
QuakeD: A Distributed Quake Game

John Jackman, Xia Liu, Dan Swanton, Brian Wu
Massachusetts Institute of Technology

{jdj3, xialiu, swanton, brianwu}@mit.edu
May 12, 2005

Abstract

This paper describes the motivation,
design, implementation and performance of
QuakeD, a distributed Quake game. The goals
of QuakeD are to allow thousands of people to
play in a single game and to minimize
degradation of gameplay. The first goal is
achieved by dynamically adding and removing
servers as the total load increases and
decreases. Careful server selection and
redundant servers achieve the second goal.

1 Introduction

Quake 2 was a popular first person
shooter computer game developed by id
Software. By default, Quake 2 allows a
maximum of 32 clients to play together in a
single game by connecting to the same dedicated
host server. Clients communicate their actions
through UDP to the host server, and the host
server is responsible for keeping track of the
world state and communicating this state to
clients. In December of 2001, id Software
released Quake 2’s source code under the
GPL[1].

Our first goal was to make a Quake
game that scaled very well for hundreds or
thousands of players. Playing Quake with such
a large number of users leads to an entirely new
experience, especially for coordinated team play.
 For example, consider the popular Quake 2
variant “Capture the Flag.” In this game-type,
the players are split evenly into two teams: red
and blue. Each team has a home base that
contains their flag. Teams score by stealing the
other team’s flag, and then safely returning to
their own base with the opponent’s flag in their
possession. In a typical 10 person game of
capture the flag, each team will have about 5
players, and about half of these will be
attempting to retrieve the enemy’s flag at any

given time. Although these players would ideally
work together to achieve their goal, it is often
simpler given the small server population to
simply grab the enemy flag and make a quick
solo sprint back to base. This strategy is
effective because there are only about 5 enemy
players to run past. In contrast, imagine how
such a game would change if there were 500 red
players and 500 blue players in a huge world
with just one flag of each type. Players would
be forced to work together and travel in groups.
A large, distributed Quake game would have
interesting team-play implications.
 Our second goal was to minimize the
degradation of Quake’s gameplay. First person
shooters have the following challenging design
constraints:

Latency: Players will notice latencies as low as
10ms and will not tolerate additional “lag.”

Familiarity: Players have grown attached and
accustomed to certain favorite maps.

Density: Players expect maps to be neither
overcrowded nor sparse.

Our design takes these constraints into
consideration in creating a massive, distributed
world. Although Quake 2 was used for our
prototype, we expect that a similar solution could
be applied to other games where having a single
centralized server is either infeasible or
undesirable .

 Section 2 presents a high-level overview
of our system design. In Section 3 we detail of
our architecture. In Section 4 we will describe
our prototype implementation. Section 5
presents the results of this prototype. Section 6
reviews other work related to distributed

 2

computer games. Section 7 concludes.

2 Design Overview

We modify Quake by using a dynamic
grid of servers that consists of the players’ host
machines. The world is partitioned into zones.
Each zone is run by one server, and consists of
one normal quake map. Zones contain between 0
and 32 players, although there are usually around
15 players in a given zone. In the special case
where there is only one zone server in the grid,
the experience is exactly the same as the
traditional single server online game, with the one
exception that one of the player’s machines is
hosting the server, instead of a dedicated server.

The zones are arranged in a grid with
connections between adjacent zones.

Figure 1: Zones and Connections

In Figure 1 above, there are 4 fully-connected
zones. Each zone is controlled by a different
server. These servers are chosen from among
the player’s machines, but there is no special
relationship between a player and the zone he is
serving. In other words, it is perfectly legitimate
for a player to not be present in the zone he is
serving.
 The grid is overseen by one central entry
server. The entry server knows the IPs of the
client’s acting as zone servers, as well as the
zone connections in the grid. The entry server is
responsible for inserting new players into the grid
and maintaining the grid’s integrity.

3 Design Description

3.1 Zone Connections

Zones are connected by zone-

teleporters. Zones are aware of their
connections to neighboring zones, as well as the
IPs of the servers for those zones. We try to
minimize the time required for players to
transition from zone to zone.

Teleporters are existing Quake 2 entities
that instantaneously move players from one point
on a map to another. Teleporters can be
identified by the yellow sparks that they emit.
Zone-teleporters look similar, except that they
are distinguished by the bright green sparks that
they emit. When a player steps into one of the
zone-teleporters, their screen temporarily goes
black, and they reappear at a predetermined
location in an adjacent zone. One nice feature of
the zone-teleporter connection is that they will
minimize zone-to-zone communication. The only
objects that will cross zone-teleporter
connections are players.
 We ensure a quick transition between
zones by preloading the next zone as a player
approaches the zone-teleporter. When a player
gets close to a zone-teleporter, he automatically
starts loading the map and entity contents of the
zone led to by this zone-teleporter. This
information is stored in a temporary location so
that it can be quickly accessed if the player
enters the zone-teleporter. Furthermore, this
information is replaced lazily. That is, it is
loaded until completion, and then only replaced if
the player enters a different preloading area.
This ensures that players who continually enter
and exit the same preloading area do not suffer
drastic performance consequences.

Figure 2: Preloading Areas

In the example above, if a player from

Zone1
Map1

Zone2
Map2

Preloading Areas

grid

teleporters

 3

Zone 1 enters the preloading area for Zone 2, he
will begin to load Map2 and the player models in
Zone2. Therefore, when he steps in the zone-
teleporter, Zone2 will already be loaded and can
be immediately used. All that remains is for the
player to begin to receive updates from Zone2’s
server. If a player steps into a preloading area,
but does not use the zone-teleporter, and
eventually leaves the preloading area, he will
retain Zone 2’s information until he enters a
preloading area for a different zone. We have
strategically placed the zone connections so that
no two preloading areas are in close proximity of
each other.

We considered tunnels as another
possibility for connecting zones. Tunnels would
be enclosed physical spaces with bends to
minimize the area in which a player from one
server can interact with a player from another
server.

Figure 3: Example Tunnel

Tunnels as zone-connections would provide the
attractive feature that transitions between zones
could be literally seamless. Unfortunately, the
3D geometry of the standard Quake 2 maps
makes this prohibitively difficult. In order to use
tunnels to connect maps on our grid, each map
edge would need to match up exactly. Any map
that was intended to be used in our grid would
need to have its geometry modified so that all
possible tunnel zone-connections were at the
same height, and in the same relative place on
the map. Alternatively, a large and tile -able map
could be created, which would fit nicely with
tunnel zone-connections. However, one of our
initial design goals was to unobtrusively support
the traditional maps provided with Quake 2.
Zone-teleporters allow us to use these maps in
our distributed grid with minor modification:
instead of changing the geometry of the maps,

we simply introduce additional zone-teleporter
entities.

3.2 Zone Servers
 Zones are hosted by the players. The
initial zone server is the first player to join. The
entry server creates new zones as necessary
and chooses a player to act as the new zone
server. The entry server chooses the player in
its current zone with the lowest ping who is not
already a server. It also takes into account the
player’s past reliability as a server, as described
in Section 3.7. When the player serving a zone
leaves the game, a new best server is selected in
the same way. Changes in who is serving a
zone are communicated to the entry server and
to all connected zones. Ultimately, there will be
n zone servers hosted by the players with
approximately the n best pings.

The above design specifies that zone
servers elect new players to serve based on the
latency between the player and the zone server.
 One alternative we considered was to have
each player ping each other, and then select the
player with the lowest average latency to all
players in the zone. This design would have the
advantage of selecting zone servers that are, on
average, best for the other players in the zone.
However, this would also introduce a high
communication overhead between players.
Ultimately, we decided that the ping between a
player and a zone server is a close enough
approximation to the efficacy of server that it is
not necessary for each player to ping all other
players during server selection.

Another design that we considered was
to have the zone servers hosted not by the
clients, but instead by a trusted cluster of
servers. The big advantage of this design is that
no modifications would be necessary to the
clients in order to play in a distributed game.
Instead, all modifications for distributed play
would be made on the server side. This would
mean that any owner of Quake 2 would be able
to simply connect to one of our distributed
servers. Another advantage of using trusted
servers is that security and zone server failures
become less of a concern since they can be

Zone1

Zone2

tunnel

 4

maintained by a system administrator. A
disadvantage of this approach is that the world
could only grow in size proportional to the
number of available servers. In the end, we
decided that these advantages were sufficiently
strong to justify implementing a server-side-only
version. The type of distributed game to start is
now a command line option that can be specified
upon entry server launch. Throughout the rest of
this paper, however, we will refer only to the
peer-to-peer zone server framework. Although
it is true that using a trusted server cluster for
hosting zone servers has advantages, we are also
interested in providing a workable peer-to-peer
solution.

3.3 Load Balancing
 The primary load balancing mechanism
is the redistribution of dead players. Death is a
frequent occurrence in Quake, and even more
frequent when there are large numbers of
players near each other.

When a player dies, a one-step greedy
algorithm will attempt to relocate the player to a
more optimal zone. We estimate that the ideal
number of players in a map is around ten. The
spawning algorithm looks at the zone where the
player died, and also at all neighboring zones that
are connected to it. The algorithm chooses to
spawn the player in the zone with the number of
players closest to the ideal. For example, if the
zone the player died in has seven players, and
the two neighboring zones have eleven and
fourteen, the player gets spawned in the zone
with eleven. This algorithm alleviates
overcrowding because when there are many
people in a room, there are frequent deaths, and
these dead players are repopulated in less
crowded areas. Another advantage of this
algorithm is that does not spawn players in nearly
empty zones. This is important not only for the
players to maintain a high level of action, but as
we will see later, it is also important for dynamic
zone removal.

An alternate design that we considered
was to have the entry server keep a rough
estimate of the population of each zone, and then
use the information from all zones to decide

where to spawn the player. The problem with
this approach is that every death would require a
decision from the entry server, which limits the
scalability of our system. Another alternative
that we considered was a multi-step version of
the given algorithm. Instead of stopping the
algorithm after at most one hop, the algorithm
could be repeated until a local optimum was
found. We decided not to do this, however,
because player deaths and subsequent
rebalancing is so frequent that this is not
necessary. Furthermore, when the player did
travel multiple hops, it would delay the player
spawn and consume server resources.

If the spawning algorithm finds itself in a
situation where all considered zones have twice
ideal the number of players, it communicates to
the entry server that a new zone should be
created. The entry server is responsible for
using the zone connection information to create
this new zone on the edge of the grid. The entry
server also decides on the new zone-
connections, and communicates all changes to
the neighboring zones. This new zone is soon
filled by the spawning algorithm, because this
new zone has a population of zero, which is
closer to ideal population than the overcrowded
nearby zones that have at least twice the ideal
number of players.

If a zone is empty, the zone server
communicates to the entry server that it should
be considered for removal. The entry server
removes the zone as long as removal does not
result in a disjunction in the grid. Because the
entry server knows the zone connections
between all zones in the grid, it can easily make
decisions necessary to maintain grid integrity.
When there are on average fewer than ten
players per zone across the grid, the spawning
algorithm will cluster players into zones of ten,
and the excess zones will be discarded.

3.4 Entry Server
 The entry server is responsible for
coordinating the entire QuakeD system. It needs
to assign players to become zone servers, and
keep track of their statistics (see section 3.6).
Zone servers are chosen based on their pings

 5

and their past history as a zone server.
The entry server is also required to keep

state on the connections between zones (see
section 3.1). Whenever a zone server crashes
or becomes unreachable, the entry server needs
to confirm the backup zone server as the new
zone server (see section 3.5.1). If both the
primary and backup zone servers fail
simultaneously, the entry server must notify the
neighboring zone servers, and modify the zone
connections so that all of the zones are still
connected.

The entry server is also responsible for
spawning new players. When a player wishes to
join QuakeD, he first contacts the entry server,
who then contacts an appropriate zone server.
Then, that chosen zone server contacts the new
player, and the player enters that zone. The
entry server is really at the heart of our design,
and it helps coordinate everything. If it goes
offline for any reason, there is a backup entry
server, as described in section 3.5.2.

3.5 Fault-tolerance

3.5.1 Backup Zone Servers
 QuakeD relies on many potentially
unreliable players to host the zone servers. We
considered implementing a backup zone server
for each zone server, which would attempt to
keep an exact replica of the state kept on the
primary zone server. As soon as a zone server
is selected by the entry server, that zone server
would elect its own backup zone server. From
then on, the zone server would simply forward
the backup zone server all of the relevant
packets the clients in that zone and from the
entry server. If the backup zone server does not
receive a packet from the zone server for a
specified timeout period, then the backup zone
server assumes that the zone server has crashed
or lost its connection. The backup zone server
then contacts the entry server, and becomes the
primary zone server. If the backup zone server
is unable to contact the entry server, then it
assumes that there has been a network partition,
and continues trying to contact the entry server.
After being confirmed as the new primary zone

server, it elects another backup, and contacts all
the clients currently in the zone.
 The entry server does not have any
knowledge of the backup servers, since the zone
servers are the intermediaries between the entry
server and their own zone servers. When a zone
server crashes, the backup tells the entry server
the primary’s IP, and then receives confirmation
to become the primary zone server including the
IPs of the adjacent zones. A second or two of
play could get “undone” from the players’
perspectives, or there might be some unusual lag,
but the players would be able to continue playing
without significant problems on the new zone
server.
 If both the primary and backup zone
servers crash at the same time, then all of the
clients timeout, and contact the entry server.
The entry server modifies its representation of
the zones to account for the crashed zone server,
and respawns the clients as if they had all died.
The entry server then selects a new zone server
(if necessary) to take the place of the crashed
zone server. The new zone server then selects
its backup as normal.
 In a normal Quake game, players die
very often, sometimes multiple times a minute.
The problem of reliability could be circumvented
by simply allowing the clients to timeout, and
subsequently contact the entry server to be
respawned.

3.5.2 Backup Entry Server
 In a normal Quake game, there is a
single dedicated server which can handle up to
32 simultaneous players. However, if that server
goes down, the game stops completely. In
QuakeD, hundreds or even thousands of players
can participate in the same game, but the entry
server is still a single point of failure. In order to
achieve reliability, we decided to take a similar
approach to the entry server as we did to the
zone servers. There is a backup entry server,
which maintains the same state as the primary
entry server. The primary entry server simply
forwards copies of all the packets it gets to the
backup. If the backup entry server does not
receive a packet from the primary entry server

 6

for a specified timeout period, then the backup
entry server tries to contact all the zone servers.
 If a majority of the zone servers report also
noticing that the entry server is down, then the
backup entry server promotes itself to be the
primary entry server. When the crashed entry
server is restored, the current primary entry
server sends all of its state to the restored server
as fast as is possible without disrupting
gameplay. The effects on the game of the entry
server crash are similar to that of a zone server
crashing; there is a long pause which can be
attributed to lag. Also, players that need to be
spawned need to contact new primary, and
therefore experience a longer than normal pause
before spawning.

3.6 Security
 Security could be a major issue in
QuakeD, since our design relies on players in the
game to host zone servers. We could try to
complicate our system by attempting to prevent
players from cheating, but our efforts would be
easily circumvented since we need to release our
source under the GPL. Instead, we chose to
allow players to complain about zone servers that
they suspect are cheating.
 The entry server keeps state for each
zone server IP. The persistent state consists of
the total amount of time that the IP has hosted a
zone server, the total number of complaints, and
the IPs of the clients that complained. The entry
server does not accept multiple complaints from
the same IP for the same zone server IP; this
prevents a single person from maliciously ruining
a zone server’s rating. The players should
realize that it is in their best interests to use this
system properly; if all of the fastest zone servers
get poor ratings, then slower hosts will become
zone servers and the quality of gameplay
decreases. When choosing zone servers, the
entry server takes this state into account as well
as the ping times. Zone servers with the highest
pings, fewest complaints and most time spent
hosting are the most likely to be chosen as zone
servers in the future.
 This design recognizes that complete
security in an open-source distributed game is an

unrealistic goal. However, it leverages the fact
that the Entry Server can be trusted to store
information about which zone servers have been
reliable hosts in the past. This system allows the
players to police themselves, which should
prevent at least the egregious and obstructive
forms of cheating.

4 Implementation

To test this design, we implemented a
prototype by modifying the Microsoft Windows
version of the Quake 2 source code.[1] Our
prototype showcases the basic distributed grid
design, allowing players to use zone-teleporters
to transition between different zone servers.
Building our implementation on top of the existing
Quake 2 code base introduced a number of
design constraints and limitations.

For example, in order to add zone-
teleporters to existing Quake maps, it was
necessary to implement an entity loading system.
 Traditionally, data for map entities such as the
location of the rocket launcher and health packs
is stored directly in the “.bsp” map file.
However, we needed to modify this listing to
insert zone-teleporters. Our solution was to
support the loading of custom entity files. When
a Quake map is loaded, QuakeD tries to find a
valid custom entity “.ent” file of the same name.
 If a custom entity file cannot be found, QuakeD
creates one based on data read from the map. If
a “.ent” file is found, it is used by the zone server
to specify the location and default properties of
all entities in a map. Under this system, inserting
a new zone-teleporter into a traditional map is
accomplished by editing a text file. For example,
here is the definition for the north zone-teleporter
in the map “The Frag Pipe”:

...
{
"origin" "340 344 -16"
"classname"
"info_player_deathmatch"
"angle" "270"
}
{
"origin" "340 344 -16"
"targetname" "north"
"classname" "misc_teleporter_dest"
"angle" "270"
}
{

 7

"origin" "288 352 -16"
"target" "north"
"classname" "misc_teleporter"
}

 ...

The first snippet is an original player spawn
location; it is located at x=340, y=344, z=-16 and
rotated 270 degrees around the z axis. We first
create a zone-teleporter destination in the exact
same location. This is where players who
teleport into this zone will appear. Next, we
define a zone-teleporter right next to this
destination. This zone-teleporter has “north” as
its target because it will be sending players one
square north in the zone server grid. We provide
similar custom zone-teleporter entity files for
four popular Quake 2 maps: q2dm1, q2dm2,
q2dm3, and q2dm7. Most of our zone-
teleporters are inserted next to player spawn
locations, as these are conveniently located in
corners of the map.
 If a player joins the game and the entry
server determines that a new zone is needed,
that player automatically becomes the zone
server for the new zone. This was not originally
part of our design (we wanted to choose based
on ping times and history as a zone server), but it
was simpler. When a player dies, the current
zone server checks with its neighbors, and
spawns the player in the zone with the population
closest to the ideal ten players. If the current
zone had four neighbors, then the player is
spawned in one of five zones, the current zone
and its four neighbors.

Our prototype achieves the basic goals
of our design. A player connecting to our game
is placed in a zone server. If he enters a zone-
teleporter, the server will transfer him to the next
zone. If he dies, the zone server will decide
where in the vicinity he should be spawned.
However, our implementation does have a
number of limitations. While using the Quake 2
source code provided an excellent starting point,
it imposed a difficult learning curve. Ultimately,
half a semester of time was not enough to
understand the Quake 2 code base and to
implement all aspects of QuakeD’s design. In
particular, the backup zone server and server

reliability list are not included in this prototype.
Another feature we were attempting to include
was relaying a player’s state when a player
enters a zone-teleporter. Instead, a player’s
default health and weapon are restored after
teleporting between zones. Nevertheless, the
prototype is functional, and does satisfy our basic
design goals.

5 Results
 Our prototype achieves the design goals
of minimal additional latency, allowing players to
use familiar maps, and ensuring that servers are
neither overcrowded nor sparse.
 QuakeD has minimal additional latency
costs. While a player is in a zone, he
experiences the same ping times on average that
he would if the host were running a normal
server. The only additional costs are during zone
transitions and spawns. We found that zone
transitions averaged 2.52 seconds. This was
average was obtained by timing zone transitions
on a Acer Ferrari 3200 laptop with a 2800+ MHz
AMD processor that was connected to the zone
server through MIT’s 10 Mb/s Ethernet. Spawn
delays are comparable to zone transition delays,
as they involve at most one zone transition, and
the player state does not need to be transferred.
 Traditional maps are playable in QuakeD
due to the custom entity loading system. The
only caveat is that the entity text file must be
modified to specify the location of zone-
teleporters. We considered attempting to
automatically decide the location of zone-
teleporters based on player spawn positions, but
ultimately we decided that it would be better to
let someone familiar with the map place them by
hand.
 The spawning algorithm ensures that
each zone server has close to the ideal number
of players at all times. Unfortunately, this has
proven to be difficult to test and to quantify. The
problem is that a single zone server can handle
up to 32 players. In order to give a reasonable
test to the spawning algorithm, we need enough
players that at least 3 zone servers are required.
This translates to needing about 100 clients.
Unfortunately, the client code is Windows only

 8

and requires a graphically intensive output, so
that only one client can reasonably be run per
Windows computer. We attempted to recruit
friends to act as testers, but we were unable to
recruit enough players to fill even one zone
server. One alternative we pursued to human
testing was to use client-side bots for stress
testing. Unfortunately, while we were able to
connect a large number of bots to our system,
these bots did not understand the concept of
zone-teleporters. Instead, the bots remained
inside the zone server where they were initially
placed. Because the bots never willingly
transitioned between zones, they proved
ineffective for testing QuakeD under stress. As
a result, the only type of testing that was easily
achievable was to test the system’s performance
with small numbers of clients and zone servers.
In this scenario, QuakeD appears to function
well: playing our distributed version of Quake 2
incurs no additional la tency costs except during
zone transitions and spawning, and these delays
average only 2.52 seconds.

6 Related Work

MMORPGs such as Everquest and
World of Warcraft are existing games where
thousands of users play together. The server
load is distributed among a large number of host
servers.

A key feature of MMORPG gameplay
is that latency is not a large concern; MMORPG
players can tolerate up to a second worth of lag.
 For example [3] showcases a distributed peer-
to-peer MMORPG system with an average
message latency of 150ms. This latency
requirement for MMORPG’s is loose enough to
make the server distribution problem fairly
straightforward.
 First person shooter games, however,
place a high priority on latency, with typical lag
times of < 100ms. A fraction of a second can be
a significant delay in a Quake game, so having
multiple servers interacting becomes a
challenging problem.

The only example of a distributed first
person shooter that we are aware of is IBM’s
GameGrid project. In this project IBM tested its

Grid technology by implementing a distributed
Quake 2 server. “GameGrid dynamically
partitions areas of the game map, including
players and objects, onto different servers. If a
player or object, such as a rocket, moves from
one server to another, the first server sends the
player's state—the player's name, vector,
velocity, and statistics—from one server to the
next.” Basically, IBM had a cluster of about 30
servers that worked together to server one large
game map.
 A key similarity between MMORPGs
and IBM’s GameGrid implementation is that they
use a predefined number of static servers
provided by the host [2].

7 Conclusions
 We have described the architecture,
implementation, and performance of the QuakeD
distributed Quake game. We have attempted to
achieve scalability by dynamically starting up
zone servers as the number of players increases.
 When implemented, the backup servers for the
zone servers and the entry server will improve
reliability.

Acknowledgements
 We would like to thank Robert Morris
and Athicha Muthitacharoen for their feedback
on earlier drafts and for their helpful suggestions
during project conferences.

8 References
[1] “id Software's Technology Licensing

Program,” [Online Document], Available
at HTTP:
http://www.idsoftware.com/business/tec
hnology/techlicense.php

[2] M. Hachman, “IBM Tests Grid with

Games.” eWeek (2003 Aug 20),
Available at HTTP:
http://www.eweek.com/article2/0,1759,1
501261,00.asp

[3] Bjorn Knutsson, Honghui Lu, Wei Xu,

and Bryan Hopkins. Peer-to-Peer
Support for Massively Multiplayer

 9

Games. Department of Computer and
Information Science, University of
Pennsylvania. Available at HTTP:
http://pdos.csail.mit.edu/6.824/papers/p2
p-mmg.pdf

