
A Distributed Architecture for Massive Multiplayer Online

Role-Playing Games

Marios Assiotis Velin Tzanov

May 13, 2005

Abstract

We present an approach to support Massively Multiplayer Online Role-Playing Games using
a centralized distributed architecture by splitting the large virtual world into smaller areas. Our
approach takes significant advantage of the locality of interest such games exhibit to reduce the
bandwidth requirements for both game servers and clients. We also propose a solution to the
hard problem of interaction between players residing on areas handled by different servers. We
have also implemented a simple game, AlienBorder which demonstrates the correctness of our
approach as well as the relative performance benefits of writing new games using a distributed
architecture versus a non-distributed one.

1 Introduction

In this paper we propose a centralized, distributed
architecture for Massive Multiplayer Online Role-
Playing Games (MMORPG), to support a large
number of concurrent users, without sacrificing
efficiency or security. The primary contribution
of this paper is architectural. We take advan-
tage of the locality of interest data exhibits in
an MMORPG to separate the large world into
smaller individual regions and assign each region
to a different physical machine.

Our most important technical contribution
is a design that handles game scenarios occur-
ring in an area near the virtual border separat-
ing two or more servers. Existing systems solve
this problem by using inner-game mechanisms
such as water, tunnels or teleports. We present a
novel way that allows for game event to execute
normally in such areas while being completely
transparent to the user and not increasing the
latency between game client (player) and server
significantly.

Although we do not discuss fault-tolerance,
our design allows for a number of techniques

to be applied. A short discussion about fault-
tolerance is included in the end.

The rest of the paper is organized as follows:
Section 2 presents some previous work done on
MMORPG systems while section 3 provides back-
ground material for MMORPGs. Sections 4 and
5 present the challenges we faced and how our
design solves the major issues identified. Section
6 discusses the implementation of AlienBorder, a
simple game built using our architecture, used to
demonstrate the feasibility of our design as well
as evaluate the performance of it. Finally sec-
tion 7 concludes with our results and discusses
shortcomings and future work.

2 Related Work

In this section, a number of other approaches are
discussed as well as the various problems each
one has.

Client/Server

In this architecture a single server is responsi-
ble for holding the entire game state and han-

1



3.1 Virtual World Assiotis, Tzanov

dling all clients. Obviously this can not handle
the extremely big load required by MMORPG.
Such an approach is typically used in First Per-
son Shooter games such as Quake and Doom.

Mirrored Game Architecture

Similar to the client/server architecture, although
the clients are balanced across a large number of
servers. Each server holds an identical copy of
the game world. Cronin et al[CFKJ01], discuss
such an architecture as well as an efficient yet
complex synchronization scheme[CFKJ02]. Un-
fortunately, it becomes very hard to maintain
consistency among all servers in such a highly
variable environment, with thousands of concur-
rent players. In addition to that, each single
server may not have the processing power to evolve
the entire world(Game AI).

Peer-to-peer

A lot of current research trends are towards P2P
systems[KLXH, BRS02], which although inter-
esting are not pragmatic in a real-world com-
mercial setting. P2P systems exploit the local-
ity of interest feature in MMORPG, much like
our proposed architecture. However, in P2P sys-
tems, the game state is stored in the clients, with
each client being responsible for a small region.
Clients multicast updates to other peers. How-
ever, lack of an established IP Multicast solu-
tion, forces such architectures to consume a lot
of bandwidth. In addition, P2P systems do not
currently have a reasonable way to handle cases
were areas of interest overlap1, other than use
game mechanisms such as a tunnel or a teleport.

3 MMORPG

We now move to discuss a few key characteris-
tics of MMORPG. Readers familiar with Role
Playing Games can skip this section.

1the so-called “player on region border” scenario which
we discuss extensively

3.1 Virtual World

MMORPG attempt to simulate real-life as much
as possible. As such it is necessary to constantly
evolve the game world using a set of laws. These
laws are a complex set of rules that the game
engine applies with every clock tick. A trivial
example of such a rule is a player walking near
an animal (NPC) and as a consequence of that
action, the animal would attack the player.

The virtual world consists not only of human
players but also of all game elements that are not
living objects. These elements are immutable
and include the area terrain, trees, mountains,
rivers, etc.

3.2 Player

A player is defined as a single human player,
that controls a single character represented by
an avatar in the virtual world. Each player has a
unique state consisting of several character prop-
erties. Such properties typically are health, abili-
ties, belongings and other depending on the specifics
of the game. In a typical game the player would
take on missions or quests that require traveling
in different parts of the virtual world.

3.3 Non-player characters

A large number of non-player characters (NPC
for short) such as animals and even computer
controlled opponents make their appearance through-
out MMORPG. Human players can interact with
NPC just as if they are other human players.

3.4 Events

An event is an action that happens in the world
and changes some state in it. Examples are a
player walking, shooting a gun or casting a spell.
These actions have direct and indirect consequences
to the state of the world. For example a player
walking changes the players own internal state
which is a subset of the world state. Events con-
tain all the information required for the game

2



Design Assiotis, Tzanov

engine to execute the event. For example, if the
event is shoot a bullet, the included information
might be the type of gun used, the location of the
player shooting the bullet as well as the location
of the target.

4 Goals and Challenges

We list some of the challenges faced while devel-
oping an MMORPG.

• Ability to handle a very large number of si-
multaneous users. As the information trans-
ferred between the players and the game
server is large, the bandwidth required to
support a huge number of players if enor-
mous.

• Very large virtual worlds require huge com-
putational power to simulate the existence
of life (AI Algorithms). No single proces-
sor machine can handle the computational
load required.

As it will be explained in detail later, our pro-
posed architecture works by splitting the large
virtual world into different smaller areas and as-
signing each area to be handled by a separate
physical machine (server). Therefore both the
bandwidth and computational load is spread out.
Although our proposed architecture is straight-
forward, we faced a number of challenges specific
to our architecture. These were :

• Players are not interested in receiving events
that do not pertain to them. For example,
a player should not receive an event update
about a bullet being fired far away from the
players current location.

• It is unclear what should happen when a
player is near the border that separates
the virtual area handled by two or more
servers. Players near the border should be
able to see each other and interact.

• Events that occur in an area near a bor-
der separating two or more servers can af-
fect players that reside on different servers.
Thus there exists a non-trivial probability
that the game state will be invalid if an ap-
propriate synchronization scheme is not in
place.

Our goal was to develop an architecture that
solves all the above problems. The hardest prob-
lem by far was to maintain consistency when
events occur near the border between two or more
machines.

Our design can be easily extended to be fault-
tolerant. Although fault-tolerance and quick re-
covery from crashes is a major concern for MMORPG,
it is a separate issue that escapes the scope of
this paper. There exists an abundance of pre-
vious work done on fault-tolerance in real-time
on-line games. Although we do not discuss these
in detail, a short discussion about fault-tolerance
is included.

5 Design

5.1 Overall Architecture

Figure 1: The squares represent different servers
each one with handling a separate area of the
virtual world

The overall system architecture builds upon
the locality of interest players exhibit. Based
on this players can be grouped together based
on their location in the virtual world. Therefore
the virtual world can be divided into smaller ar-
eas - with each area being assigned to a different

3



5.4 Inter-Server Interaction Assiotis, Tzanov

Figure 2: The concept of an area of interest
with multiple servers. From left to right, the
first players area of interest lies entirely in the
first server. The second and third players also
lie entirely inside the second server. The fourth
players area of interest spans across server 3 and
server 4.

server as shown in figure 1. This section dis-
cusses the various design decisions

5.2 Events

We abstract all actions during a game by intro-
ducing the notion of an event. Our events follow
the general principles described in section 3.4

5.3 Area of Interest

Each subdivision of the virtual world, although
smaller than the entire virtual world, is still quite
large. However the area of interest of a single
player is very limited and usually relates simply
to the sensory capabilities of the players charac-
ter. Naturally, a player would not be interested
in things that he can not see or hear[KLXH].
We can therefore reduce the communication re-
quired between the game server and the game
client (the player) by defining Areas of Interest.
An example is shown in figure 2.

The size of the area of interest depends on
the player type. For example a player with a
sniper rifle will have a larger area than a player
without one.

Using a publish/subscribe system [FWW02,
CKSW02] allows players to subscribe only for
events that interest them. A novelty of our ar-
chitecture is that the subscription of players to
events inside their area of interest happens auto-
matically depending on the players location in-

side the virtual world. The server is responsible
for updating the player for any events that occur
inside his area of interest.

5.4 Inter-Server Interaction

As multiple servers handle different areas of the
same virtual world, there are instances when a
server would be required to communicate with
another server. In our architecture this is not
very different from client-server communication.
Servers subscribe to their neighboring servers much
like players, with an area of interest of all points
close enough to the border between the two servers.

For example, assume a virtual world handled
by two servers, R and L, such that R handles
the rightmost area and L the leftmost area. In
our system, R will be subscribed to L rightmost
area. The benefits of this approach will become
more apparent as we discuss interaction among
players near server borders.

5.5 Player on region border

A very hard yet interesting problem is when a
players area of interest covers an area that spans
across servers as shown in figure 2. There are
four distinct scenarios

1. A player whose area of interest spans mul-
tiple servers needs to be able to see events
that occur in multiple servers. For example
consider a player standing near the border
looking towards a region handled by a dif-
ferent server. The player should be able to
see other players within his area of interest,
even if those players are in a region handled
by a different server than the players one.

2. A player while moving may suddenly move
into a region that is handled by a different
server

3. An event that originated in an area covered
by one server may end in a region covered
by a different server. For example, consider

4



5.5 Player on region border Assiotis, Tzanov

Figure 3: An example of two adjacent game
servers and two clients P1 and P2 each inside
an area handled by a different server yet being
able to see each other

a player shooting a rocket that must land
in a region handled by a different server

4. An event that occurs near the border may
simultaneously affect regions covered by one
or more different servers than the one it
originated at. An example of this would
be a large bomb exploding near the bor-
der, affecting players nearby; players could
possibly reside in separate servers.

To see how our architecture handles each sce-
nario, first recall that servers are subscribed to
their neighboring servers and receive events that
happen near the border. Assume a player P1

inside an area handled by server R and a player
P2 inside an area handled by server L. Servers R
and L are adjacent to each other - i.e they han-
dle adjacent areas. This setup is shown in figure
3. We now proceed to describe each scenario.

First Case

Under this scenario if players P1 and P2 are near
the border then they should see events originat-
ing from each other. As soon as P2 walks to the
rightmost area of server L, server R will auto-
matically subscribe P2 to it. P2 will now begin
to receive events in R, such as the existence of
P1.

Similarly P1 who is inside an area handled
by R is also able to receive events about player

P2 from L, reason being that P1 is automatically
subscribed to L when he enters L’s area of inter-
est.

The entire process is transparent to the player
who does not notice he is receiving events from
two different servers.

Second Case

Moving from one region to the other implies a
transfer of game state from one server to another.
Suppose P1 moves towards the area handled by
server L and eventually crosses over.

What will happen is that server R will send
an event to server L and let it know that it now
owns player P1. The event will include all of P1

state. In our architecture the players state also
includes a set of all other players and servers that
currently know about P1. In our specific example
this includes P2 and servers R and L.

Events for P1 that occur while the transfer is
in progress will be forwarded to L and will arrive
after the state transfer is over as the network
protocol preserves the order of messages. After
the state transfer has finished, L will contact P1

with a message to contact L from now on instead
of R.

The entire state transfer operation consists of
a single message between the two servers. There-
fore it executes very quickly and the player does
not notice.

Third Case

Assume a player shoots a rocket from server L
towards server R. In this case server R will re-
ceive two event notifications. The first event
is a natural consequence of servers being sub-
scribed to each other and is received when the
rocket is shot. Server R now knows the velocity
of the rocket can predict its position at any point
in time. The second time server R receives the
event from server L is when the rocket actually
crosses the border boundary. Server R can now
recalculate the position of the rocket and accept
one of the two calculations - naturally it chooses

5



5.6 Fault Tolerance Assiotis, Tzanov

the one that allows the rocket to go through a
given place sooner.

This entire process is not noticeable to the
players. All players will receive event notifica-
tions about the rocket as soon as it is shot or
when it enters their area of interest. Players may
receive additional event notifications regarding
possible effects of the rocket (i.e the rocket hit
someone). In the unlikely event that an event
should occur during the short time in which the
state is transfered, the user will experience a
delay equal to a one-way trip between the two
servers. Assuming a fast network back-end con-
necting all the game servers, this added latency
will not be noticeable at all to the end user.

Fourth Case

The fourth case although the hardest, reflects
the distinctive features of the entire architecture.
It is paramount to clearly conceptualize the dif-
ference between local events and shared events.
Local events occur on only one server although
another server may “see” them if they close to
the border. Shared events affect more than one
server at the same time.

The biggest challenge with shared events is
to maintain consistency during the event across
multiple servers. It can easily be seen that these
events must affect the state of the game in a
way that is equivalent to some serial order or
execution of those events.

On every neighboring pair of servers, we in-
troduce the notion of a primary server. Without
loss of generality arbitrarily designate the pri-
mary server to be the one with the lowest ID.
Each server takes care of ordering its own local
events. The primary server is responsible for or-
dering among shared events. Therefore whenever
a shared event originates on the primary server
(such as a large bomb exploding), the primary
server executes it and notifies the other inter-
ested servers. If a shared event however origi-
nates on a secondary server, it first notifies the
primary server of the event and waits until the

primary server sends a notification event back.
This technique guarantees serializability of

the events and it introduces an additional la-
tency to the client equal to at most the cost of a
round-trip inter-server communication message
in the case the event originates on a secondary
server. No additional latency is introduced if the
shared event originates at the primary server.

Naturally, the same technique can be gener-
alized for border corners - locations on the world
where there is an intersection of three or four
different server areas. In this case we again no-
tify the primary server, which has the lowest ID.
Then it notifies the server with the next smaller
ID and then, if needed, the latter notifies the
server with the next smaller ID. Since we can ar-
range the servers so that at most three servers
have a common border, we can obtain an upper
bound on the number of inter-server messages
equal to three.

5.6 Fault Tolerance

In the event of a server crash, the system should
recover the entire state of the world it represents
as it was prior to the crash very quickly and as
transparently as possible. Our architecture is
not inherently fault-intolerant, unlike P2P archi-
tectures. As every communication in the system
is encapsulated inside an event, it is easy for each
server to maintain a log file of all events received
and in the event of a crash replay the log. Of
course players that happen to be located in the
area handled by the server that failed would be
locked out while the server is restarting. To pre-
vent that from happening a mirrored, replicated
system as described by Cronin et al [CFKJ02]
could be used.

6 Implementation

We have implemented a simple game unimagi-
natively called AlienBorder, to demonstrate the
most important aspects of our architecture as

6



Evaluation Assiotis, Tzanov

well as measure the relative performance gains
of the distributed approach.

6.1 RPC Subsystem

AlienBorder is built on top of the Java Remote
Method Invocation subsystem. Although this is
inefficient from a performance perspective, it al-
lows for a clear event-driven design that clearly
demonstrates how our architecture works. JAVA
RMI presents a lightweight broker to the pro-
grammer with robust facilities for remote method
invocation[jav].

6.1.1 Asynchronous Calls

Java RMI does not support asynchronous remote
method calls. We have therefore implemented
a separate subsystem for asynchronous method
invocations. The ThreadManager object man-
ages a pool of threads for each server. When the
server wishes to invoke a remote method with-
out blocking, it wraps the method call inside a
Callback object and passes it to the ThreadManager
object, which in turn assigns it to a HelperThread
object running in a separate thread. The method
call returns immediately and the ThreadManager
becomes now responsible for executing the call in
a separate thread.

6.2 Map and Objects

The game map is simply a terrain of variable size.
For our demo purposes we have implemented two
kinds of objects, mobile ones that can be picked
up by players (rockets, flying rockets) and static
ones (planets, walls). Players are also mobile
game objects.

6.3 Events and Event Handling

Our architecture requires that all updates in the
state of the game occur via an event. Below is a
non-exhaustive list of the events in AlienBorder
:

ConnectEvent Sent from a player to a server
during the initial connection

ConnectACKEvent Sent from the game server
to the player confirming the connection and
loading the initial player state on the game
client

NewPosEvent Sent during position updates

MeetPlayerEvent Sent from the game server
to the player when another player enters
the first players area of interest.

TransferPlayerEvent Sent from one server to
another when a player crosses the border
boundary.

When an event is sent between a client and a
server, vice-versa or event between two servers, it
is placed in a queue. On the game client a timer
which ticks as to accommodate the refresh rate
of the users graphical display, executes events in
the queue.

On the game server events are executed im-
mediately but they only change the internal state
of the server. A timer which ticks as to simulate
the passing of time then executes a procedure
during which the changes in the servers internal
state are reflected in the game clients and neigh-
boring servers.

7 Evaluation

This section presents the results we obtained us-
ing AlienBorder, built on top of Java RMI.

7.1 Empirical Results

We run a version of AlienBorder on a local net-
work of PCs using a GUI game client which drew
the world on screen and allowed to user to move
and fire rockets using the mouse. The GUI also
displayed the server borders. As such we tried
to manually create failure scenarios by simul-
taneously firing, constantly crossing the virtual
server border back and forth, etc.

7



7.2 Experimental Results Assiotis, Tzanov

Our solution passed all tests successfully. De-
spite the lack of optimizations, the game was
very playable.

7.2 Experimental Results

We run a version of AlienBorder on a large het-
erogeneous cluster. To do so we used Emulab
[WLS+02] to configure a network topology of
multiple servers and clients. All game servers
were connected to a high-speed LAN with vir-
tually zero latency and zero packet loss rate.
Game clients were configured with various laten-
cies ranging from 10ms to 200ms and variable
packet loss rates, ranging from 0 to 0.3%.

The hardware configuration consisted of 3GHz
Pentium IV PCs with 1GB of RAM running Red-
Hat Linux 9.0 for the game servers and i586 vari-
ants for the game clients.

We used a game client which simulated player
behavior on the virtual world. We measured the
total cumulative time our program took to per-
form 4000 clock ticks in steps of 1000 ticks. From
that we measured how much was spent evolving
the virtual world (recall that the world evolves
once per tick) and how much time was spent in
handling events.

To evaluate our experimental results we used
four metrics :

1. Time server required to execute 1000 vir-
tual clock ticks2.

2. Time the game server spent processing events
it received.

3. Time the game server spent evolving the
world during each tick.

4. Percentage of game events received by sin-
gle client compared to the overall number
of game events sent by the server over the
duration of a game.

The first metric is an overall good measure of
how overloaded a CPU is. A large number here

2evolve the world 1000 times

Figure 4: The performance of a single server
when one hundred players and when two hun-
dred. All server metrics are displayed. It can
be seen that the server performs much worse as
more clients gradually connect. In the end it re-
quires six times more than optimal to evolve the
world at each tick

shows that the server was forced to waste cycles
on other tasks and could not keep up. In a real
world deployment this would significantly reduce
gameplay. For comparison we show the results of
a single server with no clients. The second met-
ric shows if the game server is forced to spent
most of the time processing events received by
clients. The third metric is similar to the previ-
ous one but shows if the game server is forced to
spent too many CPU cycles at each tick. Lastly,
the fourth metric shows if areas of interest have
helped reduced the number of events received by
the client and thus are a useful measure of not
only CPU consumption by the clients but also of
the network bandwidth usage per player.

Figure 4 shows the results when testing a sin-
gle server. It can be easily seen that a single
server can not scale very well. Figure 5 shows
the results when testing our architecture with
just three servers and four hundred clients. Our
architecture with three servers performs vastly
better than a single server architecture, being
able to handle twice as many players and tak-
ing a smaller performance hit at the same time.

8



Conclusions and Future Work Assiotis, Tzanov

Figure 5: The performance of three servers us-
ing our architecture when two and four hundred
players. With four hundred clients our architec-
ture needs just four times more than optimal to
evolve the world at each tick

Figure 6: The performance of three servers using
our architecture with two hundred players. This
time the players initialized and remained near
the virtual server borders. For comparison the
previous results from the normal case when play-
ers spawned randomly are included.

Figure 6 compares our architecture when a large
number of players are located near the border.
Our solution for the border case performs very
well, no worse than when players are dispersed
randomly in the game world.

Evidently, our results have shown that our
distributed architecture performs significantly bet-
ter than a non-distributed one. In addition to
that, we show that even with heavy activity near
server borders our architecture does not take a
significant performance hit.

8 Conclusions and Future Work

In this paper we present a novel centralized, dis-
tributed architecture for MMORPG. Our solu-
tion takes advantage of the locality of interest to
distribute the game across several game servers
and reduce both the computational strain as well
as the bandwidth requirements on each one. Fur-
thermore a solution to the problem of handling
game events occurring near virtual borders is
shown and a proof-of-concept demo is provided.

Even though our architecture was built with
MMORPG in mind, there is no reason why it can
not be extended to other types of games such as
First Person Shooters.

In conclusion, we have shown that a new game
written with our architecture in mind can per-
form much better than a game written as a sim-
ple client/server and discuss why non-centralized
peer-to-peer have problems that make them non-
pragmatic for real-world commercial deployment.

In the future, much work is needed especially
in the area of fault-tolerance. We are exper-
imenting with techniques such as log files and
replication to see how well they perform inside
our design. In addition, this paper does not ac-
count for persistent world states stored in databases
or very computationally intensive game AI algo-
rithms. Our architecture however could be ex-
tended to support all the above.

9



REFERENCES Assiotis, Tzanov

References

[BRS02] Ashwin R. Bharambe, Sanjay Rao,
and Srinivasan Seshan. Mercury:
a scalable publish-subscribe system
for internet games. In NETGAMES
’02: Proceedings of the 1st workshop
on Network and system support for
games, pages 3–9, New York, NY,
USA, 2002. ACM Press.

[CFKJ01] Eric Cronin, Burton Filstrup, An-
thony R. Kurc, and Sugih Jamin. A
distributed multiplayer game server
system. May 2001.

[CFKJ02] Eric Cronin, Burton Filstrup, An-
thony R. Kurc, and Sugih Jamin. An
efficient synchronization mechanism
for mirrored game architectures. In
NETGAMES ’02: Proceedings of the
1st workshop on Network and system
support for games, pages 67–73, New
York, NY, USA, 2002. ACM Press.

[CKSW02] Sergio Caltagirone, Matthew Keys,
Bryan Schlief, and Mary Jane Will-
shire. Architecture for a massively
multiplayer online role playing game
engine. J. Comput. Small Coll.,
18(2):105–116, 2002.

[FWW02] Stefan Fiedler, Michael Wallner, and
Michael Weber. A communication
architecture for massive multiplayer
games. In NETGAMES ’02: Pro-
ceedings of the 1st workshop on Net-
work and system support for games,
pages 14–22, New York, NY, USA,
2002. ACM Press.

[HB03] Tristan Henderson and Saleem
Bhatti. Networked games: a
qos-sensitive application for qos-
insensitive users? In RIPQoS ’03:
Proceedings of the ACM SIGCOMM
workshop on Revisiting IP QoS,

pages 141–147, New York, NY,
USA, 2003. ACM Press.

[jav] Java Distributed Systems Home
Page. http://www.sun.com/rmi?

[KLXH] Björn Knutsson, Honghui Lu, Wei
Xu, and Bryan Hopkins. Peer-to-
peer support for massively multi-
player games.

[LP04] Hunjoo Lee and Taejoon Park. Lec-
ture Notes in Computer Science,
chapter Design and Implementation
of an Online 3D Game Engine, pages
837–842. Springer-Verlag GmbH,
2004.

[Mac04] Dean Macri. The scalability prob-
lem. Queue, 1(10):66–73, 2004.

[SSR+04] Anees Shaikh, Sambit Sahu, Mar-
cel Rosu, Michael Shea, and Deban-
jan Saha. Implementation of a ser-
vice platform for online games. In
SIGCOMM 2004 Workshops: Pro-
ceedings of ACM SIGCOMM 2004
workshops on NetGames ’04, pages
106–110, New York, NY, USA, 2004.
ACM Press.

[WLS+02] Brian White, Jay Lepreau, Leigh
Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hi-
bler, Chad Barb, and Abhijeet
Joglekar. An integrated experimen-
tal environment for distributed sys-
tems and networks. In Proc. of the
Fifth Symposium on Operating Sys-
tems Design and Implementation,
pages 255–270, Boston, MA, Decem-
ber 2002. USENIX Association.

10


