
SLYK: A Transparent Fault-Tolerant Migration Platform

Jasper Lin, Jennifer Shu, Olivier Koch, Shuchyng You

{jasperln, jshu, olivierk, yoshu117}@mit.edu

Abstract

The recent trend towards mobile computing has in-
troduced new challenges such as migrating a user’s
computing environment as he moves from location
to location. Although laptops offer a great deal of
mobility, they still suffer from traditional drawbacks,
such as having weak computing power compared to
desktops and being relatively expensive and encum-
bering. In the past few years, the concept of a virtual
environment that can be suspended at one place and
resumed at another has started to emerge, opening
the door to true mobility.

We propose a virtual machine-based migration
platform that preserves active network connections
across machine migrations. To make our system fully
deployable, we require neither cooperation from the
outside world nor any modification to the host or
guest operating system. The platform provides ma-
chine and network transparency as well as fault tol-
erance and data integrity.

1 Introduction

In today’s computing environment, it is common for
one user to encounter several different computers in
the course of a day. Computers are increasingly being
viewed as public utilities that are as ubiquitous as
electricity and water. As a result, users no longer
need to value computers as an expensive resource;
instead, they can place greater worth on the state,
including personal data and open applications, stored
on these computers.

A mobile working environment would be useful to
virtually anyone who uses a computer. For instance,
a student working on a desktop in his lab could trans-
fer his state to his laptop at home, and be able to
switch back and forth every day. If he were in the
middle of a long simulation, for example, he could
resume it on different computers without having to
start over or wait in lab until it finished. Similarly,
a businessman could travel across the United States

Figure 1: SLYK facilitates the migration of user state
between network-connected machines.

and recover his latest work on any computer with
Internet access.

This novel view of computing, however, opens up
a new batch of interesting challenges that need to be
addressed before such a system can be successfully de-
ployed. First, for maximum deployability, no cooper-
ation from the rest of the network should be required.
In other words, if a user is migrating from one ma-
chine to another, the rest of the network should not
be aware of the change, and the user’s active network
connections should not be broken. We refer to this
challenge as network transparency. Second, in order
to offer the most flexibility, the migration platform
needs to be hardware and operating system indepen-
dent. One promising approach is to use virtual ma-
chines (VMs) which, by nature, do not depend on the
underlying operating system and therefore allow true
machine transparency [8]. Third, our system needs
to provide a fault-tolerant approach for data storage.
If a machine running the migration platform suffers a
hard disk (HD) failure, for example, then other ma-
chines should be able to resume without loss of data.

In this paper, we attempt to address the above
challenges, while focusing on the problem of migrat-
ing user state as users traverse machines. We pro-
pose SLYK1, a virtual machine-based migration plat-
form that preserves active connections across machine
migrations and offers a high level of fault-tolerance.
Since a VM simulates a complete architecture, users

1SLYK, pronounced “Slick”, is taken from the authors’ last

names: Shu, Lin, You, and Koch.

1



are permitted to run any operating system and ap-
plication compatible with the emulated architecture.
The state of any virtual system running on SLYK can
be packaged and sent over a network to be resumed
by any other machine running SLYK, as shown in
Figure 1.

2 Related Work

Previous work on using VMs to migrate state focuses
mainly on optimizing the performance of emulation
and the speed of migration [15]. Although perfor-
mance is important for the mainstream adoption of
VMs, there are other important factors such as fault-
tolerance and transparent operation with the outside
world.

Internet Suspend and Resume (ISR) [9] presents a
straightforward implementation of a VM migration
infrastructure. Upon suspend, the state of the VM is
stored on a remote NFS server. When resumed, the
state of the VM is copied from NFS onto the target
machine and the VM is started.

Optimizing the Migration of Virtual Computers
describes several optimizations to speed migration
time [15]. Their goal is to make it practical to mi-
grate state between home and work computers over
a 384kbps link. During the process of migration, vir-
tual HD blocks are left on the source machine to be
requested as needed by the target machine.

Both of these systems are based on VMWare [13],
so they only work on the x86 platform. Addition-
ally, these projects suffer from two other drawbacks.
First, all active network connections are lost during
migration. Applications that depend on these con-
nections need to be reset on the target machine. Sec-
ond, HD blocks which have not been requested and
cached locally may become inaccessible when their
host machines go down.

Mobile IP [14] provides mobility by always routing
packets first to a static home host then to the mo-
bile host, which works when a static host is always
available and not separated by the network. How-
ever, failure of this home host results in loss of all
active mobile connections. SLYK uses a Mobile IP-
like infrastructure to migrate active connections, but
the home host can be dynamically specified.

There have been several proposals to migrate state
at a finer granularity than full system migration [3,
18, 21]. These systems exploit specific knowledge
about the state or execution environment to ship the
minimum amount of data needed for seamless transi-

tion. In contrast, VM approaches involve potentially
needing to send much more state than needed. How-
ever, the general approach adopted by VM migration
platforms allows the migration of many more operat-
ing systems and applications without any modifica-
tion. Furthermore, several optimizations can be per-
formed to reduce the inherent overhead of migration
via VMs [13, 15].

3 Challenges

We face many difficulties in designing a migration
platform that is transparent, fault-tolerant, and effi-
cient. In order for a migrated machine to function as
if it were still operating on the original host, we need
to transfer a large amount of state, including that of
the HD, RAM, and CPU. Unfortunately, the major-
ity of state is kept on the HD, and it is both inefficient
and unnecessary to transfer the entire HD during mi-
gration. However, since we would like to present a
consistent snapshot of a user’s personal state across
different machines, we need to optimize HD migration
while transferring enough state for full recovery from
possible system failures. Instead of stalling migration
until the entire HD is transferred, our system fetches
data blocks (sectors) on demand, thereby increasing
the speed of migration.

Clearly, using the host machine’s HD to store the
VM state is hazardous, because the failure of the host
machine might render some crucial data inaccessible
to other host machines. We aim to address this prob-
lem by using a Distributed Hash Table (DHT) store
acting as a virtual HD to store sectors of the HD im-
age. Using a DHT requires a communication scheme
to load and fetch data sectors from the DHT.

One of the many goals we aim for in SLYK is
network transparency; as users migrate, their active
connections should stay intact. For example, net-
work transparency would allow a SLYK user to begin
downloading a file on one SLYK-enabled machine and
continue downloading the same file when he migrates
to another machine. To achieve this goal, we need
a packet forwarding mechanism to allow packets to
be re-routed when a SLYK user moves between hosts
with different IP addresses.

To make SLYK as deployable as possible, we don’t
want to require any modifications of applications or
the guest or host operating systems. Ideally, SLYK
would run as an application on the host machine,
without requiring administrator privileges. Trans-
ferring data from one host O/S to another some-

2



times requires dealing with different endian formats
and data representations. SLYK needs to overcome
these differences in order to be portable to all of the
commonly-used platforms, such as Linux, OS X, and
Windows.

In the past, a lot of work has been done on mi-
grating state without keeping the active connections
alive [9], or optimizing performance while sacrific-
ing fault-tolerance. SLYK is different from previous
projects in that it incorporates machine and network
transparency, fault-tolerance, and deployability into
one migration platform.

4 System Overview

SLYK is a migration platform that allows state to
be transferred across several different architectures,
while maintaining network transparency and provid-
ing fault-tolerant data storage. Starting with an open
source emulator, we have added the ability to trans-
fer and resume a memory image, forward packets to
handle active connection migration, and access sec-
tors from a DHT store for the virtual HD.

4.1 Machine Emulation

SLYK is built on top of QEMU [2], a highly portable
open source emulator that runs on both the x86 and
PowerPC architectures. Utilizing dynamic transla-
tion, QEMU is a much faster processor emulator than
Bochs [10]. QEMU also allows network communica-
tion without needing superuser privileges.

4.2 Remote Communication

Machines running SLYK communicate with each
other using XmlRpc++ [12], an implementation of
the XML-RPC standard. We chose to use XML-RPC
as our communication protocol because it is an in-
dustry standard and is portable to many different
platforms. We considered several implementations
of XML-RPC. XmlRpc++ proved to be the most
portable in that it builds on all three platforms we
tested (Linux, OS X, and Windows) without requir-
ing external libraries. SLYK also uses XmlRpc++ to
store and retrieve data from the DHT.

RPC communication is exchanged between ma-
chines via a dedicated SLYK port2. Both ends of

2Currently, the SLYK RPC port is 5544. The SLYK bulk

transfer port is 5545.

the communication send the payload (body of the re-
quest and response) over HTTP in XML format.

4.3 Reliable Storage

To provide reliable storage, we chose to replicate the
HD image on a DHT. The specific DHT that we use
is OpenDHT [19], which runs on PlanetLab [1] with
over 200 nodes available for answering put and get
requests. OpenDHT is cross-platform, supports com-
munication through XML-RPC, and provides reliable
storage by replicating segments across its network of
nodes. DHash [5], another DHT implementation, also
could have provided the fault-tolerance that we de-
sired. However, accessing services on OpenDHT does
not require that the client machine be Unix-based.
SLYK flushes and fetches data sectors on demand
from OpenDHT.

4.4 Migration

State transfer amounts to serializing QEMU’s RAM,
CPU, and timer representations, sending it over the
network, unserializing the image on the other end,
and bootstrapping SLYK with this state. In addi-
tion, SLYK also sends along an array of hashes that
is needed for fetching data sectors on demand from
OpenDHT. These are the steps that SLYK follows
when transferring ownership to the new machine:

1. The source machine sends an RPC to the desti-
nation machine to initiate the migration.

2. Upon receiving this RPC, the destination ma-
chine opens up a port to receive the bulk data
transfer from the source machine.

3. The destination machine responds with the port
number when it is ready to receive. Then the
source machine begins transferring the serialized
state and hash array.

4. When the state transfer is done, the source ma-
chine closes the TCP/IP port which indicates to
the destination machine that it may load this
state and resume execution.

5. The source machine then continues to flush any
remaining dirty sectors it may have cached to
OpenDHT.

6. The virtual system on the new machine can con-
tinue execution while this flushing takes place
but blocks if it tries to demand-page a sector

3



from OpenDHT that hasn’t yet been flushed,
and resumes when the sector contents are finally
flushed.

5 Virtual HD Store

Using the local HD of the SLYK machine clearly
makes the system error-prone. If one of the SLYK
machines were to go down, the data stored on its HD
would be lost until the machine has recovered. This
loss of data could prevent the user from resuming his
activities on a new machine. In addition, transfer-
ring the content of a full HD over the network would
make the migration very slow. Therefore, we provide
a virtual HD that is accessible by all SLYK machines
at all times.

From the point of view of a SLYK machine, disk
I/O happens as if the local HD were being used,
thereby making the use of the virtual HD fully trans-
parent. The read and write operations to the local
HD are simply intercepted and converted into read
and write operations to the virtual HD. To keep mi-
gration time within a reasonable limit, only the vir-
tual system’s memory is transferred over the network
during migration. Virtual HD blocks are demand-
paged from OpenDHT and cached after the VM has
already started on the new machine. The following
sections describe how SLYK disk images are format-
ted, how SLYK communicates with OpenDHT, and
how the cache is used.

5.1 DHT

The virtual HD is stored on OpenDHT. Since the
virtual system runs only on one computer at a time,
no complex coherency protocol between SLYK and
the OpenDHT is needed. The first time a block is
fetched, SLYK caches it in its local store. On writes,
SLYK marks the block as dirty and eventually flushes
the block out to OpenDHT.

OpenDHT offers a very transparent way to store
and access <key,value> pairs. There is a 1024-byte
limit on values in OpenDHT; therefore, data must
be broken into blocks before being stored. Since
QEMU’s data storage is based on 512-byte disk sec-
tors, we use these sectors as values in OpenDHT. It
is important to note that data cannot be changed
or removed once it has been stored on OpenDHT.
Instead, a timeout mechanism makes the data obso-
lete on OpenDHT after a certain amount of time (up
to one week). The timeout value is specified by the

DHT

A B C
migrate migrate

flush
flush

fetch
fetch

Figure 2: For fault-tolerance and fast migration,
SLYK stores virtual HD blocks on an external
OpenDHT store. HD blocks are paged in on demand
and cached locally. Dirty blocks are periodically writ-
ten out to keep OpenDHT updated. After migration,
all dirty blocks are flushed to OpenDHT.

user and should be chosen carefully. Using a small
timeout may result in loss of data, whereas using a
large value may conflict with PlanetLab requirements
limiting the amount of storage used by each client.
However, the operability of SLYK is not impacted by
this choice as long as a reasonable value is used. Our
implementation uses a timeout of 30 minutes.

We store the hash of a sector’s contents as
the key and the sector’s actual contents as the
value in OpenDHT, using Secure Hash Algorithm 1
(SHA1) [6] for the key computation. It takes as input
a message of less than 264 bits and produces a 20-
byte (160-bit) message digest. In the unlikely case of
hash collisions, OpenDHT would return a list of val-
ues corresponding to the same hash because it does
not overwrite values that have the same keys.

Data on OpenDHT should be kept as updated
as possible; otherwise, flushing dirty blocks out to
OpenDHT may become part of the critical path in
migration. SLYK should not be too eager to flush
blocks either, since batching writes to the same block
into a single write to the DHT saves bandwidth.
The approach adopted by SLYK is to prioritize dirty
blocks by least recently used and flush those blocks
first. The idea is that some blocks are going to be
more actively written to and read from than others.
The ones that are being actively used should be the
last to be flushed since there is a good chance that
deferring them will save bandwidth. With this pri-
ority in mind, SLYK continuously in the background
flushes dirty blocks to OpenDHT, but it throttles it-
self to keep from using too much bandwidth. Only
when migration is imminent does SLYK use its full

4



bandwidth to fully flush out dirty pages.
Figure 2 shows the migration process from com-

puter B to C. After control is transferred to C, B
flushes the remainder of its dirty blocks to OpenDHT.
Then as C runs, it demands pages in blocks from
OpenDHT to cache locally. C suspends on reading a
block that B has not flushed yet. Computer A shown
in gray has already flushed its dirty blocks.

5.2 File Format

A SLYK disk image has three distinct parts - the
header, HD snapshot, and sectors, as shown in the
Original Disk Image in Figure 3. The header con-
sists of the number of data sectors in the image, and
a magic number and version number identifying the
disk image as being in SLYK format. The HD snap-
shot is an array of 20-byte SHA1 hashes of sector
contents, each followed by a byte indicating whether
or not the sector is stored in the disk image, sorted by
sector ID (i.e., each sector has a corresponding SHA1
hash). At the end of the image is a section containing
all of the actual sectors, also sorted by sector ID.

When SLYK is bootstrapped with a SLYK-
formatted disk image, the HD snapshot section of the
Original Disk Image (read-only) is copied over to a
Working Disk Image as shown in Figure 3. Changes
to any sectors are written to the HD snapshot on the
Working Disk Image. The Working Disk Image also
contains a sector cache, an array of sectors that have
been cached but not yet flushed to OpenDHT.

5.3 Cache

Caching improves I/O performance by minimizing
the amount of disk-bound accesses. For optimization
purposes, SLYK keeps a Sector Lookup Table in mem-
ory. As shown in Figure 3, the table is indexed by sec-
tor number and contains the offset into the Working
Disk Image’s sector cache where a sector’s contents
are stored.

On reads, SLYK looks for the block in the following
order until it finds it:

1. The sector cache on the Working Disk Image

2. The sectors on the Original Disk Image

3. OpenDHT

On writes, the blocks are cached and marked as dirty.
Dirty blocks are flushed on a least recently used basis,
either when the cache is full or after migration.

Header SectorsHD Snapshot

HD Snapshot Sector Cache

copied

Sector

Lookup Table

Original

Disk Image

Working

Disk Image

…
In Memory

On Disk

NULL

Figure 3: SLYK disk structure. The Original Disk

Image is a read-only image from which the HD Snap-
shot is copied over to the Working Disk Image. The
Working Disk Image acts like a dynamic cache that
stores sectors that are indexed by the offsets in the
in-memory Sector Lookup Table.

6 Network Transparency

Many of the challenges we encountered in design-
ing SLYK branched from our vision for SLYK to be
as deployable as possible. There would have been
many possible alternate designs to SLYK if we had
not been aiming for this property. To achieve this
goal of deployability, we wanted to avoid disrupting
communication with any nodes on the network that
SLYK might wish to talk to, which includes servers
and other SLYK nodes. We refer to this property
as network transparency. In order for SLYK to be
transparent to the network, it needs to emulate a vir-
tual network environment that programs and users
will be familiar with, and have mechanisms for mi-
grating active connections without cooperation from
the remote machine.

6.1 Virtual Network Environment

SLYK communicates with the outside world as if it
were on its own private network behind a NAT. The
virtual router, DHCP server, and DNS server are all
emulated in software, thus giving SLYK the flexibility
to perform high level routing decisions while still pre-
senting a familiar environment to the guest operating
system and applications.

The virtual network QEMU simulates includes a
virtual router and DHCP server (10.0.2.2), a DNS
server (10.0.2.3), and a SMB server (10.0.2.4). The
DHCP server allows the guest operating system to
autoconfigure itself to the virtual network. The DNS
server forwards requests from the guest operating sys-
tem and applications to the real name resolving mech-
anism provided by the host operating system. Fi-

5



S1

A B

S1

A

b)a)

migrate

S2

Figure 4: SLYK preserves active network connections
through machine migration. (a) Before any migration
occurs, machine A connects to sender S1. (b) After
migration to machine B, the connection to S1 is indi-
rectly maintained via forwarding through A. B also
establishes a direct connection with sender S2.

nally, traffic routed to the virtual gateway are trans-
lated into system calls into the underlying sockets
or Winsock API of the host. In this way, the en-
tire QEMU system can run non-privileged. This
method contrasts with the approach taken by Bochs
and VMWare, and does not employ the QEMU op-
tion of communicating directly with the kernel using
raw packets (which requires superuser status in many
operating systems).

6.2 Active Connection Migration

Without cooperation from the remote machine, net-
work connections cannot be fully migrated. There
have been several proposals to augment internet rout-
ing with a truly mobile system such as i3 [17] or
UIP [7]. However, without the widespread deploy-
ment of such systems, and given the restriction that
no modification can be done to the remote machines
for maximal deployability, SLYK is forced to adopt a
packet forwarding-like technique such as that used in
Mobile IP. However, the solution adopted by SLYK
is a little more flexible, since connections to the vir-
tual environment are made mobile without requiring
the host’s connections to be forwarded. SLYK also
treats UDP and TCP traffic differently, being more
bold about suddenly moving UDP traffic since it is
inherently connectionless.

SLYK is optimized for the common case of the vir-
tual system trying to establish a direct connection
with a remote machine. In this situation, a direct
connection is established between the host machine
running SLYK and the remote machine, and packet
rewriting tricks them into thinking they are commu-
nicating directly. It is only when there are lingering

active connections at the time of migration that for-
warding needs to take place.

When there are lingering active connections, the
machine that the virtual system migrated from does
not fully shutdown SLYK. Instead, SLYK switches
into a simple routing mode which keeps the connec-
tion alive with the remote machine and forwards any
incoming packets to the new location of the virtual
system. In this mode, SLYK also forwards packets
from the virtual system to the remote machine. Fig-
ure 4 shows computer A switching into this routing
mode since the connection to S1 was lingering at the
time of migration.

This system does not maintain a perfect illusion of
active network migration. For example, a forward-
ing machine may go down. This would appear to
the virtual system the same as if the remote machine
dropped the connection. In many situations, the in-
terested application or operating system may attempt
to reestablish the connection and would succeed in
directly connecting with the remote machine.

7 Evaluation

We evaluated SLYK by verifying correct operation
and taking performance measurements. Several com-
binations of different host and guest operating sys-
tems were installed and successfully tested running
SLYK. To evaluate the performance of our system, we
ran benchmarks for CPU-intensive and disk-intensive
tasks and took timing measurements for network-
oriented tasks such as migration.

7.1 Verification

We installed SLYK on Linux, Windows XP, and Mac
OS X host platforms, and on each of the hosts, we
tested running SLYK with Windows 2000, Debian,
and Knoppix as guest operating systems. On Debian
and Windows, we tested certain applications that
were pre-installed in the disk images to see if their
behavior was normal. In both cases, ssh, AIM, and
Firefox loaded successfully and were able to connect
to the Internet. In addition, we were able to create
and run a PowerPoint presentation in Windows, and
create and save Emacs files in Debian.

Migration tests were performed with both the Win-
dows and Debian guest systems running on the vari-
ous host platforms. In each case, one or more appli-
cations were loaded on one machine and successfully

6



 0

 50

 100

 150

 200

 250

 300

 350

T
im

e 
(s

ec
on

ds
)

untar nbench compile

Host
SLYK Local HD

SLYK 128M Cache

Figure 5: Timing results for nbench, untar, and com-
pile on a Linux host machine compared to Debian
running on SLYK with various configurations.

migrated to the second machine. For example, us-
ing Firefox on Debian, we installed Flash, loaded a
Flash animation in the browser, started playing it on
the first computer, migrated to the second computer,
and resumed the animation from where it left off. We
also successfully migrated files that were saved to the
hard disk of the first computer.

7.2 Performance

We ran three benchmark tests to quantify the perfor-
mance of the SLYK virtual system compared to the
host machine. The tests were run on a Pentium 4
2GHz desktop computer running RedHat Enterprise
Linux WS, with GCC version 3.2.3 and the 2.4.21
Linux kernel. The guest O/S on which we tested
SLYK was Debian Testing (3.1), running on the same
host machine. For the first benchmark we down-
loaded a tar file of version 2.6.11 of the Linux ker-
nel [20] and measured the time it took to untar the
file (a disk-intensive workload). The second bench-
mark was the Unix port of the nbench benchmark
suite [4, 11], which tests CPU-intensive workloads.
For the third benchmark, we downloaded version 0.7
of XmlRpc++ [12] and measured the time needed to
compile the XmlRpc++ RPC library, a mixture of
CPU and disk-intensive workloads. For all of the
measurements, we used the Unix time function to
measure time on the host machine and a stopwatch
on the guest machine (since the output of time on the
VM does not correspond exactly to real time). Aver-
age times of five runs of each benchmark are shown
in Figure 5.

Avg. Time (sec)
Migrate 27.36
Slow Migrate 59
Full Migrate 52.5
DHT Put 0.53
DHT Get 0.42

Table 1: Timing results for migration of Debian be-
tween a Linux host and Windows host, and the aver-
age time for DHT put and get accesses.

For the first benchmark, we expect the difference
between emulated performance and native perfor-
mance to be similar, since the disk is the bottleneck
for both systems. The second benchmark was a lit-
tle more surprising since we expected emulated per-
formance to be poor for CPU-intensive tasks. The
closeness of emulated to native performance is a tes-
tament to the QEMU dynamic code translation en-
gine. Upon examination of the benchmarks, the rea-
son QEMU did so well became more clear. The
benchmarks were typically algorithmic, loop-heavy
benchmarks which would utilize QEMU’s translated
code cache very well. The last benchmark is the most
stark. It is a complicated build benchmark that exer-
cises both communication and computation. Unfor-
tunately, QEMU currently does not overlap commu-
nication and computation as well as it could. QEMU
is a single-threaded program with one main loop. In
several places it resembles an event-driven design, but
in other places the entire thread blocks when it should
not have to. The closeness of SLYK running on the
local HD and SLYK running on the DHT store with
128M cache shows that our DHT store implementa-
tion has been optimized enough to be competitive
with normal QEMU performance though.

Next, we measured the time it took to perform
various types of migration between the same Linux
machine and and a Pentium M 1.6GHz laptop run-
ning Windows XP, connected by a 100Mbps switch.
A “slow” migrate used our initial implementation of
migration, a regular migrate was a much more effi-
cient version that used sockets, and a “full” migrate
consisted of the regular migrate along with all of the
state required to reconstruct the user’s hard drive.
Table 1 shows a summary of the migration times. In
addition, for reference we included the average time
it took to perform a single DHT put or get.

7



8 Future Work

Significant improvements can still be made to
SLYK’s performance, fault tolerance, and deploya-
bility. SLYK is based on a few projects and inherits
some of their good qualities and shortcomings. There
are also similar projects to SLYK with optimizations
and ideas worth borrowing.

One obvious technique to speed migration is to
compress the memory image before transferring from
source machine to destination machine. However,
compression may require excessive CPU time in an
environment where the CPU may already be taxed.
Compression might not turn out to be an overall
win unless the memory image is readily compress-
ible. One clever technique, termed ballooning [15],
involves writing a device driver that integrates un-
obtrusively with the guest operating system which,
immediately before migration, requests many pages
from the operating system, causing it to page out all
not-recently used pages. The driver then clears the
pages it requests to all zeros, causing the resulting
memory to be highly compressible. This technique
unfortunately does require something written specif-
ically for the guest operating system. However, the
specifics of requesting large regions of memory and
clearing them to zero are usually alike in many oper-
ating systems.

Many improvements can be done to speed up
SLYK’s steady state performance as well. QEMU
already does a very good job with its dynamic code
translation engine for heavy CPU code with many
repeating regions. It also does well on purely I/O
bound tasks since native execution would share the
same bottlenecks. However, in our experience QEMU
cannot effectively overlap computation with commu-
nication, resulting in greatly degraded performance
on benchmarks which exercise both. This was es-
pecially bad for us when the latency of contacting
a DHT was adding into the mix. To have any ac-
ceptable performance, we needed to do aggressive
caching and some tweaking of QEMU’s main event
loop to make more operations non-blocking. Our per-
formance tweaks have allowed SLYK running on a
DHT-backed store to approach the performance of
QEMU running entirely out of disk, but much more
can be done to approach native execution speeds.

SLYK can also better utilize being connected to a
highly reliable storage to perform automatic backing
up of state. The hard part in integrating a DHT-
backed store throughout the SLYK code has already
been done. Furthermore, SLYK already uses hash ar-

rays as compact snapshots of the current HD stage.
The next step would be to utilize this link to perform
automatic and consistent backups of the SLYK sys-
tem. Many ideas can be borrowed from archival sys-
tems such as Venti-DHash [16] or the many log-based
systems in existence. SLYK was originally designed
with backup in mind, so adding it in should not be
difficult. However, tackling the original degraded per-
formance when running with a DHT became a more
pressing concern.

With a great deal of effort, we have managed to
produce a project that is both portable and deploy-
able. This involved needing to deal with the differ-
ent quirks of every platform and trying to cut down
on the number of external dependencies our project
relied on. In the end we feel we have been fairly
successful in this effort, but now with our experience
and a little bit of redesign, SLYK could potentially
integrate even better with user-preferred computing
environments.

9 Conclusion

SLYK attempts to offer strong notions of fault toler-
ance and mobility, including machine transparency,
network transparency, and active connection migra-
tion. It does so at a performance cost in order to en-
sure compatibility with as many operating systems,
applications, and computing environments as possi-
ble. Our prototype demonstrates that despite this
overhead, a working, usable system can be built that
offers the illusion of full mobility.

Many optimizations can be performed to bring
down the cost of mobility. Some, such as dynamic
binary translation, gzip compression, and balloon-
ing, have already been explored. Others may benefit
greatly from hardware, operating system, and net-
work support. The costs associated with mobility
will continue to decrease until one day full user mo-
bility may become a normal part of our computing
environment.

Acknowledgments

We would like to thank Robert Morris and Athicha
Muthitacharoen for their suggestions and guidance.
We would also like to thank the developers of
QEMU and XmlRpc++ for producing their quality
projects. Finally, we would like to give thanks for
the OpenDHT folks and the maintainers of the many

8



PlanetLab nodes we hammered for putting up with
our traffic and not dropping our data.

References

[1] M. Beck, T. Moore, and J. S. Plank. An End-to-
End Approach to Globally Scalable Network Storage.
Technical Report PDN–02–007, PlanetLab Consor-
tium, November 2002.

[2] F. Bellard. Qemu CPU emulator User Documenta-
tion, 2003.

[3] F. M. T. Brazier, B. J. Overeinder, M. van Steen,
and N. J. E. Wijngaards. Agent factory: generative
migration of mobile agents in heterogeneous environ-
ments. In SAC, pages 101–106, 2002.

[4] BYTEmark. http://www.byte.com/bmark/bmark.
htm.

[5] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), Chateau
Lake Louise, Banff, Canada, October 2001.

[6] D. Eastlake. Us secure hash algorithm 1 (sha1). The
Internet Society: RFC 3174, September 2001.

[7] B. Ford. Unmanaged Internet Protocol.

[8] IBM Corporation. IBM virtual machine facility/370:
planning guide Publication Number GC20-1801-0,
1972.

[9] M. Kozuch and M. Satyanarayanan. Internet Sus-
pend/Resume. In WMCSA ’02: Proceedings of the
Fourth IEEE Workshop on Mobile Computing Sys-
tems and Applications, page 40, Washington, DC,
USA, 2002. IEEE Computer Society.

[10] K. Lawton, B. Denney, N. D. Guarneri, V. Ruppert,
C. Bothamy, and M. Calabrese. Bochs x86 PC emu-
lator Users Manual, 2003.

[11] Linux/Unix nbench. http://www.tux.org/˜mayer/
linux/bmark.html.

[12] C. Morley. XmlRpc++, 2002.

[13] J. Nieh and O. C. Leonard. Examining VMware.
j-DDJ, 25(8):70, 72–74, 76, Aug. 2000.

[14] C. E. Perkins. IP Mobility Support for IPv4. Internet
Engineering Task Force: RFC 3344, August 2002.

[15] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. S. Lam, and M. Rosenblum. Optimizing the Mi-
gration of Virtual Computers. In Proceedings of the
5th Symposium on Operating Systems Design and
Implementation, December 2002.

[16] E. Sit, J. Cates, and R. Cox. A DHT-based Backup
System, 2003.

[17] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure, 2002.

[18] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth,
G. A. Hill, R. Jeffers, T. S. Mitrovich, B. R. Pouliot,
and D. S. Smith. NOMADS: Toward a Strong
and Safe Mobile Agent System. In Proceedings of
the Fourth International Conference on Autonomous
Agents, pages 163–164, Barcelona, Catalonia, Spain,
2000. ACM Press.

[19] B. K. Sylvia. Spurring adoption of dhts with open-
hash, a public dht service.

[20] The Linux Kernel Archives. http://www.kernel.org/.

[21] T. Walsh, P. Nixon, and S. Dobson. As strong as
possible mobility: An Architecture for stateful object
migration on the Internet.

9


