
DOG: Efficient Information Flow Tracing and Program Monitoring

with Dynamic Binary Rewriting

Qin Zhao Winnie W. Cheng Bei Yu Scott Hiroshige

{zhaoqin, wwcheng, beiyu, skhirosh}@mit.edu

Abstract

In this paper, we present DOG (Dynamic Obser-
vant Guard), an efficient information flow trac-
ing and program monitoring system. Our sys-
tem is based on dynamic binary rewriting. We
proposed a number of novel techniques such as
memory mapping to reduce overhead in trac-
ing of data and monitoring of program execu-
tion. We have demonstrated that our system
is effective in protecting against various kinds
of exploits. We also evaluated our system per-
formance with SPEC2000 INT [5] benchmark.
Our system achieved an average slowdown of
5.5 times compared against the native execu-
tion, offering significant improvements over sim-
ilar tools.

1 Introduction

Critical vulnerabilities and security exploits are
the norm in todays computer systems. The re-
ality is that software is buggy and computing
devices must develop an immunity against these
attacks. In a summary of vulnerabilities in the
Red Hat operating system, buffer overflow and
the class of overwrite attacks were identified as
the number one source. There were also a num-
ber of temporary file creation and information
leak vulnerabilities. A security tool should pro-
tect against the common critical attacks. In ad-
dition, it should provide a protection mechanism
for sensitive data even when the system is com-
promised.

A technique that has been suggested to
counter exploits from most critical vulnerabili-
ties is called information flow tracing. Dynamic

information flow tracing is a technique to track
the propagation of tainted data during program
execution. The taint data can be user input, in-
put from a network socket, or data read from
files. Information flow tracing is useful for re-
stricting the use of untrusted data as well as
identifying sensitive data that can be handled
more meticulously.
Currently, there are three ways to track taint

data: (1) interpretor-based approach such as
Perl’s taint mode [3], (2) simulator-based ap-
proach [17, 10], and (3) instrumentation-based
approach [14]. All these tools suffer from sig-
nificant performance overhead prohibiting their
use for realtime applications. For example,
TaintCheck [14] demonstrated a slowdown of
over 30 times compared with native execution.
The overhead is mainly due to a large number
of extra operations being performed to maintain
and propagate the taint status for each applica-
tion operation.
Based on DynamoRIO [8], our system, DOG,

uses an instrumentation approach to dynami-
cally trace the propagation of taint data. DOG
consists of a number of optimizations to keep
the overhead low. It is able to protect against
a broad set of exploits such as format string
and buffer overflow. In addition, DOG provides
a generic cryptographic interface to protect the
sensitive data stored in temporary files.
Our approach has the following attractive

properties:

• Language independent. Since our tool
operates on the binary level, it can be used
by applications written in any programming
language. This is especially useful in pro-
tecting legacy software from being attacked

1



without modifying the source code or re-
compilation.

• Comprehensive tracing. Our tool can
trace the taint data during the execution of
the application code as well as all the shared
libraries.

• Real-time usage. Our tool is the first of
its class that achieves good enough perfor-
mance for practical use.

The remainder of the paper is organized as fol-
lows. Section 2 gives an overview of our system.
Section 3 describes the details of our design de-
cisions and implementation techniques. Exper-
imental results are discussed next and in Sec-
tion 4. Section 5 gives an overview of related
work and previous attempts at the problem. The
paper concludes our work in Section 6 and ad-
dresses potential issues to be further explored as
future work.

2 System Overview

Our information flow tracing and monitoring
system takes on an object-oriented model that
provides a flexible and extensible interface for
adding safe-guard operations and for detecting
suspicious behavior. It consists of a front-end
that provides a user-friendly interface to spec-
ify configurations for individual applications and
a back-end that invokes the application within
a controlled execution environment. Figure 1
shows an overview of DOG.

Figure 1: DOG System Overview

The system administrator specifies TaintOb-
jects through the DOG graphical user interface
(DOG-ORDER). These objects may be coarse-
grained such as all input from network interface
or fine-grained such as a specific global variable

in the application. Each object is associated
with a set of propagation policies and actions.
Some examples of actions include types of ex-
ploit detection with varying degrees of alert level
and encryption/decryption capabilities.

Figure 2: TaintObject

The application is invoked within our back-
end framework, a DynamoRIO-based client that
implements our efficient information flow trac-
ing algorithms (DOG-FOLLOW) and executes
the appropriate protection mechanisms (DOG-
BARK). Based on the object and properties
specified in the configuration, DOG-FOLLOW
enables propagation policies such as copy and
arithmetic propagation on the defined object.
DOG-BARK performs security checks for pos-
sible exploits resembling buffer overflow, for-
mat string and other attacks. It also guards
against the overwrite of taint objects to files and
provides encryption/decryption on file streams.
The next section describes the details of the im-
plementation techniques for DOG back-end.

3 Design and Implementation

3.1 Taint Tracing

As possible starting points of taint tracing, the
administrator can specify the data from specific
input device or network socket, or identify spe-
cific memory locations as tainted. Our taint
tracing tool tracks the propagation of tainted
data at runtime. There are different behaviors
of taint propagation, which are summarized in
subsection 3.1.1. In subsections 3.1.2 and 3.1.3

2



we describe the potential overhead for tracing
tainted data and how we manage to minimize
the overhead in our design and implementation.
In subsection 3.1.4 we describe how we check the
taint data in sensitive locations to prevent or de-
tect attacks. Finally in subsection 3.1.5 we give
some discussions about our design.

3.1.1 Taint Tracing Policy

The residence of taint data is a memory loca-
tion or a register. Taint data can be propa-
gated among different residences in various ways,
which fall into following four categories.

1. Copy Propagation: Taint data is copied
from one residence to another residence.

2. Arithmetic Propagation: Taint data is
transformed from input operand to the out-
put of a mathematic or logical computation.

3. Address Propagation: Taint data can be
used to calculate a memory address, which
could propagate the sensitive data through
a table lookup approach.

4. Control Propagation: Taint data may also
be propagated through deliberate control
transfer. For instance, code like if(x ==

1) y = 1; else if(x == 2) y = 2; ...

may propagate the taint data x to y.

Our default tracing policy is: the output (des-
tination) data is tagged as tainted if and only if
any of the input (source) data is tainted, which
covers propagation type 1 and 2. We did not
trace propagation type 3 because it is prone to
cause false positives. However, we think this
type could be treated as an option for users to
specify if they need higher security level for their
programs. For propagation type 4, naive taint
propagation of control-dependent data can lead
to a large percentage of false positives. This
is a fundamental problem faced by previous ap-
proaches [14, 9]. Instead, our tool allows users to
specify the critical places in their program where
control flow should not be influenced by tainted
data.

3.1.2 Design

Basic Idea

Similar to Memcheck [15], we associate each byte
of memory and general purpose register with a
shadow memory byte to indicate its taint sta-
tus: 1 represents tainted and 0 represents clear.
When an application instruction is executed, a
series of operations is performed to propagate
the taint status from the input (source) data
shadow memory to the output (destination) data
shadow memory. If there are multiple inputs, the
taint status of the output is logical OR of the
taint status of all the inputs. Our approach is to
insert a set of instructions around each instruc-
tion of the application code. The instrumented
code updates the taint status in the shadow
memory.

Performance Challenges

Although the conceptual idea of taint tracing is
very simple, a similar approach described in [14]
reports over 30 times slowdown when compared
against native execution. Minimizing the over-
head is a challenging task.

There are two major overheads. One is in-
strumentation overhead − the overhead caused
by performing the instrumentation. The other
is tracing overhead − the overhead incurred by
executing the instrumented code to propagate
taint status. We expect the tracing overhead to
be much bigger than the instrumentation over-
head, because instrumentation is only performed
once for each application instruction, while the
instrumented code may be executed many times.
This is later verified by our experiments. There-
fore, our optimization mainly emphasizes on the
tracing overhead, i.e., reducing the number of in-
strumented instructions for each application in-
struction.

The tracing overhead can be divided into 3
parts described as follows.

1. Shadow memory mapping. The over-
head for mapping application instruction
operands to their shadow memory.

3



2. Spill register. For the usage of instru-
mented code, some general purpose registers
need to be spilled (save and restore) in or-
der to avoid disturbing the execution of the
application code. In particular, if some in-
struction modifies the EFLAGs register, it
should also be save and restored.

3. Propagation overhead. The overhead is
incurred in order to propagate the taint in-
formation from source residence to destina-
tion residence.

l2 = l1[(addr >> 16) & 0xffff];
shadow = &l2[addr & 0xffff];

(a) C code for mapping addr to shadow.

01. mov addr → eax
02. sar eax, 10h → eax
03. and eax, 0ffffh → eax
04. mov [eax*4+l1] → eax
05. mov eax → l2
06. movzx word addr → eax
07. lea [eax*4+l2] → eax
08. mov eax → shadow

(b) Instructions generated by gcc for (a).

Figure 3: Shadow memory mapping with page-
table like structure

Optimization

We apply optimization techniques to reduce
all of the above tracing overheads. First, we
realize that the mapping overhead of page-
table like shadow memory structure used in
the TaintCheck [14] paper is very large. As
shown in Figure 3, it takes 8 instructions to find
the shadow memory (shadow) for a application
operand (addr). In order to reduce such mapping
overhead, we devise a simple addressing mapping
strategy: each shadow memory byte is mapped
to the application memory byte by adding a con-
stant offset, shadow base. We have implemented
a loader to realize such a mapping between the
shadow memory and application memory. This
requires no extra instructions to perform the
mapping. Second, when instrumenting appli-
cation instruction, we minimize register spilling
with two techniques. We use dead register when-
ever possible. Also, we check if the application

instruction will modify the EFLAGs. If so, we
need not save and restore the EFLAGs, for ex-
ample, arithmetic instructions. Third, we en-
force byte-to-byte mapping from the application
code to the shadow memory, which makes the
taint propagation simple and very efficient.

3.1.3 Implementation

We implement our tool in Linux on x86 archi-
tecture, and use DynamoRIO to perform instru-
mentation. To simplify our work, we only instru-
ment the general purpose instructions. We force
the data addressable by the application and its
shared library to a fixed specific memory space
in order to enable our memory mapping strat-
egy described above. We have implemented a
loader to load the application and its shared li-
brary into a predefined memory space − between
0x000000000 and 0x57f00000, which we call ap-
plication space. We also intercept the mmap and
mmap2 system call to allocate the memory from
the application space when the application re-
quests more memory space.

Loader

We implement our loader by modifying the
source code of Valgrind 2.4.0 [4]. It consists
of two stages. In stage 1, it loads the code of
stage 2 into the space between 0xb0000000 and
0xbfffffff, which we call monitor space. Then
the control is transferred to stage 2. In stage 2, it
loads the application and its shared library into
the application space, and loads DynamoRIO
into the monitor space, then it transfers the con-
trol to DynamoRIO.
Next, DynamoRIO loads our shared library

dr-instrument.so into the monitor space. This
is used to perform the instrumentation and in-
tercept system calls. Then DynamoRIO starts
building and executing basic blocks of the appli-
cation.

System Call Interception

We intercept system calls for several pur-
poses: allocating shadow memory, marking
taint status for data read from files or socket,

4



and modifying temporary file operations. In
Linux, system call is implemented by soft
interrupt instruction int80. The system
call ID and parameters are passed through
the general purpose registers. When Dy-
namoRIO builds basic blocks, the int80 is iden-
tified. Our dr-instrument.so inserts instruc-
tions to call our functions before syscall and
after syscall right before and after int80, re-
spectively.

Function before syscall checks the system
call ID and its parameters. If the system call
is mmap or mmap2 for requesting memory, its pa-
rameters are modified to request memory in the
application space. Function after syscall ex-
amines the result returned from Linux, to check
if the memory request is successful. If so, the
corresponding shadow memory is also allocated
and initialized.

Instrumentation

Another task of dr-instrument.so is to per-
form the instrumentation. Due to the complex-
ity of x86 instruction, instrumentation is difficult
and tedious. Valgrind [13] first translates x86
instruction to RISC like Ucode, performs trans-
formation and instrumentation on Ucode, and
then translates Ucode back to x86 instructions.
In this way, it is easy for a user to perform code
transformation. However, it cannot produce the
optimal instrumented code. For performance
reasons, we perform the instrumentation on the
x86 instruction set directly using DynamoRIO.
We mainly focus on the following two types of in-
structions for tracing the taint data propagation:
data movement instructions like mov, push, and
cmov (conditional move), and arithmetic instruc-
tions like add and sar (arithmetic right shift).

The instrumented instructions for each orig-
inal instruction perform the following tasks in
sequence: (1) spill a few registers for storing
taint status, (2) map original operand (register
or memory address) to its shadow memory, (3)
load the taint status from shadow memory into
the spilled register, (4) store the status into des-
tination’s shadow memory, and (5) restore the
spilled registers. If the instrumented instructions

modify the EFLAGs register, we need extra in-
structions to save and restore it. As described in
subsection 3.1.2, our optimizations can reduce
the number of instructions for (1), (2) and (5)
to zero in most occasions. Also, the byte-to-
byte mapping between application memory and
shadow memory simplifies (3) and (4) greatly.
Figure 4 and Figure 5 show two examples of our
instrumentation for load and store, respectively.
Here the shadow base is 0x57f00000.

. load data from [edx+0x8] to eax
mov [edx+0x8] → eax

(a) Before instrumentation.

. load taint status from shadow memory of [edx+0x8]
mov [edx+0x57f00008] → eax

. store taint status into shadow memory of eax
mov eax → [0xb11f1460]

. original instruction
mov [edx+0x8] → eax

(b) After instrumentation.

Figure 4: Instrumentation for load

. store data from eax to [edx+0x8]
mov eax → [edx+0x8]

(a) Before instrumentation.

. original instruction
mov eax → [edx+0x8]

. load taint status from shadow memory of eax
mov [0xb11f1460] → eax

. store taint status to shadow memory of [edx+0x8]
mov eax → [edx+0x57f00008]

. restore eax
mov [edx+0x8] → eax

(b) After instrumentation.

Figure 5: Instrumentation for store

3.1.4 Taint Checking

We implemented four types of taint checking.
First, for the printf routine family, we check
if the format string argument is tainted or
not. Second, we check the taint status of the
jump target, such as return address or function
pointer, which is similar to program shepherding
[12]. Third, we check whether the data storing
the jump target is tainted. Finally, we check
if some critical variable (for example, at control

5



flow decision point) specified by user is tainted
or not.

3.1.5 Discussion

There is a trade-off between the efficiency of
shadow memory mapping and the usage of mem-
ory space. Our design reduces the number
of instrumented code with the cost of doubled
memory usage. Using a page-table like shadow
memory structure as TaintCheck [14] can keep
the shadow memory usage minimal, because
it only allocates shadow memory for tainted
data. Therefore, our tool is more suitable for
large servers with plenty of memory and the
application performance is concerned. While
TaintCheck can be used for analysis purpose on
small machines.

In addition, we realize that with our design
the shadow memory becomes a critical area that
must be protected from malicious access. Our
shadow memory mapping strategy can prevent
attackers from directly modifying the shadow
memory as long as attackers’ code is under
the control of DynamoRIO. The reason is sim-
ple: when attackers issue an instruction to ac-
cess an address addr in shadow memory area,
the instrumented code will access memory at
addr+shadow base, which is beyond the bound-
ary of the shadow memory area, and conse-
quently will cause an invalid memory access ex-
ception.

3.2 Encrypted Session Data

DOG uses the Advanced Encryption Standard
(AES) with a 256-bit key to protect against
unauthorized access on private session data. The
goal of our system is not in providing an En-
crypted File System such as Microsoft’s EFS
[2] but merely to enforce the privacy of ses-
sion data. Hence, the key is generated with
a pseudo-random generator initialized with the
timestamp of the application execution. DOG
has a Re-mapped Table with entries keeping
track of encryption and file pointer status. En-
cryption and decryption costs are kept low by di-
viding a file stream into fixed-size 16-bytes chunk

as shown in Figure 6. Non-sequential writes and
reads trigger encryption and decryption of only
the overlapping chunks. In addition, DOG has a
File Write-out Alert Table that lists the file
descriptors that have permission to write sensi-
tive data to file. In this way, our system alerts
upon suspicious information leak.

Figure 6: Format of encrypted file

4 Experimental Evaluation

4.1 DOG

DOG-ORDER, shown in Figure 7 and 8, is the
front-end for DOG. Only the system administra-
tors can define TaintObjects for each application
to be run under DOG. DOG-ORDER is written
in Java version 1.5.0.
There are two types of TaintObjects: General

and Variable, corresponding to coarse and fine-
grained objects, respectively. Using the “Gen-
eral” tab, administrators can specify whether
they want DOG to trace data entered originating
from end-users, sockets, and specific interfaces,
and also whether they want to encrypt tempo-
rary files and files in the /etc directory.
The “Variable” tab lets administrators view

global variables of an application, if the applica-
tion has been compiled with the symbol table.
For each global variable, the administrator can
specify whether DOG should trace copy prop-
agation, whether DOG should trace arithmetic
propagation, how DOG should respond when it
observes a Format String or Buffer Overrun ex-
ploit, and finally whether DOG should encrypt
the variable.
For each application, a configuration file

is generated to communicate the policies
and actions of TaintObjects to the backend.
This file is vulnerable to attacks and our
system protects its integrity, authenticity
and confidentiality with the combination of
symmetric- and asymmetric-key cryptography.
The DOG backend has a set of RSA private

6



Figure 7: DOG-ORDER General panel

and public keys (backend rsa private key,

backend rsa public key). The DOG fron-
tend also has a set of RSA private and
public keys (frontend rsa private key,

frontend rsa public key) as well as runtime
generated AES private keys per configuration
file (aes private key).
The frontend computes the SHA1 hash of the

configuration file and generates a digital signa-
ture based on this hash using RSA with its pri-
vate key. This allows the backend to verify the
integrity and authenticity of the configuration
file. The frontend then generates a random AES
private key and encrypts the configuration file.
To protect the privacy of the configuration file,
it uses RSA with the backend’s public key to
encrypt the AES private key and the digital sig-
nature.
The backend uses its RSA private key to de-

crypt the AES private key and digital signature.
Then it uses this AES private key to decrypt the
configuration file and verifies that the computed
hash is the same as the one signed by the digital
signature. The steps are outlined in Figure 9.

4.2 Effectiveness of Taint Check

We evaluate our taint tracing tool with syn-
thetic exploits on vulnerabilities of format string,
buffer overflow, and critical variable.

Figure 8: DOG-ORDER Variable panel

Detecting format string attack

We wrote a program to test our taint tracing
tool’s ability to prevent format string attacks by
detecting a tainted format string. This program
accepts a user-supplied format string as the ar-
gument to printf(). This string has been mali-
ciously devised to reveal some sensitive program
data. When we ran this program with our taint
tracing tool, DOG correctly detected that the
printf() argument is tainted.

Detecting buffer overflow attack

In this test, we wrote a program that copies the
input read from file to the local buffer. The in-
put maliciously overflowed the local buffer such
that some sensitive memory location − return
address, is overwritten. In our case, the return
address is modified to point to a sensitive func-
tion grant access(). Our taint tracing tool
can successfully detect that the return address
is overwritten by tainted data when running the
program under DOG.

In addition, our taint tracing tool can success-
fully detect all the buffer overflow attacks de-
scribed in [18].

7



KEYS

At Frontend:
set of fixed RSA public, private key
AES private key (generated at runtime)

At Backend:
set of fixed RSA public, private key

OPERATIONS

At Frontend:
1. Ensuring integrity and authenticity

h = SHA1(file)
esig = RSAencrypt(frontend rsa private key, h)

2. Ensuring privacy
generate aes private key
efile = AESencrypt(aes private key, file)
emsg = RSAencrypt(backend rsa public key,

{esig, aes private key})
Resulting information = {efile, emsg}

At Backend:
{esig, aes private key} = RSAdecrypt(

backend rsa private key, emsg)
signed hash = RSAdecrypt(frontend rsa public key,

esig)
decrypted file = AESdecrypt(aes private key, efile)
computed hash = SHA1(decrypted file)
check(computed hash == signed hash)

Figure 9: Steps for configuration file protection.

Detecting critical variable attack

We also wrote a program in which a critical vari-
able that determines the control flow of the pro-
gram is overwritten by some maliciously devised
input, causing the program to grant right to at-
tackers. With our taint tracing tool, DOG can
successfully detect when the critical variable is
tainted.

Preventing temporary file attacks

We mimiked the information leakage vulnerabil-
ity in Internet Message (IM) package in Redhat
[1] where the name of a temporary file was eas-
ily guessed and the file could be corrupted by
attacker. DOG successfully overcomes this prob-
lem as it ensures random naming on temporary
files and these file mappings are hidden from the
application. It is also able to prevent from tem-
porary file race condition attacks since the gen-
erated file is encrypted and symbolic links are
allowed.

4.3 Performance of Taint Tracing

In this experiment, we measured our taint
tracing tool’s performance with a subset of
SPEC2000 INT. Our evaluation was performed
on a system with 2.8GHz Pentium 4, 1024K L2
Cache, 1024MB of RAM, and 2048M swap, run-
ning Fedora Core 3.

We first profiled the time distribution of appli-
cation running with our tracing tool. The result
shows that more than 95% of time is spent in ex-
ecuting application code and instrumented code
for almost all benchmarks. This justifies our pre-
vious claim that tracing overhead is dominant.

In order to evaluate the overhead of taint trac-
ing, we ran our taint tracing tool with all security
checks switched off. For each workload, we mea-
sured the running time of native execution, exe-
cution with our tracing tool, and execution with
Valgrind Memcheck, which uses page-table like
shadow memory and traces the status propaga-
tion in shadow memory. Figure 10 compares the
relative slowdown between Valgrind Memcheck
and our tracing tool under different workloads.

As can be observed from the figure, our taint
tracing tool outperforms Valgrind Memcheck
greatly with most workloads. The average rel-
ative slowdown of our tracing tool over all the
workloads is 5.53. It is much smaller than Val-
grind Memcheck’s average slowdown, which is
29.62. We did not compare our tracing tool with
TaintCheck [14] due to the lack of their source
code. However, as reported in their paper, their
performance is worse than Valgrind Memcheck.

With most workloads, the slowdown of our
tracing tool is below 10. Twolf with test in-
put is the exception because its native execu-
tion runs very fast, using only about 0.4s, in
which case our tracing tool spent a large por-
tion of time on initialization (about 80% accord-
ing to our experiment). Under those workloads
with ref input, the slowdown of our taint tracing
tool is much smaller than those with test input.
Further, most of workloads we tested are CPU
bounded. We expect that the slowdown of our
taint tracing tool would be even smaller with I/O
bounded workloads.

8



Figure 10: Relative slow down

5 Related Work

5.1 Program Monitoring

Program Shepherding [12] is a runtime monitor-
ing system that keeps track of whether code has
been modified since it was loaded, and checks
each control transfer to check if the destination
basic block has been modified or not. However,
it cannot prevent any attacks that use existing-
code.

5.2 Taint Tracing and Analysis

The most famous taint tracing work is Perl taint
mode, which can prevent both obvious and sub-
tle traps in code execution. While in taint mode,
data from potentially untrusted sources, such as
network sockets, is tagged as tainted. Perl is
constantly and vigilantly checking to see if the
script is going to do anything unsafe with the
taint tags while the program runs.

More recent work on dynamic taint tracing
and analysis includes [9, 17, 10, 14], which fo-
cus on various applications respectively. Taint-
Bochs [9], Information Flow Traching [17] and
Minos [10] all perform taint tracing at hard-
ware level. TaintBochs [9], built on Bochs, the
open source IA-32 simulator, is a tool based on
whole-system simulation for analyzing how sen-
sitive data are handled in large programs. The
information flow tracking [17] project designs a
hardware mechanism based on the SimpleScalar
3.0 tool set [6] for tracking information flow dy-

namically to protect programs against malicious
attacks. It identifies spurious information flows
and restricts the usage of spurious information.
Minos [10], is a micro-architecture that imple-
ments Biba’s low-water-mark integrity checking
on individual words to detect attacks at runtime.
It is also based on Bochs to check vulnerabili-
ties at whole system level. A main limitation of
the three systems is that they require specialized
hardware, unless one wants to go through the
trouble of building the custom hardware. Their
performance deteriorate greatly compared with
native execution when used with hardware emu-
lators. In addition, due to their hardware design,
it is difficult for users to configure their secu-
rity requirements. Similar to ours, TaintCheck
[14] developed a taint tracing based on code in-
strumenting, but is based on Valgrind [4]. As
mentioned before, its page-table like structure
contributes to its over 30 times slow down when
compared against native execution.

There are also a variety of works developed for
static taint analysis. [16] developed a static anal-
ysis system for automatically detecting format
string bugs at compile-time. [7] uses tainting-
style analysis to find security errors with system-
specific extensions linked into the compiler writ-
ten by programmers. Due to the lack of runtime
information, most of them are overly conserva-
tive and inaccurate.

6 Conclusion and Future Work

In this paper, we present DOG, an efficient in-
formation flow tracing and program monitoring
security system. Our system is able to protect
against various kinds of attacks, such as for-
mat string attack and buffer overflow attacks.
Our experiment demonstrated that our system
is much more efficient and practical than other
similar tools.

In the future, we will improve our system along
the following two directions. First, we can fur-
ther improve the performance of our taint trac-
ing tool. Current taint tracing performs in-
strumentation without knowledge of any global
information, and would produce some redun-

9



dant code. By analyzing the data flow of basic
block, we can find registers to steal with minimal
spilling overhead. The information would also
help reducing overhead on redundant taint prop-
agation. Second, similar to backtracking [11],
we can log the system call. If an intrusion is
detected later, the logged information can help
administrator analyze how the attack happens
and discover the application’s vulnerability.

References

[1] http://rhn.redhat.com/errata/RHSA-2003-
039.html. Redhat Security Advisory,
RHSA-2003:039-09, February, 2003.

[2] Encrypting File System in Win-
dows XP and Windows Server, 2003.
http://www.microsoft.com/technet/
prodtechnol/winxppro/deploy/cryptfs.mspx.

[3] Perl security manual page.
http://www.perldoc.com/perl5.6/pod/perlsec.html.

[4] Valgrind. http://valgrind.org/.

[5] STANDARD PERFORMANCE EVAL-
UATION CORPORATION. SPEC
CPU2000 benchmark suite, 2000.
http://www.spec.org/osg/cpu2000/.

[6] D. B. an T.M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical report,
University of Wisconsin-Madison Computer
Science Department, 1997.

[7] K. Ashcraft and D. Engler. Using
programmer-written compiler extensions to
catch security holes. In SP ’02: Proceedings
of the 2002 IEEE Symposium on Security

and Privacy, 2002.

[8] D. Bruening. Efficient, Transparent, and
Comprehensive Runtime Code Manipula-

tion. PhD thesis, Massachusetts In-
stitute of Technology, September 2004.
http://www.cag.csail.mit.edu/rio/.

[9] J. Chow, B. Pfaff, T. Garfinkel, K. Christo-
pher, and M. Rosenblum. Understanding

Data Lifetime via Whole System Simula-
tion. In 13th USENIX Security Symposium,
2004.

[10] J. R. Crandall and F. T. Chong. Minos:
Control data attack prevention orthogonal
to memory model. In MICRO-37, 2004.

[11] S. T. King and P. M. Chen. Backtrack-
ing intrusions. In SOSP ’03: Proceedings
of the nineteenth ACM symposium on Op-

erating systems principles, pages 223–236,
New York, NY, USA, 2003. ACM Press.

[12] V. Kiriansky, D. Bruening, and S. Amaras-
inghe. Secure Execution Via Program Shep-
herding. In 11th USENIX Security Sympo-
sium, 2002.

[13] N. Nethercote. Dynamic Binary Analysis
and Instrumentation. PhD thesis, Univer-
sity of Cambridge, November 2004.

[14] J. Newsome and D. Song. Dynamic taint
analysis for automatic detection, analysis,
and signature generation of exploits on com-
modity software. In 12th Annual Net-
work and Distributed System Security Sym-

posium, 2005.

[15] J. Seward and N. Nethercote. Using
valgrind to detect undefined value errors
with bit-precision. In Proceedings of the
USENIX’05 Annual Technical Conference,
2005.

[16] U. Shankar, K. Talwar, J. S. Foster, and
D. Wagner. Detecting format string vul-
nerabilities with type qualifiers. In 10th
USENIX Security Symposium, 2001.

[17] G. E. Suh, J. Lee, D. Zhang, and S. De-
vadas. Secure program execution via
dynamic information flow tracking. In
ASPLOS-XI, 2004.

[18] J. Wilander and M. Kamkar. A compari-
son of publicly available tools for dynamic
buffer overflow prevention. In 10th Net-
work and Distributed System Security Sym-

posium, 2003.

10


