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ABSTRACT

Massively distributed systems like the Internet present new
challenges for scalable distributed querying due to their sheer
size. Hence there is a need for new techniques to organize in-
formation and query them in a scalable fashion.

We present a novel method of organizing information based
on content based multicast groups which mimic a hierarchical
naming scheme. The hierarchical naming enables efficient par-
titioning of different types of data. The corresponding struc-
ture in the multicast groups enables quick location of a subset
of nodes containing certain object types. Quick location of the
rendezvous point (RP) of a multicast group is obtained by stor-
ing the group names and the corresponding RP in a DHT. More
sophisticated message passing primitives including k-cast and
anycast are also provided so that applications can choose the ap-
propriate method depending on their consistency requirements.

We evaluate our algorithms using p2psim [2] and show that
they provide good performance when compared to the ideal
multicast trees which they approximate at worst by a factor of
3. The group formation and maintenance cost is also shown to
stay constant after a certain size. Finally we provide an imple-
mentation on top of the Bamboo DHT system provided by the
OpenHash [1] project.

1 OVERVIEW

Internet scale querying systems are hard to build and main-
tain because of the large number of nodes. As the number of
nodes grows, it becomes exceedingly difficult to organize in-
formation and query them in a scalable fashion. At present, the
closest example to such a distributed querying system is file
sharing and the search mechanisms built into current client im-
plementations. A precursor to present day P2P networks was
Napster. Napster accumulated all meta-data in a central server,
which acted as a query server. Present day networks such as
Gnutella spread the responsibility and run truly distributed queries
over a large scale graph. This stems from the need to spread re-
sponsibility and avoid single points of failure. These networks
essentially do random walks on the graph and collect informa-
tion about nodes which might satisfy the query. The random
walk technique results in good response times for popular files
but very bad worst case performance. In addition, these queries
presently are limited to keyword searches based on file names.
We can easily envision a future in which users might want more
rich searches based on other file meta-data. An important point
to note here is that the data is still with the users and is not
placed some place else for enforcing some structure. Hence
these queries are run on unstructured distributed systems.

Such large scale distributed querying has many interesting
applications. Consider a deployment of sensors over a large
scale geographic area. There are subsets of sensors which talk

to a central node connected to the Internet. Querying such a
system is much more complex than keyword style file searches.
The essential feature of this type of system is the live data which
is interesting for a fixed time scale, making it impractical to
store it in a central server since it would require frequent up-
dates. Also queries need to be accurate, i.e. if a query is for
all nodes having seen a particular attribute (to quote the classic
example an elephant passing by), all such nodes need to reply.
Hence there are stronger consistency requirements on these sys-
tems.

Search mechanisms which use random walks are unsuitable
since they return incomplete results. They also do not scale as
the system grows larger. Hence there is a need for more scal-
able, structured querying. But Gnutella style overlays are ill-
suited for this. They offer great flexibility in the way the over-
lays are formed (essentially the graph is random) but the penalty
is paid in the cost for queries.

DHTs (Distributed Hash Tables) have been evolved with the
above concern in mind. DHTs are structured overlays in which
data is stored in specific nodes depending on what value they
hash to. Due to the rigid structure on data placement, exact
lookups are very fast. State of the art DHT implementations re-
quire only O

�
logn � hops to locate the node which holds the data.

This is achieved by a binary descent on the hash key space. Un-
fortunately DHTs are promising only for exact lookups where
the querying agent already knows the exact key of the data he
is looking for. In the querying systems we mentioned above,
nodes want to do a distributed query on a large number of nodes
without knowing the exact keys. DHTs presently are ill-suited
for this.

We present new methods for building scalable distributed
querying systems based on content based groups. The basic
intuition is to use a hierarchical namespace and build content
based groups at various levels of the namespace. Hierarchical
namespaces give us a way to organize information more ef-
fectively and also narrow down the querying set considerably.
Building groups at various levels of the namespace, we can then
restrict our queries only to the tree corresponding to that hierar-
chical level. This eliminates the uncontrolled flooding presently
employed. Nodes join different groups based on the type of ob-
jects they hold. For example in a file sharing system we would
have groups for artists and queries for songs of a particular artist
would get multicast only on the group corresponding to that
artist. Similarly for the sensors example above, a query for ele-
phant sightings would be multicast to the group corresponding
to sensor networks which monitor elephants and so on. As the
query propagates through the multicast tree and the replies start
accumulating, the replies travel in the reverse direction to the
query and the root of the tree replies to the querying node.

Some applications might not need the strong consistency
provided above, i.e. they might not care about getting replies
from all nodes satisfying the query in the group. An obvious ex-
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ample is service discovery of any kind, in which the application
needs to know of only one instance of the service. This is easily
done in our content based groups by implementing an anycast
primitive for sending query messages. Nodes will then receive
a reply from the nearest node which can satisfy the query. The
primitive can be generalized to do a k-cast where k is the cardi-
nality of the replies which the querying node expects and cares
about.

In this paper we specifically describe algorithms for build-
ing efficient content based multicast trees. Previous techniques
to do this build the tree using the underlying DHT routing. Mes-
sage routing was based on a hash of the name of the multicast
group. Nodes wishing to join such a group would send a mes-
sage to the nodes holding the hash key of the group name. All
intermediate nodes on the path of this message would also join
the multicast group. Hence the whole tree is not optimized for
network distances.

We take a different approach. Instead of using the DHT
routing for building the trees, we use the DHT essentially as a
data structure for holding information about rendezvous points.
Hence the node responsible for the hash key of the group name
contains the pointer to the root of the tree. Similarly as we go
down the hierarchical namespace, the nodes responsible for the
name will hold the information about the root of the tree at that
level.

Trees are optimized to minimize the total weight of the edges
in the tree. The weight of the tree is presently considered to be
the network latency, but it is easily extended to optimize based
on other parameters such as network bandwidth etc. Nodes when
joining a group select the most appropriate place to join based
on which existing node is closest to them. Upon node failures
and at periodic intervals a stabilization algorithm can be run in
order to balance the tree and maintain tree efficiency.

In the following sections we elucidate further on these ideas.
Specifically, we discuss application design in Section 2. We
elaborate on the design and describe the core algorithms of the
system in Section 3, while we provide performance evaluation
in Section 4. Finally, Section 5 discusses related work in the
area and provides background on the P2P Objects design, and
Section 6 concludes the paper.

2 APPLICATIONS

Before proceeding further we motivate the usefulness of our
primitives by outlining how a typical distributed application
would use our communication primitives to implement scal-
able querying. The application space we consider is that of in-
stances running on semi-reliable end hosts producing live semi-
transient data. We envisage distributed large scale queries being
served by this system.

2.1 Hierarchical Naming

In the distributed system we envisage, if data is allowed to
be arbitrarily named and be part of random groups, efficient
location of the part of the tree which might hold information
about particular data will be very difficult. For example if song
files of a particular artist are allowed to be placed in arbitrarily
random places in the tree, it is very tough to locate the subset

of nodes where we could find such files in a scalable manner.
Hence we propose a hierarchical naming scheme for objects
to enable scalable discovery. Each node which produces data,
names it in an appropriate manner according to the hierarchical
naming scheme. We describe the scheme with an example.

Consider a music file which could be an object in a content
distribution P2P network. The file can be hierarchically named
to belong to a particular set of groups. Here is an example:

cnt
music
artist

aphex-twin
classics

digeridoo

In this example, ”/cnt/music/artist/aphex-twin/classics/digeridoo”
represents a data object which contains the file for that track,
”/cnt/music/artist/aphex-twin/classics” represents a directory ob-
ject that contains all tracks in Aphex Twin’s ”Classics” album,
and so on.

This naming mechanism can be generalized to objects of
all types; not just music files. Once we have such a naming
mechanism in place, it is easier to index objects belonging to a
particular object type. Nodes just join (or form a multicast tree
if none exists) for that object type. For example, consider an
object accessible through /a/b/c. A node instantiating an object
/a/b/c is part of the /a, /a/b, and /a/b/c spanning trees. The path
of an object maps to an entry in the DHT which contains the
root of the respective spanning tree. For example the nodes re-
sponsible for the hashkeys of /a, /a/b and /a/b/c would contain
pointers to the IP addresses of the nodes which are roots of the
corresponding subtree. Each node in the tree maintains pointers
to its parent and children. The tree is maintained in a distributed
fashion as described later.

A note on how nodes join the appropriate place is in order
here. When a new object is inserted into the system, for e.g.
/a/b/c, the node responsible must insert itself into the tree cor-
responding to /a/b. If /a/b/c is itself an object type, it must either
create a tree for /a/b/c type or join one if it exists. Hence it does
a lookup on the DHT for the key obtained by hashing /a/b/c to
check if a root exists. If it does it joins the tree, else it now goes
up one level and looks up the root for the tree corresponding to
/a/b/ and so on until it finds a tree to join or creates one itself.
If it ends up creating the tree corresponding to /a/b/c then it in-
serts its own IP address in the DHT with the key being the hash
of /a/b/c. Future nodes joining can therefore know that /a/b/c
already exists and take appropriate steps.

2.2 Querying

Querying follows directly from the tree formation mecha-
nism described below. Nodes wishing to query for a particular
data object will multicast a query on the tree corresponding to
that object type. They can do so by obtaining information about
the rendezvous point from the DHT and then sending a message
to the root which then multicast it down the tree. As each node
receives a query message from its parent, it queries its own lo-
cal database and sends its reply to its parent. As part of future
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work we intend to investigate efficient aggregation mechanisms
for the replies which travel up towards the root. If the querying
node doesn’t care about querying the whole group and receiving
complete replies it can do a k-cast of the query message on the
group. It will then only receive a reply from the root consisting
only of k nodes which satisfy the query.

We illustrate with the above mentioned music file sharing
application as an example. An application that requires to find
what Aphex Twin albums are accessible in the system can use
the ”/cnt/music/artist/aphex-twin” path to multicast a ”list” mes-
sage to the tree corresponding to this path. The result will be a
set of replies, containing the paths of all objects accessible in
the system. In order to retrieve a specific file, say
”/cnt/music/artist/aphex-twin/classics/digeridoo”, the application
can then anycast a ”get-data” message. The result will be the file
delivered by a node in close proximity in the tree.

There are several examples of applications which would use
such a querying system. As we mentioned before a geograph-
ically distributed sensor network was one. Another example is
distributed network monitoring in which the querying facility
is built on top of standard network tools such as tcpdump.
Essentially any application which produces rich live data and
needs rich predicate based querying can employ the P2PObjects
primitives.

3 DESIGN

In this section we describe the design of the P2P Objects
core algorithms for building, maintaining and routing in mul-
ticast trees. The basic address scheme is the group, which de-
scribes an object type. Each tree is described by a group identi-
fier, and all members of the tree are members of the group, i.e.
implement the specific object type.

In order to send a message of a given cardinality, a node
sends a message to the group. As messages propagate along the
tree, nodes decide whether to accept or reject the message indi-
vidually. Hence, a multicast or a k � cast can be performed in
a simple yet efficient way. Generalized queries and predication
are supported by allowing the nodes to decide whether to accept
or reject the messages.

In order to build and maintain group trees, we use an un-
derlying DHT as a rendezvous point. DHTs provide a useful
abstraction for a globally consistent data structure. We provide
some background in DHT design and the interface required to
support P2P Object trees in the sequel.

3.1 DHT

Distributed Hash Tables (DHTs) can be used to distribute
and retrieve data among many nodes in a network. As the name
implies, a DHT provides a hash table abstraction over multiple
distributed nodes. Each node in a DHT can store a data item
each of which is identified with a unique key. At the core of the
DHT is a routing algorithm which delivers requests for a given
key to the node responsible for that key. This is done without
any global knowledge of the mapping of keys to nodes. The
mapping could also be changing as nodes enter and leave the
system. Routing proceeds in a multi-hop fashion: each node
only maintains a small set of neighbors, and routes messages

to the neighbor that are in some sense nearest to the correct
destination.

DHTs provide strong theoretical bounds on the number of
hopes required to route a key request to the correct destination,
and the number of maintenance messages required to manage
the arrival and departure of nodes from the network. There are
many flavors of DHTs [12, 8, 14] which implement the above
functionality. We specifically examine Chord [12] in the fol-
lowing paragraphs.

Chord’s routing mechanism is based on a circle or a one
dimensional logical space. Each node in the network is assigned
to a point on the circle, also known as its id, and is responsible
for any keys that map to the portion of the circle before its id
and after the previous nodes id This is usually visualized as
the arc going counter-clockwise around the circle. Routing can
be achieved as long as each node knows its predecessor and
successor on the circle. For efficiency each node also maintains
pointers (known as fingers) to nodes throughout the circle. A
finger is maintained for the node responsible for id

�
2i, for

each i such that 0 � i � m and m is the number of bits in the
identifier space.

A message is routed through the system in recursive style.
A node will contact the node with the highest preceding value,
compared to the target location identifier, within its finger table.
That node will either accept the message, if it is responsible
for the target location identifier, or forward the message with
its best guess of the predecessor based on its finger table. The
process repeats until the proper successor is located. On average
a message requires log

�
n � hops in the overlay network.

Tapestry [14] and Pastry [8] work in a similar way, by suc-
cessively approximating the target node in their address space
and operate in close theoretical performance bounds.

3.2 DHT as Rendezvous Point

The DHT serves an important function in the P2P Objects
design: it stores the root node for each tree and provides a syn-
chronization point. In order to join a group, a node locates a
root in the DHT, and joins through this node. If no root exists
for a given tree, then the node assumes ownership of the root.

A complication arises when dealing with concurrent oper-
ations of the tree. The usual DHT put/get interface provides
no means for synchronization. A node assuming ownership of
the root might be overridden by another concurrently joining
node. Hence, nodes need to synchronize their operations with-
out knowing about each other’s intention. A naive solution to
this problem is to use an external locking protocol; this solution
however is expensive and unnecessary complicated. Instead, we
provide an extended put! abstraction on top of the DHT, which
provides synchronization in restartable atomic sequence fash-
ion [4]. put! only uses the lookup operation provided by the
DHT. In order to perform a put!, a node performs a lookup
and supplies the old value associated with the key. If the value
does not match the current value, because some other node has
performed a put! in the meantime, the operation fails. In order
to reduce communication overhead, a put! returns the current
value, so that the faulting node can immediately join with the
current root. The extended DHT interface and implementation
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of the primitives used by P2P Objects is described in Algorithm
1

Algorithm 1 Extended DHT primitives
DHT.put!( k: key, v: value, ov:value ):

n = lookup( k )
if n == self:

return self. put!( k, v, ov )
else:

return n.put!( k, v, ov )
DHT.put( k: key, v: value ):

return self.put!( k, v, nil )
DHT.erase( k: key, ov: value ):

return self.put!( k, nil, ov )
DHT. put!( k: key, v: value, ov:value ):

cv = map[k]
if cv == ov or cv == nil:

map[k] = v
return (#t, v)

else:
return (#f, cv)

3.3 Communication Primitives

For each group, we construct and maintain a spanning tree
that can be used for routing messages. The spanning tree is
maintained in a distributed fashion by a router service provided
at each node. We describe the actual tree formation and main-
tenance algorithms in the subsequent section. Here we describe
how applications interact with the router through the node in-
terface assuming a group already exists:

interface node:
// Application interface
join( id: groupid )
leave( id: groupid )
send-msg( id: groupid, c: int, m: message ): int
// Inter-Node interaction interface
send( id: groupid, c: int, m: message ): int
receive( id: groupid, c: int, m: message ): int
insert-node( gid: groupid, nid: nodeid ):

tuple � active: bool,
parents: list � node � ,
roots: list � node ���

erase-node( gid: groupid, n: node )
set-parent( gid: groupid, n: node )

Applications use the join and leave primitives for editing
membership to a group, and the send � msg method to send mes-
sages. Applications provide an upcall interface for the router to
deliver messages:

interface application:
deliver( id: groupid, m: message ): bool

3.3.1 Sending And Receiving Messages

Each node maintains a few data structures that describe the
tree state for each group:

type group-entry: tuple � active: bool, parent: node, children:
list � node � , cache: circular-buffer � node ���

groups: map � groupid, group-entry �
apps: map � groupid, list � application ���
The children list for each group is maintained sorted by dis-

tance, which can be computed by a function d. d can be im-
plemented by sending probe messages to the target node and
caching the value for some particular time. Cached ping times
can also be updated as messages are routed in the network. A
sophisticated implementation can use network coordinate sys-
tems like Vivaldi [7] or an in-kernel implementation can access
the RTT measurements from open TCP connections.

Based on these data structures, send � msg, send and receive
are described in Algorithm 2. The core of the algorithm is receive,
which handles message delivery and routing, by recursively de-
scending through a list of target nodes until the number of deliv-
eries equals the cardinality of the message or the tree has been
spanned. The list of target nodes is a sorted by distance list that
includes the children and parent of the node, but excludes the
source of the message. Multicast is handled as a special case, as
there is no need to collect the number of deliveries; rather, the
message is routed to all nodes.

Algorithm 2 Message Routing
node.send-msg( id: groupid, c: int, m: message ):

if id in groups:
return self.send( id, c, m )

else:
root = DHT.get( id )
return root.send( id, int, m )

node.send( id: groupid, c: int, m: message ):
return self. receive( id, c, m, #f )

node.receive( id: groupid, c: int, m: message ):
return self. receive( id, c, m, #t )

node. receive( id: groupid, c: int, m: message, dd: bool ):
delivered = #f
if dd and groups[id].active:

for a in apps[id]:
delivered = a.deliver( id, m ) or delivered

nodes = groups[id].children + groups[id].parent - sender-
of( m )

if c == MULTICAST:
for n in nodes:

n.receive( id, c, m )
return c

else:
rem = c
count = 0
if delivered:

rem -= 1
count += 1

for n in nodes:
if rem == 0:

break
count += n.receive( id, rem, m )

return count
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3.3.2 Tree Formation and Maintenance

Constructing and maintaining the group tree is a critical op-
eration, as it determines communication efficiency and scala-
bility of the system. We would like the tree to be efficient in
terms of the latencies of the edges of the tree. In addition, we
would like join and leave to be fast operations, so that the tree
can be efficiently maintained in a dynamic environment. Ide-
ally, we would like the tree to be the minimum spanning tree
for the group. However, computing the minimum spanning tree
requires global state and is difficult to maintain in a dynamic
environment.

We construct the group tree as a C-ary tree with a proximity
metric, with the cluster size C being the maximum number of
children for each node. Each node maintains a pointer to its par-
ent and each one of its children. The fundamental property of
the tree is that the state is distributed, and join/leave operations
do not affect the ability of the network to route messages.

3.3.3 Joining a Group

In order to join a group, a node looks up the root in the
DHT. If the root does not exist, then the node becomes the root.
If the root exists, then the node sends a insert � node message to
the root. The root returns the cached list of nodes that recently
joined the subtree it maintains, which can be used as possible
roots for the arriving node. If the root has less than C children,
it includes itself in the list. In addition, the root provides with
a list of its own immediate children, in order to deal with stale
caches. If the root receives a second message from the same
node and still has less than C children, then the arriving node
becomes a child of this particular root. The arriving node sorts
the list of possible parents by distance, and recurses until it suc-
cessfully joins the tree, as illustrated in Figure 1. Note that the
tree might become unbalanced in if distant nodes assume the
root, hence a stabilization algorithm can repair the tree period-
ically (after a number of tree modification operations) or when
inconsistencies are detected.

Formally, the implementation of join is described in Algo-
rithm 3. For an example of how the algorithm works, consider
Figure 1. In the figure, node n1 wants to join a group rooted
at root, with a cluster size 3. n1 attempts to assume root of the
tree in the DHT, an operation which fails returning the actual
root. n1 then proceeds with insert, sending an insert � node
message to root, with nil reference. On receiving the message,
root checks its data structure for the group, and determines that
it has a full cluster. Hence, it returns to n1 a copy of its cache
consisting of � n2, n3, n4, n5, n6, n7 � and a list of its immediate
children (not shown in the figure). n1 sorts the cache by dis-
tance, determines that n2 is the closest candidate root, and sends
an insert � node message to it. n2 does not have a full cluster,
and returns � n2, n7 � as candidate parents. n1 sorts the new list,
determines that n2 is actually the closest node, and recurses to
insert on n2, with a reference node n2. This results to a new

insert � node message to n2. n2 still does not have a full clus-
ter, and because the reference in the message matches its own
identifier, it adopts n1 as a child.

Algorithm 3 Joining a group
node.join( gid: groupid ):

RAS:
e = DHT.put( gid, self )
if e.result:

groups[gid] = group-entry( nil, [], [] )
else:

r = self. insert( gid, e.value, nil )
if not r:

goto RAS

node. insert( gid: groupid, root: nodeid, ref: nodeid ):
r = root.insert-node( gid, self, ref )
if not r.active:

return #f
if empty( r ):

groups[id] = group-entry( root, [], [] )
return #t

sort( r.parents )
for p in r.parents:

if self. insert( gid, p, root ):
return #t

sort( r.alt )
for p in r.alt:

if self. insert( gid, p, root ):
return #t

return #f

node.insert-node( gid: groupid, nid: nodeid, ref: nodeid ):
if not groups[gid].active:

return (#f, [], [])
if groups[gid].children.size � C and ref == self:

groups[gid].children.add( node-entry( nid, d( nid ) ))
return (#t, [], [])

else:
r = (#t, groups[gid].cache, [])
r.alt = groups[gid].children - r.parents
if groups[gid].children.size � C

r.parents.insert( self )
groups[gid].cache.insert( nid )
return r

3.3.4 Leaving a Group

In order to leave a group, the node notifies its parent and
provides the children with a new parent. The parent removes
the node from the tree, while the children re-enter themselves
using the new parent as the root. The subtrees of each child
are not modified. If the leaving node is the root of tree, then
it erases the DHT entry for the group and allows the children
to content for assuming the root. The contention is resolved by
synchronizing on the DHT with the remaining children joining
the new root.

The implementation of leave is formally described in Algo-
rithm 4, while Figure 2 provides an example. In the example,
node n1 decides to leave the group. In order to do so, it asks its
children to reinsert the tree using root as their parent, by send-
ing a set � parent message. root already has 3 children, so it
provides the cache back to the joining nodes, which contains
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insert-node(n1, nil)

root

n1

insert-node(n1,root)

n3

cache:
 [n2,n3,n4,n5,n6,n7]

n2

[n2, n7]
insert-node(n1,n2)

[n2,n3,n4,n5,n6,n7]

[]

n4

n5 n6

n7

cache:
 [n7]

Figure 1—A node joining the multicast tree

root

n1

n2 n3 n4

n5

n6

Figure 2—A node leaving the multicast tree and consequent reassignment
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Algorithm 4 Leaving a group
node.leave( gid: groupid ):

groups[gid].active = #f
for n in groups[gid].children:

n.set-parent( gid, groups[gid].parent
groups[gid].children.remove( n )

if groups[gid].parent not = nil:
groups[gid].parent.erase-node( self )

DHT.erase( gid, self )
groups.remove( gid )

node.set-parent( gid: groupid, root: nodeid ):
if root == nil:

r = DHT.put!( gid, self, groups[gid].parent )
if r.result:

groups[gid].parent = nil
else:

self.set-parent( gid, r.value )
else:

if not self. insert( gid, root, nil ):
self.set-parent( gid, nil )

node.erase-node( gid: groupid, nid: nodeid ):
groups[gid].children.erase( nid )
groups[gid].cache.erase( nid )

among others n5. All 3 children determine that n5 is their clos-
est candidate parent, and according to the join algorithm they
become children of n5. Once the migration completes, n1 asks
root to forget it, and root drops n1 as a child, completing the
leave. It should be noted that while the migration is in progress,
messages can continue to be routed in the tree, because the links
are not broken until the operation has completed1.

4 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the efficiency
and cost of the groups constructed by the p2p objects group
formation algorithms. The primary metric for the multicast tree
setup is how well it is constructed in relation to the correspond-
ing minimum spanning tree (MST). The MST is the optimal
tree possible which minimizes the latency in sending messages
over the tree. The weight of each edge between any two nodes
is the latency between the nodes. Efficiency can then be esti-
mated as the ratio between the sum of the weights of the edges
in our tree compared to that of the optimal MST for that group.

A second metric is the relative delay penalty (RDP). RDP is
defined as the ratio of the actual delay before a node receives the
message and the unicast delay if the source sends the message
directly to the recipient on the network. The RDP shows the
relative speed of the multicast message dissemination.

In conventional IP multicast each node has a RDP of 1, since
it is th most efficient distribution and follows the unicast path.
Overlay networks generally introduce much higher RDPs since
neighbors in the overlay network are not necessarily neighbors
in the physical network.

We conduct our experiments using p2psim[2], a discrete

1 insert in the join algorithm ignores the current parent and children of the node
as candidate parents. This is not shown in Algorithm 3 for brevity.
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Figure 3—Efficiency of the multicast tree compared to the MST

event simulator for simulating P2P protocols. The simulator
was set up with a random Euclidean topology. The latency is
proportional to the distance between the nodes in the Cartesian
co-ordinate system. There are no packet losses. The system is
run with no queries and leaves to allow the algorithm to be eas-
ily evaluated.

4.1 Communication Efficiency

We first evaluate the effect of different cluster sizes and
cache sizes on the tree formed. Cluster size limits the number
of children a node may have which might result in trees with
long depth. We might expect this to increase the cost of the
tree since there would be more number of hops on the average.
But counter-intuitively, cluster size doesn’t seem to make a dif-
ference. For the same cache size, varying cluster sizes doesn’t
make a difference in the cost of the tree constructed.

Each root stores a cache of nodes which recently joined the
tree and the parents where they joined. When a new node joins,
it looks at the cache and then selects the node closest to join. In
the absence of a cache the node would have to recursively walk
through the tree in order to find the best node. The cache helps
in reducing this bootstrap time since the node has to look at a
much smaller set of potential parents in order to make a good
choice. The node can therefore quickly determine a new par-
ent with significantly lesser number RPCs and join. Cache size
thus makes a big difference in the cost of the tree. As we can see
from Figure 3, doubling the cache size reduces the cost of the
tree by a factor of 1.5 for a group size of 400. The improvement
becomes better and better as the group size increases. This is ex-
pected since the algorithm does worse with increasing size. But
still the cost grows sublinearly with system size. Hence even
with groups of 800, the algorithm approximates the MST by a
factor of 3.

The other communication primitive used is that of anycast.
Anycast involves sending to the node closest to you. Efficient
construction of multicast trees would result in efficient anycast,
since nodes which are nearby in the latency space are likely
to be connected to each other in the tree. The benchmark to
compare again is the closest node in the MST. For each node in
the group we compute the cost of sending an anycast message
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Figure 4—Efficiency of doing anycast on our tree compared to MST
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Figure 5—Cost of building the tree in terms of the number of RPCs made

and compare it with the corresponding cost in MST. We then
average these ratios to calculate one metric for the algorithm.
We plot this metric in Figure 4 for varying group sizes.

Cluster size again makes no difference to the cost, while
cache size results in big differences. This is to be expected since
as shown above, bigger cache size leads to more efficient mul-
ticast trees and correspondingly anycast will be efficient too.

4.2 Tree Formation Cost

When a node joins the group, it needs to find the appropri-
ate place to join. It has to find a parent node as close to itself
as possible. This is achieved by means of communicating with
the root and obtaining a list of nodes who could be potential
parents. It then tries them in order of increasing latency. Hence
an important overhead is the number of RPC calls to different
nodes in the process. We plot this cost in Figure 5. The num-
ber of RPCs are averaged per node. We plot the average with
increasing group size. As we can see,the overhead converges to
a constant value of around 3. Cluster size and cache size don’t
make a significant difference. This means that inspite of the in-
creasing group size, the join overhead remains the same which
is a very nice property.

An important step in picking the best node to join is finding
the closest node in the node list the root returns to the new node.
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Figure 6—Overhead of determining the closest node

This involves pings to all the nodes in the list which the root
returns. This is an important overhead involved in joining the
tree and we quantify it in Figure 6. As expected, the number of
pings approached the cache size as the system size increases.

Cache size thus seems to play two conflicting roles, it helps
in building efficient trees, but a larger size results in a larger join
overhead. In order to reduce the overhead, one possible heuris-
tic which can be implemented is for the root to cache ping la-
tencies in the cache and return it to the newly joining node. If
there is a node in the cache which is in the same domain as the
new node, the latencies are likely to be very similar and the new
node can skip pinging these nodes. Alternatively, a network co-
ordinate system like Vivaldi [7] can be used for maintaining ac-
curate distance measurements between know nodes. We intend
to explore these enhancements in the future.

4.3 Prototype Implementation

A prototype implementation of the P2P Objects group com-
munications system is available, based on OpenHash[1]. The
implementation consists of two SEDA [13] stages, one for sup-
plying the DHT primitives required by the P2P Object algo-
rithms, and another one for group management and message
routing. The DHT stage uses request and response events for
doing DHT lookups and performing the primitive operations.
The group management stage communicates with application
stages with 4 main event types, a join event, a leave event, a
send message event, and a deliver message event for applica-
tion upcalls. The implementation has been tested in small scale
settings; we plan to build a full-fledged application to be de-
ployed and tested in the PlanetLab[3] testbed.

5 RELATED WORK

Search in P2P systems has been an area of active research.
The PIER [11] project at Berkeley is building a massively dis-
tributed query engine based on DHTs. The project focuses on
being a generic database engine based on DHTs. The use the
starting few bits of the DHT namespace to identify the type of
the resource. A search of a particular item belonging to a partic-
ular resource type is essentially multicast on the key-range on
which that resource type could be present. But they assume the
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underlying DHT layer to provide the routing and focus mainly
on the database aspects. Hence their multicast primitive is not
optimized. Also a resource type which has a huge number of
objects belonging to it, will result in a lot of overhead in query-
ing. The definition of resource type is also static.

Multicast was originally introduced as an IP based solution.
Due to the difficulty of deployment, several recent proposals
have argued for application level multicast. Narada [10] pro-
vides small scale multicast groups. End systems organize them-
selves into a mesh structure using a distributed protocol. But the
system does not scale beyond hundreds of nodes and does not
perform well under dynamic conditions due to the use of tree
forming algorithms.

Recent proposals have used P2P routing algorithms for ef-
ficient multicast in the presence of dynamic groups. Most of
the proposals use a DHT to hash the group name to a particular
key which maps to a particular node. The node then forms the
Rendezvous point (RP) and reverse path routing is then used
to form the multicast tree. Several such proposals based on the
different flavors of DHTs in vogue have been mooted. For ex-
ample [5, 6] use Pastry [8] as the underlying DHT to implement
multicast and anycast, by routing through the DHT.

Coral [9] describes the concept of a sloppy hash-table. This
is a modification of DHT, to provide a 1 � M instead of a
1 � 1 mapping. This can provide the mechanism for multicast
and anycast communication, although the burden is still in the
application writer.

Nonetheless the above multicast primitives are different from
the one necessary for implementing efficient querying and re-
source discovery. These proposals are either in the traditional
multicast mold, essentially they are enrollment based, or they
perform indirect routing through the DHT. Both these architec-
tures are unsuitable for querying large scale distributed systems
since there is no relation between the group formed and the na-
ture of objects/data the nodes actually contain.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented P2P Objects, a system designed
for large scale querying in distributed systems based on group
communications primitives. The main contribution of this work
is a novel multicast tree construction and maintenance algo-
rithm and an application architecture for intelligent queries based
on multicast and k-cast group communication primitives. We
presented our algorithms in detail, evaluated their performance
using simulations, and provided a real world implementation.

As part of future work, there are some interesting directions
we would like to explore. We are considering using a sophisti-
cated coordinate system [7] for distance metrics, and enhance-
ments in the routing algorithm that allows response aggregation
for reply messages. An important aspect of the system that still
remains to be evaluated is how it responds to failures and what
the correct mechanisms for repairing trees are. We are actively
working in expanding the system to include a stabilization al-
gorithm which improves the quality of the tree over time and
also allows us to deal with failures in a consistent fashion. Fi-
nally, we are planning to test the system’s implementation in
the PlanetLab testbed, and complete a sample application that

uses our communication primitives.
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