
Afterlife: A Distributed and Recoverable File System Based on a

Unified Approach to Logging

Edmond Lau, May Zhou, Emily Yan, and Xiao Yu

6.824: Distributed Computer Systems
Final Project Report

{edmond, amayz, kirason, xyu}@mit.edu
Massachusetts Institute of Technology

May 12, 2005

Abstract

We present a distributed and recoverable file
system called Afterlife that only requires a sin-
gle replicated log to recover from failures in
both the file system layer and the storage layer.
Based on this unified log, we devise recovery
procedures for both file server and block server
failures that can run as background processes
while the file system continues serving incoming
requests. Batch flushing of log records mitigates
the performance impact of logging. Our design
allows the batch flushing to be integrated with
the file server block cache consistency scheme
and lazy lock release scheme. Multiple identical
block server replicas enable high performance
file system read operations and provide avail-
ability in the face of failure. We evaluate their
performance on our Afterlife prototype of three
block servers and two file servers, and show that
logging and data replication incurs only a factor
of 10 performance versus a conventional NFS file
server.

1 Introduction

We propose a design for Afterlife, a distributed
file system that requires only a single log to re-
cover from failures in both the storage layer and
the file system layer. Multiple, identical block
servers replicate this log for recovery purposes

and also replicate metadata and user data to
provide a highly available storage layer. A scal-
able number of Afterlife clients can interact with
the file system layer via file servers that com-
municate with the storage layer. Afterlife tol-
erates up to n-1 failures of n block servers and
m-1 failures of m file servers while maintaining
metadata and user data consistency, assuming
that no network partition occurs.

We design Afterlife to achieve two major re-
covery goals:

• After a file server crashes, any metadata
and user data that it modified prior to the
crash is restored to a consistent state on
stable storage. We define consistency to
mean that if a file server crashes while ex-
ecuting a sequence of client operations and
the client sees the results of a particular
operation on stable storage, then the client
should also see the effects of all preceding
operations.

• After a block server crashes and reboots, its
copies of metadata, user data, and the log
should be brought up-to-date and synchro-
nized with other live block server replicas.

To accomplish these goals, we implement our
file system update operations as atomic trans-
actions using a single replicated log. Our major
research contribution in Afterlife is the use of
this unified redo log for crash recovery of both

1

the file system layer and the storage layer. The
key to our solution is an innovative log-aware
block server interface that enables block servers
to distinguish between log data and file system
data sent by file servers. This distinction allows
block servers to follow a write-ahead logging
protocol which, in conjunction with our data
flushing protocol, guarantees that only commit-
ted data reaches stable storage. Other than this
distinction, block servers treat log records as
opaque data.

The performance impact of logging is miti-
gated by the batch flushing of log records from
file servers to block servers and from each block
server’s in-memory cache to disk. Moreover,
our recovery procedures read the log and run
as background processes so that the file system
can continue handling incoming client requests.

Data replication on multiple block servers
eliminates the network bottleneck that would
otherwise occur on file system read operations
to centralized block servers. We instead dis-
tribute read operations to any available block
server. Read operations on large data sets
can be decomposed into smaller read operations
that execute in parallel on multiple block servers
to achieve higher performance. To maintain
replica consistency, every block server must exe-
cute a given operation before the next operation
can proceed.

A centralized lock server serializes concurrent
file system operations via file-level shared read
locks and exclusive write locks. To improve
performance and minimize communication over-
head, file servers use a lazy lock release scheme
and a write-back data cache to reduce the load
on the lock server and block servers, respec-
tively.

The rest of this paper is organized as follows.
We survey related work in Section 2. In Section
3, we describe the design and architecture of Af-
terlife, followed by a detailed discussion of our
unified logging approach and recovery mecha-
nisms in Section 4. We discuss the current sta-
tus of the implementation and preliminary per-
formance results of our Afterlife prototype in
Section 5. Finally, we conclude with a summary
of our contributions in Section 6.

2 Related Work

Existing distributed file systems address recov-
ery for different layers by using multiple distinct
logs. For instance, in the Frangipani file system
[7], the Petal [8] storage layer maintains its own
log for block server recovery while each Frangi-
pani file server stores a separate recovery log
as opaque data on Petal servers to handle file
server failures. Petal replicates both types of
logs for reliability. The use of multiple logs for
recovery of different components is redundant
and unnecessary, and stems partly from inad-
equate integration between the file system and
storage layers. Afterlife, on the other hand, rep-
resents an integrated solution that requires only
a single replicated log to recover from failures in
both the file system layer and the storage layer.

Unlike the Petal [8] storage layer, which frag-
ments its data across different Petal servers, Af-
terlife’s storage layer uses identical block server
replicas to address fault tolerance and simplify
the recovery process. Afterlife’s storage layer
provides a block-level interface that replicates
file data and metadata across multiple block
servers to provide availability and delivers high
performance to a large number of clients using a
multi-reader/single-writer locking mechanism.

Ivy [9] is a peer-to-peer file system that seri-
alizes file system operations without locks and
relies on a set of per-client logs to maintain the
integrity of metadata. Data exists only in logs,
and there is no explicit storage of file and di-
rectory objects. File System for Dragon (FSD)
[6] uses a redo log and group commit to facili-
tate fast file recovery from memory and limited
hard disk sector failures. Afterlife maintains a
single write-ahead redo log to limit the need for
conflict resolution among log updates during re-
covery.

Other file systems, such as Harp [1], use a
primary copy replication scheme. Harp’s repli-
cation scheme requires a two-phase protocol to
coordinate block servers during modification op-
erations. It tolerates network partition and
replica failure through a view change algorithm
based on Paxos.

2

Network

Client Client Client

File
Server

File
Server

Allocation
Manager

Lock
Server

Configuration
Manager

BC BC

Block
Server

Block
Server

LC LC

Recovery
Daemon

AC AC

Disk Disk

Figure 1: Architectural Design for Afterlife.

3 Architectural Design

The Afterlife file system architecture, as shown
in Figure 1, consists of the block servers, file
servers, a configuration manager, an allocation
manager, and a lock server. Afterlife clients are
standard NFS clients that connect to any of the
available file servers to access the file system.
Clients may connect to a file server over the net-
work as depicted in the figure or to a loopback
file server on their local machine. This section
describes each of the system components in de-
tail.

3.1 Block Servers

Block servers in Afterlife are replicas that store
identical copies of file system metadata and user
data at identical physical locations on their lo-
cal disks. Together, they expose a highly avail-
able, replicated storage layer that can function
correctly as long as at least one block server
remains running. File servers interact with
the storage layer via remote procedure calls
(RPCs).

To support basic storage operations, each
block server exposes a simple block interface
consisting of the following RPCs: put(key,

value), get(key), and remove(key). The key

parameter specifies a physical block number on
disk, and the value parameter specifies a se-
quence of bytes that fit within a fixed block size.
For our current prototype, we have selected a
block size of 8 KB to match the block size used
by the operating system.

To support write-ahead logging, we make the
block server interface log-aware by introducing
an appendLog(data) RPC, which appends the
bytes specified in data to the end of a single, uni-
fied log that is replicated on every block server.
Each block server stores its own copy of the log
in a fixed location on disk so that the recovery
mechanism always knows where to find the log
after a crash. We describe the details of the log
data in Section 3.2.

In order to achieve higher read/write per-
formance, each block server maintains an in-
memory cache of recently read or written blocks
as well as recent log data. The previously men-
tioned RPCs actually interact with the cache
rather than directly with the disk. A sepa-
rately scheduled event periodically appends the
in-memory log data to the tail of the on-disk log,
in the order that the log data was received, and
then flushes any dirty data from the block cache
to disk. As this event occurs, the block server
delays handling any put RPCs to in-memory
blocks, in order to prevent blocks from being
modified between the flushing of the log and
the flushing of dirty blocks.

As long as we guarantee that Afterlife file
servers only send updates to block servers for
committed transactions, and as long as block
servers always flush in-memory log records be-
fore writing modified data, block servers will
never write any uncommitted data to disk. We
discuss this guarantee in Section 3.2.3

3.2 File Servers

File servers in Afterlife act as NFS servers that
provide an interface between Afterlife clients
and the storage layer. To simplify the map-
ping from file handles to storage blocks, After-
life stores physical block identifiers in the file
handles sent out to clients.

3

As illustrated in Figure 1, each file server con-
tains three modules to facilitate interaction with
the rest of the system: an allocation client, a
block client, and a lock client. The allocation
client communicates with a centralized alloca-
tion manager in order to acquire new physical
block identifiers for free blocks and to deallo-
cate removed blocks. The block client exposes
a more intelligent log-aware interface to support
transactions and interacts with the block server
through the RPCs specified in the previous sec-
tion. The lock client interacts with a central-
ized lock server in order to serialize concurrent
file server operations.

In this section, we describe the block struc-
ture that file servers use, the block client inter-
face, how we achieve atomicity via logging, and
conclude with a cache consistency and lazy lock
release scheme that we support for improved
performance.

3.2.1 Block Structure

As illustrated in Figure 2, Afterlife uses three
types of block structures to store file system
data. Inode blocks contain the metadata (rep-
resented as an NFS fattr3 object), an integer
denoting the number of valid bytes in the block,
followed by a list of physical block identifiers
that point to the data blocks of that file. File
data blocks consist purely of user data written
to the file.

Each directory contains a list of directory en-
tries, which can either be files or additional di-
rectories. Afterlife stores directory entries in
directory data blocks that use a slightly differ-
ent block representation. Directory data blocks
store an integer representing the number of valid
bytes in the block. Each directory entry stores
a variable-length filename, the filename length,
and the corresponding file handle for that file.

3.2.2 Block Client Interface

The block client wraps the basic set of put, get,
and remove RPCs as function calls with call-
backs for the file servers. To improve file server
read/write performance, the block client caches

 data

 data

all data

fattr3 int

int

Inode Block:

Dir Block:

File Block:

Figure 2: Different block structures found in
Afterlife

recently used blocks rather than always commu-
nicating with the block servers. We discuss how
we achieve cache consistency in Section 3.2.4.

The block client also propagates a more in-
telligent logging interface to the file server to
support transactions, consisting of the following
operations: logBegin(xid) , logUpdate(xid,

block-addr, data) , and logCommit(xid) . The
parameter xid is a transaction identifier that is
uniquely generated for each transaction by con-
catenating the current value of a local transac-
tion counter to the file server’s local identifier.
The parameter block-addr contains a physical
block identifier and data contains data of the
fixed block size.

The logging functions generate log records
that the block client appends to a cached copy
of its log tail. To increase log-writing perfor-
mance, the block client accumulates several log
entries in its cache before batch sending them
to block servers via appendLog RPCs.

In order to synchronize the state of all the
block servers, the block client sends each put,
remove, and appendLog RPC to all the live and
recovering block servers in the current block
server configuration and waits for responses
from all the live block servers before invoking
the corresponding callback to return control to
the file server. We discuss block server con-
figurations in more detail in Section 3.4. Log
records for a given transaction arrive in order
at all the block servers, but log records across
transactions may arrive in different orders at
different block servers.

To handle reads, on the other hand, a block
client sends a get RPC to a random live block

4

server; the randomness ensures load balancing
in the face of multiple file servers. Afterlife uses
timeouts on the RPCs in order to detect block
server failures.

3.2.3 Logging Protocol

We call an NFS operation that is not read-
only an update operation. These operations
include setattr, create, write, rename, mkdir,
and remove. To provide recoverability of update
operations with respect to failure, we treat each
update operation as a transaction and write all
block modifications to the redo log to ensure
atomicity.

Specifically, file servers follow the following
protocol for any update operations, where each
function call refers to the one exposed by the
block client interface:

1. Initiate the transaction with a call to
logBegin.

2. Acquire any locks needed to complete the
operation.

3. For each new block that must be put, log
the modified block via a call to logUpdate

and then put the block.

4. End the transaction with a call to
logCommit.

5. Release any locks that have been acquired.

On top of this protocol, we further guaran-
tee that a block client only sends a put RPC
for a modified block only after 1) any transac-
tion dealing with that block has committed and
after 2) it has sent appendlog RPCs for its en-
tire cached log tail. This guarantee ensures that
a block server’s periodic flushing of log records
and dirty data to disk will never write to disk
any data not covered by a committed transac-
tion on the block server’s on-disk log. We ex-
plain how we achieve this guarantee in the next
section.

3.2.4 Cache Consistency and Lazy Lock
Release

Afterlife tightly couples its cache consistency
scheme with a lazy lock release mechanism, in
a manner similar to that of Frangipani [7]. As
previously mentioned, the block client caches all
recently read and written blocks as well as the
recent log entries; similarly, the lock client also
caches all lock releases. If a lock server revokes
a lock (because another file server wishes to ac-
quire it), the revoke triggers the following three
ordered events in the lock release protocol:

1. The block client sequentially flushes all log
entries from its cache to the block servers,
in the order that the log entries were cre-
ated.

2. If the file server has modified any blocks
guarded by the lock, the block client flushes
those modified blocks to the block servers.

3. The lock client releases the lock.

Because the logging protocol from the previ-
ous section requires that a file server release a
lock into the lock client cache only after trans-
actions involving the locked file have completed,
we are ensured that any commit records for block
modifications in that file have already been ap-
pended to the log in the block client cache.
Therefore, the lock release protocol guarantees
that the block clients only flush committed data
to the block servers and that the commit record
will be flushed before the actual modified data
in a write-ahead logging fashion.

3.3 Lock Server

A centralized lock server serializes concurrent
file system operations via file-level locks. We
name a lock for a file according to the file handle
of the file’s inode in order to simplify the design;
the file handle, and hence the lock name, con-
tains the physical block identifier for the file’s
inode.

The lock server manages two types of locks:
read locks and write locks. Read locks are shared
and write locks are exclusive. Multiple clients

5

can simultaneously hold read locks to the same
file and have read-only access. If a client holds
an exclusive write lock on a file, it has both read
and write access, and no other client can hold a
lock to the same file.

Before a file server reads any metadata or
data block, it must obtain a shared read lock
for the block’s associated file, which is granted
after any outstanding write lock on that file has
been downgraded. Before the file server may
write to a file block, it must ask the lock server
for an exclusive write lock to the file, which is
granted after all read and write locks for the file
have been revoked.

The lock server uses four different RPCs:
acquire, release, grant, and revoke. A lock
client sends acquire and release RPCs to the
lock server, and the lock server sends revoke and
grant RPCs to to the clients. To maintain relia-
bility in the face of failure, a primary/secondary
replica scheme can be designed as a future ex-
tension for the lock server.

3.4 Configuration Manager

The centralized configuration manager facili-
tates communication between file servers and
the available block servers. It maintains the cur-
rent view of all block servers by tracking each
block server’s status as either live, recovering,
or crashed. File servers notify the configura-
tion manager of any crashed block servers when
a block client-related RPC times out, and the
configuration manager propagates information
regarding the current block server configuration
to all other file servers.

A file server uses knowledge of the block
server configuration to determine which block
servers to send block client RPCs to. A file
server can direct a get RPC can be directed to
any live block server. A put or remove RPC
must be directed to block servers with either
live or recovering statuses, but file servers do
not need to wait for responses from recovering
block servers prior to proceeding.

The configuration manager achieves two pur-
poses through the maintenance of this informa-
tion. First, by notifying file servers that a par-

ticular block server has crashed and is no longer
available, it offers a performance hint to the file
servers so that they do not needlessly wait for
a time-out to detect that the same block server
has crashed. Second, the recovering status flag
serves a recovery purpose and enables a recov-
ering block server to queue up write requests,
which is necessary for block server recovery (de-
scribed in Section 4.3).

An important consideration in the design of
the configuration manager is the minimization
of communication overhead while maintaining
a timely view of block servers. To solve this
problem, we establish a tight coupling between
the lock server and the configuration manager.
We augment each grant RPC with a current
list of live and recovering block servers. We
augment each release RPC with a current list
of crashed block servers that the file servers
discover through timeout mechanisms in their
block client modules. Our lazy lock release pol-
icy guarantees eventual updates to the configu-
ration manager’s block server list. This eventual
consistency is acceptable because the configura-
tion manager only hints for performance.

3.5 Allocation Manager

File server operations such as create and
remove require allocation or reclaiming of stor-
age blocks for metadata and user data. The cen-
tralized allocation manager maintains a global
free list for all block server replicas. A file server
sends allocate and free RPCs to the allocation
manager.

If the allocation manager crashes, the alloca-
tion manager can reconstruct the block server’s
free list upon recovery by traversing the file sys-
tem blocks starting at the root and designat-
ing all untraversed blocks as free. We do not
handle failure of the allocation manager in the
current design, but it can be augmented with a
primary/secondary replica scheme in the future.

4 Recovery

The major innovation of Afterlife is the use of
a single, unified log for recovery of both the file

6

system layer and the storage layer. For our pre-
liminary design prototype, we assume the ab-
sence of network partitions, and we also assume
that all failures of system components are fail-
stop in order to focus on other issues related to
a coherent approach to logging. Systems such
as Harp [1] and Fab [3] already offer solutions
based on configuration management and view
changes instead of assuming fail-stop behavior.
A potential design extension would be to apply
similar techniques to Afterlife.

The design challenge in Afterlife is to recover
both file servers and block servers from the same
log. If a file server crashes in the middle of some
operations, the metadata and data that it was
in the process of updating must be restored to
a consistent state. The locks it held must also
be released before other file servers can read or
write the data. For this problem, we employ a
Frangipani-like approach to scan the log, redo
any committed operations not reflected on sta-
ble storage, and finally release the locks.

If a block server crashes and reboots, its data
must be synchronized with other replicas and
brought up-to-date before it can serve further
requests.

In this section, we describe the use of check-
points, the recovery procedure for crashed file
servers, and the recovery procedure for crashed
block servers.

4.1 Checkpoints

After flushing dirty blocks to disk, a block server
writes a checkpoint log record to disk to indi-
cate that all data from committed transactions
have been flushed. Each checkpoint record con-
tains a list of all pending transactions at the
time of the checkpoint. Any log record pre-
ceding the earliest begin record for pending
transactions stored in the checkpoint may be
garbage-collected. Block servers can thus peri-
odically recover unneeded log space.

4.2 File Server Recovery

If a file server crashes while it is holding locks,
it may not flushed all committed changes to the

block server. For example, the log on the block
servers may contain log records for a committed
transaction of the NFS operation create(dirfh,

file.txt, 0666), but the file server may only
have written the file inode to the block server
but not yet sent the corresponding update to
the directory entries in the directory’s inode.
A recovery algorithm would need to restore the
system to a consistent state by finishing the par-
tially completed operation.

Afterlife detects a crashed file server when a
lock server revokes a lock from the file server
but receives no response after a time-out pe-
riod. Because we assume fail-stop behavior, we
assume that the file server is actually down and
not temporarily out of service due to an over-
loaded network. If no locks were held by the
crashed file server, no recovery is necessary be-
cause the file server was not modifying any data
at the point of the crash.

After detection of a crashed file server, the
lock server boots up a recovery daemon. From
the protocols specified in Sections 3.2.3 and
3.2.4, we know that the block server does not
see changes from uncommitted transactions, so
any of the file server’s uncommitted transac-
tions have been automatically aborted. The re-
covery daemon must only redo any committed
transactions not reflected on disk.

Our recovery algorithm consists of two phases
and is detailed in Figure 3. In the first phase,
the recovery daemon asks the lock server for the
set of write locks held by the crashed file server.
Because we name the locks based on physi-
cal block identifiers of file inodes, the recovery
daemon can use the log and the block servers
to compute the set of recovery blocks, includ-
ing both the inode blocks and corresponding
data blocks, that were locked by the crashed file
server. The log is necessary because file servers
may have logged modifications inode blocks but
not yet flushed the blocks to the block server;
thus, the log may contain more recent informa-
tion. We use the block server retrieve inodes
prior to the checkpoint from the block server to
improve recovery performance. These recovery
blocks form a superset of all the blocks that the
file server may have modified as part of a com-
mitted transaction but only yet flushed to the

7

locks := all write locks held by crashed file server

recovery-blocks := {}
xids-to-process := {}

// Phase 1: Compute set of recovery blocks.

for each record r from end of log until checkpoint {
if r is a COMMIT record

xids-to-process := xids-to-process ∪ r.xid
if r is a BEGIN record

xids-to-process := xids-to-process - r.xid
if r is an UPDATE record and

r.xid ∈ xids-to-process and

r.block-addr ∈ locks {
recovery-blocks =

recovery-blocks ∪ filehandles in r.data’s inode

locks := locks - r.block-addr
}

}
for each lock l in locks {

recovery-blocks := recovery-blocks ∪
filehandles in inode at physical block id lock.name

}

// Phase 2: Redo last update of recovery blocks

// in committed transactions.

checkpoint-found = false

for each record r from end of log until beginning {
if recovery-blocks = {} or

(checkpoint-found and xids = {})
exit loop

if r is a COMMIT record

xids := xids ∪ r.xid
if r is a BEGIN record

xids := xids - r.xid
if r is an UPDATE record and r.xid ∈ xids

if r.block-addr ∈ blocks
set value of block at r.block-addr to r.value
blocks := blocks - r.block-addr

if r is a CHECKPOINT record

checkpoint-found := true

}

Figure 3: File Server Recovery Algorithm.

block servers.

In the second phase, the recovery daemon
scans the log backward from the end to the most
recent checkpoint and reapplies the last up-
date for each recovery block that participated in
any committed transactions. Because all trans-
actions committed before the the most recent
checkpoint have already been flushed to disk, no
updates of committed transactions prior to the
most recent update need to be reapplied. How-
ever, recovery blocks whose most recent updates
belong to transactions that began prior to the
checkpoint and committed after the checkpoint
still need to be reapplied.

The recovery daemon runs as a background

process and allows the rest of the Afterlife file
system to continue servicing requests dealing
with files not locked by the crashed file server.

4.3 Block Server Recovery

Upon rebooting, a crashed block server re-
subscribes itself to the configuration manager,
which updates the block server’s state from
crashed to recovering and allows it to receive
put and remove RPCs. These pending updates
are stored in two data structures, a table that
maps block identifiers to block updates and a
queue of log entries. Behavior during the next
stage of recovery depends on the block server’s
downtime.

The recovering block server sends a request to
a live replica for a copy of the log. A server that
has experienced a brief outage only needs to ap-
pend the tail of this log to its own and roll for-
ward all committed transactions from the last
checkpoint. It determines the tail of the log
by comparing transaction identifiers and find-
ing the point in log that contains updates that
it has missed. For longer outages in which no
overlap exists between the recovering server’s
log and the live replica’s log, the recovering
server needs a copy of the entire log from the
replica. It then copies over all the data from
the live replica. Although this will still result
in an inconsistent snapshot of data, all changes
that need to be applied can be found within the
restored log and queued updates. Upon com-
pleting the data transfer, the recovering block
server rolls forward on the original log entries.

In either scenario, once the block server has
finished rolling forward, it determines where the
updated log and queued log entries overlap and
appends the remaining queued entries onto its
log. This log is then flushed to disk. As a final
step, it flushes the updated blocks found in the
table data structure to disk. The block server
has now finished recovery and can notify the
configuration manager that it is live.

8

Create Lookup R/W
NFS (lab machine) 0.29s 0.01s 0.94s
Lab FS 3.25s 0.13s 12.55s
Afterlife (1 bsrv) 1.59s 0.13s 13.03s
Afterlife (2 bsrv) 2.54s 0.13s 20.49s
Afterlife (3 bsrv) 3.50s 0.13s 28.86s

Table 1: Connectathon benchmark performance
results for the NFS file system running on 6.824
lab machines, the 6.824 lab file system (Lab FS),
and our Afterlife prototype running on 1, 2, and
3 block servers.

5 Prototype Implementation
and Performance

We have evaluated a preliminary Afterlife file
system prototype consisting of three nodes. At
present, two of the nodes are dual-CPU ma-
chines with 1.2 GHz AMD and 696 MHz Intel
processors and with 1 GB and 256 MB of RAM,
respectively. The third node is a 300 MHz Intel
processor with 256 MB of RAM. All three run
FreeBSD 4.9.

We implemented our Afterlife prototype us-
ing 10,800 lines of C++ code. We implement
the design described in Section 3 with the pro-
posed disk layout with fixed 8 KB block sizes for
metadata and data blocks. The prototype sup-
ports a scalable number of block servers and file
servers. Transactions are fully supported, and
we have implemented the file server recovery al-
gorithm but not the block server recovery algo-
rithm. We do not currently support read/write
locks. We have implemented a simple allocation
manager that does not handle block dealloca-
tion.

To evaluate system performance, we ran a
modified subset of the Connectathon test suite
[2] to benchmark operations supported by our
Afterlife prototype. We ran three tests: a cre-
ate test, a lookup test, and a read/write test.
The create test created 155 files in 62 directo-
ries with a directory structure that was 5 levels
deep. The lookup test performed lookups across
the file system mount point with 500 getcwd and
stat calls. The read/write test wrote ten 1 MB
files and read the ten files.

Throughput
NFS (lab machine) 11.51 MB/s
Lab FS 994.34 KB/s
Afterlife (1 bsrv) 971.34 KB/s
Afterlife (2 bsrv) 577.32 KB/s
Afterlife (3 bsrv) 413.69 KB/s

Table 2: Throughput performance for repeated
writes of a 1 MB file using the Afterlife proto-
type, the NFS file system on 6.824 lab machines,
and the 6.824 lab file system (Lab FS).

Table 1 summarizes the performance bench-
mark results. We compare the performance of
our Afterlife prototype using 1-3 block servers
with that of the NFS file system and the file sys-
tem created in the 6.824 lab assignments. Our
Afterlife prototype achieves comparable perfor-
mance relative to the lab file servers but is an or-
der of magnitude worse in performance than the
NFS file system. We also see a linear degrada-
tion for write operations as the number of block
servers increases; we attribute this result to our
implementation, which waits for a response to a
put RPC from one block server before sending
one to the next.

Table 2 summarizes the throughput perfor-
mance for repeated writes of a 1 MB file using
Afterlife, NFS, and the 6.824 lab file system.
Our analysis indicates that the Afterlife proto-
type suffers a substantial amount of disk I/O
overhead due to logging and flushing.

6 Contributions

We believe that data replication and logging can
be used to design a distributed, highly available,
and recoverable file system, and we have taken
steps to validate this belief through our design
for the Afterlife file system. Our experience il-
lustrates that the maintenance of multiple logs
for different system layers may in fact be an
artifact of over-engineering and that a single,
unified approach to logging is indeed possible.

Our contributions include:

1. Designing a distributed and recoverable file
system that uses a single, unified log for

9

crash recovery in both the file system layer
and block storage layer.

2. Specifying logging protocols and lock re-
lease protocols that together ensure that
only data covered by committed transac-
tions in a block server’s log ever reaches
stable storage.

3. Implementing an Afterlife prototype to
demonstrate the feasibility of our file server
recovery scheme.

4. Evaluating the performance of our After-
life prototype to show that the overhead of
logging and replication only decreases file
system performance by roughly a factor of
10.

References

[1] B. Liskov, S. Ghemawat, R. Gruber, P.
Johnson, L. Shrira, and M. Williams.
“Replication in the Harp File System.”
Proc. of the 13th ACM Symposium on Op-
erating Systems Principles, p226-238, Oc-
tober 1991.

[2] Connectathon NFS Testsuite. http://
www.connectathon.org/nfstests.html.

[3] Y. Saito, S. Frlund, A. Veitch, A. Mer-
chant, and S. Spence. “FAB: Building
Distributed Enterprise Disk Arrays from
Commodity Components.” Proc. of the
11th Intl. Conf. on Architectural Support
for Programming Languages and Operating
Systems, October 2004.

[4] Z. Dubitzsky, I. Gold, E. Henis, J.
Satran, and D. Scheinwald. “DSF:
Data Sharing Facility.” Technical re-
port, IBM Labs in Israel, Haifa Uni-
versity, Mount Carmel, 2000. See
also: http://www.haifa.il.ibm.com/
projects/systems/papers/DSF.pdf

[5] T. Anderson, M. Dahlin, J. Neefe, D. Pat-
terson, D. Roselli, and R. Wang. “Server-
less network file systems.” Proc. of the
15th ACM Symposium on Operating Sys-
tem Principles, p109-126, 1995.

[6] R. Hagmann. “Reimplementing the Cedar
file system using logging and group com-
mit.” Proc. of the 11th ACM Symp. on
Operating Systems Principles, p155-162,
November 1987.

[7] C. Thekkath, T. Mann, and E. Lee.
“Frangipani: A scalable distributed file
system.” Proc. of the 16th ACM Sym-
posium on Operating System Principles,
p224-237, 1997.

[8] E. Lee and C. Thekkath. ”Petal: Dis-
tributed virtual disks.” Proc. of the
7th Intl. Conf. on Architectural Support
for Programming Languages and Operating
Systems, p84-92, October 1996.

[9] A. Muthitacharoen, R. Morris, T. M. Gil,
and B. Chen. “Ivy: A Read/Write Peer-to-
Peer File System.” Proc. of the 5th Symp.
on Operating Systems Design and Imple-
mentation, 2002.

10

