
Re-Transport Media

A Peer-to-Peer Streaming Solution

Javier Castro, Drew Houston, Sam Prentice, Will Stockwell

May 12, 2005

Abstract

In this paper we propose Re-Transport Media (RTM), a peer-to-peer streaming architecture which amortizes
the bandwidth costs of serving internet media by cooperatively distributing the streaming load among connected
clients. Conventional media streaming architectures typically impose significant bandwidth load on the server’s
Internet uplink, requiring the content provider to serve the stream to all end-users. In recent work, systems
use an application-layer multicasting protocol and place clients in layered clusters to implement efficient content-
distribution. RTM improves upon existing systems by reducing control traffic to constant time, using a centralized
tracker to maintain an organized client tree structure. We create a functional peer-to-peer radio implementation
of the RTM design as a proof-of-concept which uses the Shoutcast streaming protocol. The implications of RTM
are widespread: RTM eases the bandwidth burden on current content providers, enables providers to broadcast
higher-fidelity media streams, and empowers ordinary users with modest bandwidth to become content providers.

1 Introduction

Traditional media streaming systems, such as Internet
radio and webcasts, rely on a single, centralized server
to provide content, transmitting a separate instance of
the stream data to each connected client. This unicast
structure causes the content provider’s bandwidth and
CPU requirements to grow linearly with the number of
clients.

In this paper we propose Re-Transport Media (RTM), a
scalable peer-to-peer1 (“p2p”) system which amortizes
this significant bandwidth cost across many network
links by organizing peers in a hierarchical topology. In
our proposed scheme, the content provider resides at
the top of the hierarchy and serves content to a handful
of first-tier peers who in turn re-transport the stream to
second-tier peers and so on. The aggregate bandwidth
utilization across all links for a given number of peers
increases only minimally due to additional overhead
required to manage the hierarchy, yet the potential
number of total clients expands far beyond unicasting
since listeners help to bear the broadcasting burden.

Recent systems have improved upon the traditional
unicast system by implementing application-layer mul-
ticasting in an attempt to minimize stress on the un-
derlying network links. While these systems focus on
getting to most out of the underlying links, RTM seeks
to bound the stress on peer links and minimize control

traffic by using a centralized architecture. The system
design is simple, yet robust, tolerating peer and net-
work failures and maintaining an exceptional level of
usability.

The underlying framework of RTM can be used to
broadcast any form of stream data. In this project
we implement a p2p radio system utilizing the Shout-
cast[1] streaming protocol for audio stream data. RTM
eliminates the bandwidth overhead assumed by Inter-
net radio providers that serve an audio stream to all
end-users. Rather than serving all clients, the content
provider serves only a select few seed clients that then
propagate the radio stream through the p2p network.

Peer-to-peer radio is of interest not only to large con-
tent providers serving a multitude of clients, but also
to anyone with limited computing resources interested
in broadcasting a stream. The exorbitant bandwidth
costs of traditional streaming networks impose a sig-
nificant barrier to entry, limiting stream broadcasting
to only those with sufficient bandwidth and serving
power. By distributing the broadcasting load among
listeners, RTM enables anyone with modest computing
resources to broadcast an audio stream. Furthermore,
stream providers with limited bandwidth who preferred
to serve a lower-fidelity audio stream in order to reach
a wider audience may use RTM to get the best of both
worlds, utilizing bandwidth savings to serve higher-
quality streams to listeners.

1Technically, the peer-to-peer moniker may be misleading as clients are arranged in a tree. However, the system borrows many con-
cepts from peer-to-peer systems, especially in the sense that first, listeners send to and receive from other listeners, and clients function
as servers and vice versa.

1



The key design challenge faced by RTM is maintaining
a dynamic client tree amidst network failures and peer
disconnections. Client data buffering and protocol con-
ventions allow the system to reorganize the tree such
that these problems can be avoided gracefully. Never-
theless, inherent latency problems are an unavoidable
effect of RTM and significant latency must be mini-
mized by limiting the depth of the peer tree.

The paper is structured as follows: In Section 2 we
give a brief overview of related work. Section 3 de-
scribes the system design and details of the server-side
and client-side applications. In Section 4 we discuss
our testing methodology to ensure proper function and
stability. Testing results are presented in Section 5 and
Section 6 gives a performance analysis of the system.
The paper is concluded in Section 7.

2 Related Work

Streaming of live media through peer-to-peer networks
is not a new idea in and of itself. CoopNet[2, 3, 4]
describes a system similar to RTM. Rather than evenly
distributing a stream from a server to several root
nodes, CoopNet has a centralized server that serves as
many clients as it can before forwarding new clients to
previously existing clients.

Network-layer multicasting is not feasible for content
distribution to end-users because this technology is not
universally accessible. For this reason, Narada[5] and
NICE[6] use application-layer multicast protocols for
packet delivery from one source to many end-hosts.
Narada attempts to optimize the overlay structure
based on end-to-end measurements, while NICE builds
on this by imposing a hierarchical structure on end-
host clusters. The NICE protocol seeks to minimize
control traffic in the creation and maintenance of a
clustered tree structure for streaming data in O(logN)
time, where N is the number of clients in the data
stream. RTM performs tree maintenance in O(1) time
by centralizing this task in a tracker, which organizes
and reconfigures the position of clients within the tree.
Furthermore, the amount of bandwidth required by
nodes in each tree layer in RTM is bounded by a set
branching factor. However, nodes that span multi-
ple tree layers in the NICE protocol are essentially
unbounded in bandwidth, as nodes on higher layers
stream to clusters on all subsequent layers.

While not as effective as latency measurements in other
systems, a simple bit-distance metric is used in RTM
to cluster nodes of geographic proximity under com-
mon tree branches. This helps to minimize sending
duplicate packets over a given link, thus decreasing the
stress on links in the network.

Microsoft Research designed SplitStream[2], a stream-
ing architecture which differs from the standard tree
approach used by RTM and CoopNet. The main goal
of SplitStream is to distribute not only the bandwidth
load, but also the forwarding load that is placed on a
server in the tree-based architecture into the clients of
the system. This goal is accomplished by separating
the shared media into pieces called stripes, and then
distributing the stripes in separate multicast trees.
While this approach to distribution could prove ben-
eficial to systems designed to provide static content,
it is not ideal for streaming live media content which
is consumed in real time. First, there is typically not
enough live media present at a given time to effectively
divide the stream into stripes for distribution. Second,
stripes present additional complexity since all sequen-
tial packets in a live audio stream must arrive and
be arranged without any missing members before the
stream is consumed to offer reasonable usability.

A third media streaming system, PeerCast, is pro-
posed by Deshpande[5]. This system suggests tree
maintenance policies which, despite the authors’ ef-
forts, degrade with the number of clients. Addition-
ally, the UDP/RTP protocol used by PeerCast is not
sufficient for the live streaming of audio data.

Zebra[7], a system designed by 4 MIT engineers, fo-
cuses on streaming live video. Zebra borrows ideas
from SplitStream and achieves acceptable usability due
to the redundant nature of sequential video images, in
that human vision is tolerant to minor stream disrup-
tions. It is unlikely that this same strategy would be
effective for audio data, since humans are more sensitive
to aural disturbances. RTM seeks to overcome these
limitations and provide a robust p2p audio streaming
infrastructure.

3 System Design

Typical Internet radio stations suffer from both se-
vere limitations on the number of simultaneous users
and unfavorable trade-offs in audio quality to allow a
greater number of connections.

The primary goal of RTM is to eliminate these weak-
nesses by moving the majority of the cost of data
transmission from the streaming server to the listeners,
enabling a higher number of total clients that can be
served by low-bandwidth stream sources. We place a
hard upper bound on the number of clients served by
the original source and on the number of clients to
which a parent re-transmits stream data. RTM must
also be able to transparently layer on top of virtually
any existing unicast streaming media applications, and
therefore eliminate the need to alter existing client or

2



server programs (e.g. Shoutcast server and Winamp
client) software. RTM should do a reasonable job of
placing clients that share network locality near one
another in the tree to optimize bandwidth usage and
minimize overall latency from the source of the stream.

RTM itself consists of two software components – in
our nomenclature, a Client and a Tracker – which work
in conjunction with a popular media player (Winamp)
and streaming server (Shoutcast). The RTM system
acts as an intermediary: it appears to the streaming
server as a single client and appears as a Shoutcast
server to the end user’s media player.

The RTM network is a tree of Clients managed by
a Tracker. Figure 1 depicts RTM’s tree structure, in
comparison with the traditional streaming structure.
The Client at the root of the tree is configured to re-
ceive the stream from the originating Shoutcast server
(the “Source”), instead of receiving audio data from
other Clients. Each RTM Client also acts as a Shout-
cast server to the local media player, leaving the local
media player oblivious to RTM’s existence.

3.1 Client

The RTM Client runs on each node in the tree and
serves three functions. First, it is responsible for receiv-
ing from and forwarding audio data to other Clients.
Second, it maintains a receive window of audio data
which acts as a buffer to maintain skip-free operation
in the face of typical data transfer anomalies, such as
packet loss and variances in latency between Clients.
Finally, it provides an interface to Winamp that simu-
lates a Shoutcast server.

3.1.1 Inter-Client Communication

Clients and Trackers communicate using an RPC mech-
anism over a persistent TCP connection. This relieves
concern of retransmitting messages believed to have
been lost; TCP does this for them.

Clients are slightly out of sync due to connection la-
tency and especially due to disruptions in service or
relocations within the tree. To curb this problem, each
Client buffers both upcoming audio data as well as data
already sent to the media player (that would otherwise
be discarded.) This allows newly connecting Clients to
specify an absolute stream offset and thus to pick up
exactly where they left off, when possible.

3.1.2 Media Player Interface

The Client also acts as a Shoutcast server, accept-
ing connections from localhost on an arbitrary port.
The listener’s Winamp client then connects to this vir-
tual Shoutcast server and receives the stream as if it

were connecting directly to the Source. Small protocol-
dependent modifications to the metadata within the
stream (e.g. client IDs, session cookies) may be neces-
sary to provide a coherent interface to the media player.

3.1.3 Cooperative Buffering

For resiliency, our Client software engages in both
backward and forward buffering of data. The forward
buffer holds data in anticipation of parent failures so
that the Client maintains data which it can serve to
the local Winamp instance while waiting to be reas-
signed. When these Clients relocate, their new parents
use their backward buffer to help the Clients quickly
refill their buffer (hence ’cooperative buffering’). The
cooperative buffering technique enables the Clients to
assist in ensuring that each Client has a complete, un-
interrupted copy of the data stream.

Reassignment only causes audible disruption if the
Client’s buffer is exhausted. In our implementation,
both buffers are 1 MB, holding about a minute of au-
dio. This provides Clients with more than enough time
to be reassigned within the tree.

When a Client joins an RTM system, its parent pro-
vides it with a global offset specifying the number of
bytes which have been transmitted by the stream source
since the system was first initiated. All Clients contin-
ually maintain knowledge of the current offset values
stored in their buffers. When a Client is reassigned
due to parent failure, it can inform its new parent of
precisely the stream data it requires using this global
offset, thereby ensuring a seamless transition from old
parent to new. The new parent then bursts data from
its backward buffer (hence the ’cooperative’ qualifica-
tion since this data is of no use to itself) to the Client
until it is caught up to the latest data the parent has
to offer.

3.2 Tracker

The RTM Tracker is responsible for managing the tree
of nodes. The Tracker should be run on the same host
as the Stream Server. When a Client joins the tree,
the Tracker finds a suitable location for it using the
algorithm described below. If a Client leaves the tree
or fails, it or its children respectively will report the
situation to the Tracker which will subsequently relo-
cate the children to new parents using the same join
algorithm with an additional requirement: new parents
should have a depth similar to the old parents.

The Tracker maintains a complete representation of
the client tree in its local memory. This representa-
tion gives the Tracker all the information it needs to
perform the join algorithm.

3



Figure 1: System overview diagram

3.2.1 Join Algorithm

Clients request access to the streaming service by ask-
ing the Tracker for a parent. The parent performs
the algorithm shown in Listing 1. The join algorithm
measures the bit distance (described in the following
paragraph) between the joining node and each Client
in the tree with fewer than k children, looking for the
Client with the minimum bit distance. If multiple
Clients have the same bit distance from the joining
Client, the algorithm selects the one with minimum
depth in the tree. If two nodes share the same bit
distance and depth, either may be selected.

The Tracker uses a measure called bit distance to de-
termine where best to locate hosts in the Client tree.
Bit distance is a distance measure of two hosts based
on the length of IP address prefix they share. If two
IP addresses have a common prefix of 8 bits, their bit
distance is 24. If two addresses first bits differ (i.e. they
share no common prefix) their bit distance is 32. This
measure allows us to make reasonable choices in the
interest of placing hosts which are near one another on
the underlying network near one another in the Client
tree. Bit distance is a useful heuristic, however it is
only an approximation. The actual network distance
depends on the underlying subnet structure, of which
we have no knowledge. For example, if the best pos-
sible parent has a bit distance of 16 from the joining
Client, it is possible their respective class B networks
are routed to entirely different geographical locations.

JOIN(V, u):

mdist <- 33

mnode <- nil

FOREACH v IN V SUCH THAT v.num_children < k

IF BIT_DISTANCE(u, v) < mdist

mdist = BIT_DISTANCE(u, v)

mnode = v

IF BIT_DISTANCE(u, v) = mdist

IF u.depth < mnode.depth

mnode = u

SEND_LOCATE_RPC(u, mnode)

ADD_CHILD(mnode, u)

Listing 1: Join algorithm pseudocode. V is the set of
tree vertices and u is the joining vertex

3.2.2 Reassignment Algorithm

Inevitably, Clients will decide to stop listening to the
stream or will disconnect due to failure. Such Clients
may have dependent child Clients to whom they are
retransmitting the stream at the time of disconnection.
The Tracker must be able to handle these events and
respond by reassigning these children Clients to new
parents in a reasonable manner.

If the disconnection is user-initiated, the Client sends
a disconnection announcement message to the Tracker.
The disconnecting Client operates normally for a
“cooldown” period to allow its children a chance to
obtain the source from elsewhere. In response, the
Tracker performs the reassignment algorithm in List-
ing 2. At a high level, this algorithm redistributes the
departing Client’s children in a similar manner to the
join algorithm. However, in addition to finding a bit-
near host with less than k children, the reassignment

4



Figure 2: Overview of test application design

algorithm attempts to find a new parent that has sim-
ilar latency with respect to the stream source as the
departing Client. To do this, the reassignment algo-
rithm runs the join algorithm for each of the Client’s
children, but prefers new parents of depth closest to
that of the departing Client rather than nodes closest
to the stream source. This prevents the children from
being reassigned to nodes with a significantly different
latency than its parent. This modified join algorithm is
run for each child Client sequentially (without waiting
for network messages to be sent to each), so it is pos-
sible that one of the children might become the parent
of another once all reassignments have completed.

However, some disconnections due to network or host
failure are inevitable. To handle these failures grace-
fully, all Clients buffer stream data ahead to “buy time”
during which they report parent Client failures to the
Tracker and request relocation in the tree. Clients also
buffer data that has already been transmitted to all of
its children for a period of time in anticipation of being
assigned a child whose parent has failed. This allows
the child Client to download data it missed before it
could be relocated in the tree, getting a burst of data
at a rate faster than the playback rate. These mech-
anisms allow the Tracker to execute the reassignment
algorithm just as it would if it had been initiated by
the failing parent via a disconnection announcement.

4 Testing

We used a collection of PlanetLab[8] nodes to function
as our Client pool when testing our system. To demon-
strate that the bit distance metric localized Clients
well, our set of PlanetLab nodes included hosts in
North America, Europe, the Middle East, and Asia.

We developed a GUI interface in Java to facilitate
testing of the system. The GUI displays an interac-
tive tree graph of nodes and connections in the RTM
network. The GUI utilizes the Prefuse[9] graph visual-
ization toolkit to draw and animate graph updates (as

it receives information from the Tracker). This visual-
ization allows the user not only to view the Tracker’s
join and reassignment algorithm decisions, but also to
simulate failure conditions via popup menus on each
node. Through these menus the user can inject faults
at a selected node by specifying that a Client simulate
a crash or network failure, halting communication on
one or all data stream connections. Clients have a test-
ing harness built in to receive these requests from the
GUI and simulate the corresponding fault.

The Python implementation (Tracker and Client) and
the Java GUI application communicate as depicted in
Figure 2. The GUI first registers with the Tracker
which informs it of the current state of the Client tree
and subsequently transmits messages to the GUI any
time a change in the tree occurs. Whenever a GUI
user decides to inject a fault at a particular node, the
application transmits and RPC directly to the node.
The injected fault causes affected Clients to react by
requesting the Tracker to reassign them. After running
the reassignment algorithm, the Tracker informs the
GUI of the change to the Client tree.

5 Results

We performed our testing within the PlanetLab envi-
ronment. We constructed a tree of about 20 nodes and
the stream was successfully propagated down the tree;
we were able to tune in to Shoutcast streams from peers
situated in Taiwan, Eastern Europe, India, and so on.
We created a test framework to measure the effective-
ness of various tree organization algorithms, to analyze
the “stream lag” across various levels of the tree, and
to measure the time needed to relocate within the tree.

5.1 Tree Organization

The naive tree organization algorithm, upon addition
of a node, conducted a simple breadth-first search to lo-
cate an open slot. This led to inefficient trees, as paths
like USA→Korea→UK→US were created (rather than

5



(a) Breadth-first join algorithm

(b) Bit-distance join algorithm

Figure 3: Breadth-first vs. bit-distance join algorithms. Edges represent latency in milliseconds.

Figure 4: Stream lag in milliseconds

US→US→UK→Korea or some other more efficient al-
ternative.)

The tree was much cleaner with the bit-distance-based
join algorithm, and different localities formed clusters
within the tree. For example, all of the Israeli nodes
were grouped together and all of the Korean nodes
were grouped together and routed via Taiwan, etc.
Figure 3 compares the bit-distance and breadth-first
join algorithms.

5.2 Stream Lag

To analyze performance, all nodes send a UDP data-
gram every time they pass a 128KB boundary in the
stream. The timestamps of these incoming UDP data-

grams (less one-half of the round-trip time to the host)
enabled us to determine the lag between various levels
of the tree, as the root node would return a packet first,
followed by the first level nodes a certain time interval
later, and so on.

In one test with 19 nodes (using the optimized tree-join
algorithm), the steady-state “stream lag” from the root
node to bottom nodes of the tree was around 600ms in
the average case (with hosts in Asia.) In other words,
stream data took about 600ms to propagate from the
root to the leaves. This is shown in Figure 4.

Average stream lag stayed consistent over time; any
clients that started out trailing the stream usually
caught up within about thirty seconds to a minute.

6



5.3 Relocation

We were also able to simulate failures and record the
amount of time required for abandoned children to com-
plete a full relocation to other parts of the tree. Recov-
ery from single, isolated failures was quick - 419ms on
average, 1042ms worst case (across 17 individual re-
locations.) The variance in recovery time was much
higher when multiple failures were simulated within a
span of a few seconds; in one trial, with recovery times
ranging from a minimum of about 300ms to a maxi-
mum of 4200ms and a mean of around 1020ms (across
42 relocations.)

6 Performance Analysis

We were pleased overall with the system’s performance,
and the stream was successfully propagated through a
tree of 20 nodes. The system proved reliable and ran
unattended for periods of several hours without inci-
dent. In addition, the stream lag (top-to-bottom skew)
was less than anticipated (on the order of seconds in the
worst case); we had planned for potential skew on the
order of tens of seconds or minutes. Furthermore, the
bit-distance join algorithm successfully clustered nodes
within the same continent, minimizing the use of slower
transcontinental links. The stream played continuously
through both single- and multiple-node failures (sim-
ulated) and abandoned nodes were reassigned more
quickly than presumed. We assumed that we would
need to endlessly tweak the size of the buffer for opti-
mal performance, but our initial one-megabyte forward
and backward buffers proved sufficient in nearly all
cases.

However, the PlanetLab testbed was a bit too ho-
mogenous. First, unlike anticipated real-world clients,
it was extremely reliable and few nodes ever crashed;
all failures needed to be simulated. Second, all Plan-
etLab nodes had more than enough bandwidth to for-
ward the stream; we imagine that slow clients (whose
downstream bandwidth is less than the bit rate of the
stream) could cause disasters at lower levels of the
tree. Finally, no PlanetLab nodes were behind fire-
walls; in reality, we expect NATs and firewalls to cause
headaches because our current implementation relies
on peers to be able to connect to each other. We be-
lieve that these problems would be even worse, though,
for systems such as NICE and Narada which depend
heavily on peer-to-peer communication for their clus-
tering algorithms; our single communication channel to
the tracker is more NAT-friendly, is simpler, and has
less overhead.

Another conceivable problem that was not manifested
under the PlanetLab testbed is a stalled client (caused
by an infinite loop, saturated connection, etc.) Stalled

clients could introduce severe delays into large portions
of the tree, so special care should be taken by clients to
relocate if they discover their parent has not sent data
within a certain time interval and is not responding to
keepalive or ping requests (Our current implementation
does not take special measures to detect this scenario.)

Assuming that the NAT/firewall and stalled client
issues could be overcome through careful implementa-
tion, we feel that our system could scale to thousands
of clients (as long as the tracker had enough computa-
tional power, bandwidth, file descriptors, and so on to
handle the incoming control traffic.) Each individual
node maintains a constant number of connections and
a constant amount of buffer space, etc., and computa-
tional demands on the tracker seem to rise quadrati-
cally (for example, in the worst case, the join algorithm
would iterate over every node in the tree.)

7 Conclusion

RTM provides application-layer multicasting function-
ality using a very simple design. By organizing Clients
in a tree structure, a single low-bandwidth source is
able to serve many Clients well beyond the number
possible in traditional unicast system. The design
emphasis minimal per Client load by bounding the
number of children served per Client, thereby allowing
many low-bandwidth hosts to participate in the service.

For ease of prototyping and development, we imple-
mented the system in the Python programming lan-
guage. Python has a highly capable standard library
(including the framework on which our RPC mecha-
nism shall be built), and because it is cross-platform,
RTM can be used on many operating systems. In
contrast, NICE has only a poorly-maintained imple-
mentation for FreeBSD (though it apparently compiles
on Linux as well.)

The choice to leverage existing streaming frameworks
and the use of Python proved invaluable for rapid
development; changes could often be made to certain
parts of the Tracker source code and incorporated with-
out requiring a restart of the entire system. We were
able to put together not only a fully working system
but also visualization tools and a testing framework by
demonstration day.

Altogether, the RTM implementation was comprised
of a mere 4100 lines of code. The Tracker and Client
code together comprised a mere 1300 lines of Python
while the GUI testing application comprised 2800 lines
of Java. In comparison, the NICE project software
comprised 10500 lines of C code without including a
GUI interface.

7



RTM requires the least aggregate control overhead
of all the application-layer multicasting systems we
examined. Other application-layer multicasting sys-
tems require significant inter-client control chatter to
function properly. RTM eliminates inter-client control
chatter altogether. Control operations in RTM only re-
quire communication between the Tracker and a single
Client. The choice of our Tracker-based design pro-
vides two benefits. First, control operations are always
limited to a constant amount of network traffic per op-
eration. Second, hosts behind firewalls and NATs can
use RTM (albeit only as leaf nodes since children can-
not connect to them) whereas they would be prevented
from participating in NICE or Narada which require
them to be able to receive control messages as well as
transmit them. RTM (and all other application-layer
multicast systems) already has a single point of failure
at the stream source. Co-locating the Tracker with the
source of stream data on a single host does not diminish
robustness because the failure probabilities of the two
components will have an extremely high correlation.

The design of RTM is built leveraging existing stream-
ing technology. Service providers and listeners are able
to use the same software to which they are accustomed.
We worked with Shoutcast in our reference implemen-
tation, and used standard software to provide and listen
to the stream. However, RTM could be easily adapted
to any streaming application including video, stock
tickers, and gamecasts.

Clients located in lower tiers of the tree receive the
streamed transmission with an amount of delay not
experienced by Clients at higher tiers. Using a non-
optimal best effort scheme based on IP address bit
distance, RTM does a reasonable job of positioning
nodes with relative topological locality close to one an-
other in the Client tree, while minimizing tree depth.

Other protocols do a better job of minimizing load on
network resources, but suffer from inability to func-
tion on hosts behind firewalls and NATs which are
particularly common in the relatively low-bandwidth
commodity market where RTM is most useful.

References

1. http://www.shoutcast.com/

2. M. Castro, P. Druschel, A.-M. Kermarrec, A.
Nandi, A. Rowstron, A. Singh. SplitStream:
High-Bandwidth Content Distribution in Coop-
erative Environments. IPTPS’03, Berkeley, CA,
February, 2003.

3. H. Deshpande, M. Bawa, H. Garcia-Molina.
Streaming Live Media Over Peers. Stanford
Database Group, 2002.

4. V. N. Padmanabhan, H. J. Wang, P. A. Chou.
Distributing Streaming Media Content Using Co-
operative Networking. ACM, NOSSDAV’02, May
12-14, 2002, Miami, FL.

5. Y. Chu, S. Rao, H. Zhang. A Case for End Sys-
tem Multicast. ACM, SIGMETRICS’00, June,
2000, Santa Clara, CA.

6. S. Banerjee, B. Bhattacharjee, C. Kommareddy.
Scalable Application Layer Multicast. ACM,
SIGCOMM’02, August 19-23, 2002, Pittsburgh,
PA.

7. M. Dobuzhskaya, R. Liu, J. Roewe, N. Sharma.
Zebra: Peer To Peer Multicast for Live Streaming
Video. MIT 6.824, May 6, 2004.

8. http://www.planet-lab.org/

9. http://prefuse.sourceforge.net/

8


