the dependency was recorded rather than the
mtime of the ancestor for building provenance trees.

Using timestamps also allows us to avoid cycles since
at any point, only dependencies recorded before a par-
ticular time are retrieved. As the depth of recursion in-
creases the time also decreases, ensuring that the recur-
sion ends.

Descendant tree building algorithm To build the de-
scendant tree of file A with versiont, the query applica-
tion retrieves all all tuples of the formA(t1) → B(t2)
where t1 > t, using the p-node number of A as the
key. The application recursively query the database for
descendants of B recorded aftert2. The recursion ends
when no more descendent’s can be found.

2.5 Example

Consider a processP on hostH that reads from a file
A, and writes to a fileB, within a loop. Formally,P
reads fromA at timest1, t3, andt7, and writes toB at
timest2, t4, andt8. Moreover, assume that a processP

reads a fileC at timet5, and another processP ′ on host
H ′ reads a fileD and writes toA at timet6. Finally P ′

reads fromB at timet9 and writes toA at timet10 where
t1 < t2 < . . . < t10. The following diagram summarizes
the above scenario:

P (H) P ′(H ′) time
read(A) t1
write(B) t2
read(A) t3
write(B) t4
read(C) read(D) t5

write(A) t6
read(A) t7
write(B) t8

read(B) t9
write(A) t10

The provenance capturing algorithm proceeds as fol-
lows:

After time t1, the active file dependencies ofP on
hostH will contain a tuple(i-node(A), tA, t1, null), for
sometA < t1, tA being the version ofA at time t1.
When the write toB happens att2, the dependency
A(tA) → B(t2) is recorded following Rule 1. Also, the
tuple(i-node(B), null, null, t2) is added to the active file
dependencies ofP to indicate that the provenance ofB

was recorded att2.
Observe that afterP reads fromA for the second time,

the tuple in the active file dependencies ofP that corre-
sponds toA remains unchanged, sinceA has not been
modified since the previous read. This implies that in



A(t10) B(t8)

A(t6) D(tD)

C(tC)

A(tA)

Figure 1:An example provenance tree

the second write toB, the provenance ofB will not be
updated.

WhenP reads fileC at timet5, a new active file de-
pendency(i-node(C), tC , t5, null) corresponding to file
C is added toP ’s active file dependencies, wheretC is
the version number (mtime) ofC. WhenP writes toB at
t8, the first read ofC is greater than lpwrite ofB (t5 >

t4). Thus the dependencyC(tC) → B(t8) is recorded
following Rule 2.1, and the dependencyD(tD) → A(t6)
is recorded following Rule 1, wheretD is the mtime of
D.

Next, whenP reads fromA at time t7, the mtime
of A has been changed, and thus the active file
dependencies ofP is updated to contain the tuple
(i-node(A), t6, t1, null). WhenP writes toB at timet8,
the mtime ofA is greater than the time of the lpwrite toB
(i.e. t6 > t4), and thus the provenance ofB is updated by
adding the dependencyA(t6) → B(t8) following Rule
2.2. Finally, whenP ′ readsB and writes toA, theH ′

records the dependencyB(t8) → A(t10).
Assuming that the p-node numbers of filesA, B, C

andD arepA, pB , pC andpD, the provenance for the
dependencies generated above are stored in the database
server as shown in the table below:

Dependency Tuple
A(tA) → B(t2) (pnB , t2, pnA, tA, P, H)
C(tC) → B(t8) (pnB , t8, pnC , tC , P, H)
D(tD) → A(t6) (pnA, t6, pnD, tD, P ′,H ′)
A(t6) → B(t8) (pnB , t8, pnA, t6, P, H)
B(t8) → A(t10) (pnA, t10, pnB , t8, P

′,H ′)

The provenance tree ofA at timet10 is as shown in
Figure 1.

2.6 Extensions to the provenance tracking
mechanism

The above high-level description of the provenance
tracking mechanism describes only the actions per-
formed during read and write system calls. We now
briefly outline the similar actions for other system calls
and inter-process communication mechanisms.

Forks When a processP calls fork, the active file de-
pendencies ofP are copied to the child process.

Pipes The pipe data structure is extended to store a
pointer to provenance information. On a write to a pipe,
a pointer to a copy of the active file dependencies of the
process is stored in the pipe data structure. On a read
from a pipe, the active file dependencies recorded during
the write to the pipe are removed and appended to the
process reading from the pipe.

Mmaped files Tracking provenance in mmaped files is
hard because writes translate to pages being marked dirty
and by the time pages are synchronized to disk, the pro-
cess could be long dead. So we treat an mmap system
call as a read/write system to the file and record prove-
nance as we do for normal reads/writes.

Note that, unlike the BackTracker [5], our system
does nottrack dependencies between processes explic-
itly but uses processes only to implicitly capture depen-
dencies between files. We claim that our system can still
reconstruct all file-to-file dependencies that the Back-
Tracker can capture, in spite of storing a smaller subset
of the information that BackTracker stores. For example,
suppose processP reads fileA and later writes to pro-
cessQ through a pipe. When process Q writes to file B,
we record a dependencyA → B, sinceQ has indirectly
read data fromA (through processP ). This dependency
is captured as follows:

• WhenP readsA, the system adds the file A into its
active file dependencies.

• WhenP writes toQ through a pipe, the active file
dependencies ofP are copied into the active file de-
pendencies ofQ.

• When Q writes B, the dependencyA → B is
recorded in the provenance ofB.

TheA → B dependency is recovered without explic-
itly tracking theP → Q or any other dependency be-
tween the processes in the system that BackTracker cap-
tures.

3 Implementation

In this section, we discuss the architecture of the DPASS
system, the databases, the query application, and how we
have overcome the challenges in building a DPASS.



3.1 Architecture

The overall Architecture of the system is shown in Figure
2. The system is composed of the following components:

• DPASS client

• BDB RPC Server

3.1.1 DPASS Client

The DPASS client is the component that is present in ev-
ery host in a distributed file system. It consists of two
components:

• DPASS Stacking File System

• A user level daemon calledprovd

DPASS Stacking File System A stackable file system
is a file system layer placed between the VFS and a lower
level native file system. It intercepts VFS operations en-
abling us to track the data/meta-data before passing it to
the lower level file system. In our case, the lower level
file system is NFS. Wrapfs, a wrapper stacking file sys-
tem generated from FiST [10], was used as the starting
point for building a Stacking file system for our needs.
The DPASS stacking file system intercepts file system
operations, runs the provenance tracking algorithm and
updates the active file dependencies of the process. If the
provenance tracking algorithm decides that a dependence
should be recorded to the database, the DPASS stacking
file system sends this information toprovdvia a netlink
socket.

provd provd is a user level daemon that collects prove-
nance sent out by the DPASS stacking file system and
stores it in the database server. On receiving a record
from the DPASS stacking file system, provd lookups the
pnode number corresponding to the inode number of the
record, and stores the record to the database.

3.1.2 BDB RPC server

The Berkeley DB (BDB) server is an embedded database
[1], that provides an RPC interface to the Berkeley DB
API. The provd daemon running on each client persis-
tently stores provenance by executing the appropriate
BDB API calls. The BDB API calls made by provd are
converted to appropriate RPC calls by the BDB library,
thus transmitting the data to the BDB server.

3.2 The Databases

The three primary databases are listed below. Note that
all the clients operate on the same databases and share the
databases. Updates made by provd on one client is acces-
sible by provd on another client. Provenance generated
by one provd can be used by another while recording new
provenance.

• i-node→ p-node map

• provenance database

• p-node→ name map

Note that all the clients operate on the same databases
and share the databases. Updates made by provd on one
client is accessible by provd on another client. Prove-
nance generated by one provd can be used by another
while recording new provenance.

Every file is assigned a uniquep-node numberwhen
it is created. The p-node number of a file, as described
in Section 2.3, is used as the key to store and retrieve the
provenance of a file from the provenance database.

The mapping from i-node numbers to p-node num-
bers is required to lookup the p-node number of the
file since the provenance records that provd on receives
from the DPASS stacking file system contain only i-node
numbers. provd looks up the p-node number from the
database and uses it as key for storing the record. The
mapping from p-node numbers to filenames is useful to
display provenance information in a more readable for-
mat.

The p-node number of a file is always unique. When
a file is deleted, the associated provenance data is not
deleted and the p-node number is not recycled, unlike the
i-node number. To see why this property is necessary for
tracking the provenance of a file, consider the following
example: A processP1 reads from a fileA1, and writes to
a fileA2. Then, a processP2 reads fromA2, and writes to
a file A3. Clearly, even ifA2 is deleted, the provenance
records ofA2 need to be kept to be able to recover the
dependence ofA3 on A1. Since the p-node number of
A2 is used as a key for all these records, the same p-node
number cannot be assigned to a new file.

When a file is created, the provd on the client that
created the file allocates a new p-node number for the
file and updates the (i-node number→ p-node number),
and (p-node number→ filename) mappings. When a file
is unlinked, the provd on the client that unlinked the file
removes the (i-node number→ p-node number) record.
When a file is renamed, the (p-node number→ filename)
and (filename→ p-node number) mappings are updated.



Figure 2:Distributed PASS Architecture.

Apart from the primary databases, provd also main-
tains the secondary indices.

3.3 Querying the Provenance

We built a query application (depicted as part of the client
in in Figure 2), that implements the tree building algo-
rithms described in Section 2.4. It interacts directly with
the BDB RPC server using the BDB API, and uses the (i-
node→ p-node) mapping and the provenance database to
construct the provenance tree of a given file.

3.4 Overcoming the Challenges

We summarize how we overcame the challenges in build-
ing our DPASS below:

• Automatic Provenance Generation:The DPASS
stacking file system intercepts file system opera-
tions and runs the provenance tracking algorithm
to generate provenance records, that are eventually
stored in the database. Moreover, it does not require
designing a new file system, or modifying an exist-
ing one.

• Transporting Provenance: DPASS stacking file
system sends the provenance to provd via a netlink
socket, and provd sends it to the BDB RPC server
using BDB API calls. Provenance is thus trans-
ported over the network without designing a new
protocol, or modifying an existing one.

• Storing minimal required information: The
provenance tracking algorithm described in Sec-
tion 2.2 ensures that DPASS stores only a minimal
required set of dependencies.

• Querying Provenance Efficiently: The use of
BDB databases together with the timestamps gen-
erated by the provenance tracking algorithm (Sec-
tion 2.2), enables us to easily determine the relevant
subset of the provenance records needed to build a
provenance tree. A simple log on the other hand
requires a sequential scan of the entire log starting
from the last record.

4 Evaluation

We evaluated the performance of our system on 2 ma-
chines, one was configured to be an NFS server with file
system operations beingsynced and the other machine
was configured run an the NFS client with the DPASS
stacking file system. The Berkeley DB RPC server was
configured to run on the same machine as the NFS server.

The server is a 3GhZ Pentium 4 Machine with 512MB
of RAM and a MAXTOR 6Y080M0 80GB Serial ATA
7200PRM HDD. The server runs Fedora Core 3, with a
Linux 2.6.11-1.14FC3 kernel. The client is a 500Mhz
Pentium 3 Machine with 756MB of RAM running run-
ning RedHat 7.3, with a Linux 2.4.29 kernel. The Linux
kernel on the client has a single line patch to store a
pointer to the active dependencies of the files of the pro-
cess. We set the receive buffer size for sockets to be



16MB at the client.
In all our evaluations, to ensure a cold cache, we un-

mounted the file systems on which the experiments took
place between each run of a test. We recorded elapsed,
system, and user times, and the amount of disk space
utilized for recording provenance. We also recorded the
wait times for all tests; Wait time is mostly I/O time, but
other factors like scheduling time can also affect it. Wait
time is computed as the difference between the elapsed
time and system+user times. We ran each experiment at
least 4 times. For each of our results, the standard devi-
ation was less than 5%. We do not discuss the user time
in the results as DPASS stacking fs is in the kernel and
hence the user time remains unaffected.

4.1 Workloads

We ran two benchmarks on our system: a real workload
from the Bauer Center for Genomics Research (CGR),
Harvard University and a CPU-intensive benchmark.

The first workload, from CGR, takes 2 files and pro-
duces 1 result file at the end. Each of the 2 input files
contains protein sequences from different species of bac-
teria. The output file contains a list of proteins in the two
species that may be related to each other evolutionarily.
The workload consists of series of commands that pro-
duce output files that are used as input to the next com-
mand. Starting from 2 files and 1 configuration file, 15
more files are produced, with the 1 result file. The scien-
tists at CGR would find DPASS useful to easily “recol-
lect” the input files from which the output was derived,
two months after the fact.

The second workload was a build of Am-Utils [6]. We
used Am-Utils 6.0.9: it contains over 60,000 lines of C
code in 430 files. The build process begins by running
several hundred small configuration tests to detect sys-
tem features. It then builds a shared library, ten binaries,
four scripts, and documentation: a total of 152 new files
and 19 new directories. Though the Am-Utils compile is
CPU intensive, it contains a fair mix of file system op-
erations. This workload demonstrates the performance
impact a user sees when using DPASS under a normal
workload.

For each workload, we evaluate the performance over-
head due to DPASS, the space overhead required to store
provenance and the reduction in dependencies recorded
due to the improvised provenance tracking algorithm.

4.1.1 Configurations

We used the following configurations on the client ma-
chine for evaluation:
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Figure 3:Overhead for CGR workload and Am-Utils Com-
pile. The first half of the graph is the CGR workload result
and uses the left scale. The second half of the graph is the
Am-Utils Compile result and uses the right scale.

• NFS: Client Machine running NFS client without
the DPASS stacking file system or provd.

• DPASS: Client Machine with provenance tracking
enabled, i.e., NFS client with DPASS Stacking file
system and provd.

4.2 Performance Overhead

4.2.1 CGR Workload

The left half of Figure 3 compares the overhead of
DPASS with NFS for the CGR workload. The overhead
is negligible (less than 1%). The system and wait time
in DPASS increase, but are within the standard deviation
and hence the increase can be attributed to noise. At any
point, there are at best 3 files open, hence the provenance
tracking algorithm will not have any effect on the sys-
tem time. The amount of provenance generated is also
(see Section 4.3) very small, hence the wait time is also
unchanged.

Figure 4 shows the provenance tree for the CGR
workload.Mpne.faa andHinf.faa are the two files
containing the protein sequence,.ncbirc is a configu-
ration file andRHRB.out is the output file.

4.2.2 Am-Utils Compile

The right half of Figure 3 compares the overhead of
DPASS with NFS for the Am-utils compile benchmark.
Overall, there is a 6.2% decrease in the elapsed time for
DPASS compared to NFS. The decrease in overhead can
be attributed to the 19.2% decrease in the wait time for
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Figure 4:Provenance tree for CGR workload.

DPASS. We believe that this decrease in the wait time is
mainly due to caching at the DPASS stacking file system
layer . The system time for DPASS increases by 7.9%,
due to the provenance tracking algorithm running in the
DPASS stacking file system. The increase in system time
is offset by the decrease in the wait time.

4.3 Reduction in dependencies due to
Provenance Tracking Algorithm

Table 1 shows the number ofread system calls, number
of write system calls and the number ofmmapsystem
calls for each of the workload. Table 1 also shows the
number of dependencies captured by DPASS. The num-
ber of dependencies captured by DPASS is drastically
less than systems like backtracker [5] and lineage file
system [9] which log everyread andwrite and later
build the dependencies from the log. The last column in
Table 1 shows the amount of reduction in the number of
dependencies due to the provenance tracking algorithm.
The previous section has already shown that the cost of
running provenance tracking algorithm, that reduces re-
dundant dependencies, is very low.

In scientific experiments, we expect there to be a small
number of large files implying that a large number of
read/write calls are needed to process them. While log-
ging each call will prove to inefficient, using the prove-
nance tracking algorithm should reduce the storage space
required to store provenance and as a result, the time re-

quired for building provenance trees.

4.4 Space Overhead

Table 2 shows the space overhead due to provenance.
The space overhead for the CGR workload is 0.4% and
for Am-utils compile is 3.3%. Clearly, the amount of
space occupied is within admissable limits.

In summary, our performance evaluation demon-
strates that DPASS has a low performance and space
overhead, while also demonstrating that our provenance
tracking algorithm is effective in reducing dependencies.

5 Related Work

The Lineage File System [9] is a system that logs each
read/write syscall into a SQL database. The user then
directly runs SQL queries to retrieve provenance. The
disadvantage with this system is that it does not eliminate
redundant data.

The Semantic File System (SFS) [4] is another sys-
tem which uses provenance. The system allows users
to access files based on their content. File type spe-
cific transducers automatically extract attributes (field-
value pairs) from files and insert them to an index on
file modification. These attributes are used for query
based file retrieval. Queries are in the form of vir-
tual directories. For example, to list all files that ex-
port the procedure lookup fault, the user can runls
/sfs/exports:/lookup fault . This lists the
files that exportlookup fault. Although SFS is similar
to DPASS in that it creates indices and provides a queri-
able interface, it is different from DPASS as SFS creates
indices and allows for queries on the content of the files
rather than the provenance.

Many Grid and workflow management systems like
the Metadata Catalog Service (MCS) [8], the replica lo-
cation service (RLS) [2], Chimera [3], and the prove-
nance aware service oriented architecture (PASOA) [7]
provide provenance tracking mechanisms for various ap-
plications. However these systems are very domain spe-
cific and cannot be used elsewhere.

There has been earlier work on tracking the flow of
information in a filesystem to detect intrusions. For ex-
ample, the BackTracker [5] is a system that logs every
read and write and beginning with suspect log record for
a file the BackTracker is able to track back and identify
the files and processes that affected that file, and also to
display chains of events in a dependency graph. Note that
the BackTracker is limited to a non-distributed system,



Benchmark Number Number Number of Dependencies % Savings
of reads of writes mmap reads generated

by DPASS
CGR Workload 251 8,522 18,688 245 99.1%
Am-Utils compile 27,230 70,607 1,040 6,062 93.9%

Table 1:Reduction in dependencies due to Provenance Tracking Algorithm.

Benchmark Data Size Number Size of % Overhead
of files Provenance

CGR Workload 5.7MB 18 24KB 0.4%
Am-Utils compile 34.4MB 564 1.1MB 3.3%

Table 2:Space overhead due to provenance.

whereas our system works in a distributed environment.
We also take care to avoid redundant dependencies.

6 Conclusions

In this project, we have designed and implemented a Dis-
tributed Provenance Aware Storage System that automat-
ically captures and efficiently retrieves the provenance
of files in a distributed file system. We have proposed
a provenance tracking algorithm that reduces redundant
dependencies significantly. Our system also incurs mini-
mal space and processor overheads.

6.1 Future Work

The Berkeley RPC server does not support concurrent
operations as it is currently unithreaded. Although
this project does not focus on performance, making the
Berkeley DB RPC server support concurrent operations
will be useful.

Our current implementation does not capture prove-
nance of input files that exist outside the mount point.
Designing a system that is capable of capturing prove-
nance from multiple mount points will be useful.
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