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Abstract
We attempt to decouple identity from location in Inter-
net hosts. In our proposal, hosts receive flat identifiers
in a large and sparse namespace, and an Internet-wide
distributed hash table (DHT) acts as a resolver by map-
ping these flat identifiers to IP addresses in analogy with
today’s DNS. Unlike DNS names, the source and desti-
nation identifiers appear in packets, in a shim layer af-
ter the IP header. Our proposal would change all host
software but leave the core routers untouched. The ad-
vantages of our proposal are: (1) the benefits of decou-
pling location from identity, which have been articulated
elsewhere (see, for example, [16, 19]) and (2) enhanced
middlebox functions. The paper’s focus is the second of
these two advantages.

1 Introduction
Creating a set of host identifiers in the Internet is
an old goal, and we share it. Proposals for host
identifiers have occupied a wide spectrum [16]; for
our purposes, host identifiers are strings that appear
in ordinary packets to indicate from which entity
a given packet originated and to which entity it is
destined. IP addresses—the only set of global iden-
tifiers carried in packets on the Internet—actually
describe network locations. No set of identifiers on
the Internet exists that can robustly identify individ-
ual hosts. The motivation for host identifiers, sepa-
rate from IP addresses, is twofold:

IP renumbering: First, as has been well artic-
ulated in the literature (see [16, 19] and references
therein for a review of this topic), host identifiers
could solve the IP renumbering problem, which re-
sults from the simple fact that a given host’s IP
address can change. Specific reasons for renum-
bering include: (1) the host is moving (referred
to as “mobility”) (2) the host has several logi-
cal interfaces, each connected to different network
providers (“multihoming”) or (3) the host receives
its IP address through DHCP (“dynamic address-
ing”). The problematic implications of renumbering
are, first, transport connection breakage when the IP

address of either communicating party changes and,
second, semantic limitations resulting from the fact
that an IP address cannot be stored and later used as
a persistent reference to a given host.

Accommodating middleboxes: Second, as ob-
served in a recent proposal [1], whose motivation
we follow closely, a set of host identifiers would be
an architectural primitive for solving problems re-
lated to middleboxes. We define a middlebox as a
network element, other than the ultimate source or
destination of an IP packet, that performs a func-
tion on the packet other than pure IP routing. Ex-
amples of middleboxes are firewalls, VPNs, and
NATs [26].1 Although [1] considers a wide class
of middleboxes, in our work here we consider only
NATs. A NAT allows many hosts on the same pri-
vate subnet, behind the NAT, to share a single exter-
nal IP address. The problematic implication of this
multiplexing is that hosts outside a private address-
ing realm may be unable to initiate connections to
hosts within the private addressing realm, even if all
concerned parties wish to permit this type of com-
munication.

We believe that a set of host identifiers, carried
in packets, would address the problems mentioned
above.2 For reasons articulated in [1], we believe
that an architectural proposal like this one should
avoid router modification. We thus limit ourselves
to changing packets only after IP headers and mod-
ifying only host and middlebox software. We also
aim to retain current logic in application software
and therefore seek to retain current application in-
terfaces to transport protocols. The logical solution
to both of these constraints (not modifying IP and
preserving application interfaces to current trans-

1Throughout this paper, we used the term “NAT” to mean
either NAPT or NAT.

2We do not claim that all share our opinion about whether
the problems mentioned are worth solving or are indeed prob-
lems; we claim only that to the extent one believes they are
problems, a set of host identifiers would in fact address them.



port protocols) is placing host identifiers in packets
between the IP header and transport header. TCP
connections logically bind to the host identifiers,
and not to the underlying IP address; the underly-
ing IP address is reduced to a routing descriptor.

For reasons again mentioned elsewhere [1], we
believe that the host identifiers should be flat, un-
readable strings in a large and sparse namespace.
The existing IP infrastructure should not route
on these host identifiers; our intent is rather to
have sending (receiving) entities resolve these host
identifiers to IP addresses when actually sending
(receiving) packets. This resolution suggests dis-
tributed hash table (DHT) technology, a decentral-
ized solution precisely designed for scalable resolu-
tion in a large and sparse namespace.

The purpose of this project is to prototype an ar-
chitecture that incorporates the elements mentioned
above. Although we believe our prototype would
address the IP renumbering problem, for the re-
mainder of the paper we focus only on accommo-
dating NATs. This paper describes our prototype of
the following:

• a shim layer in packets after the IP header and
before the transport layer to hold source and
destination host identifiers;

• host software to interact with an Internet-wide
DHT that holds identifier-to-IP address map-
pings;

• a simple NAT that uses the host identity layer
to permit new functions, like allowing entities
to initiate connections on arbitrary TCP ports to
machines behind the NAT;

• a protocol, requiring no manual steps, that
“punches holes” in an arbitrary tree of NATs so
that hosts in the global Internet can reach hosts
behind multiple layers of NATs.

2 Scenario and Assumptions

We assume throughout this paper the following:

• that the Internet is organized as a tree of private
address spaces, rooted at the core;

• that the core is reachable from all Internet hosts,
including those within private address spaces;

• that a widely deployed distributed hash table
(DHT) infrastructure exists, is in the core, and
is thus globally reachable.
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Figure 1: Our assumed network scenario: a global In-
ternet core reachable by all hosts and a DHT deployed
within this core. Hosts can be directly connected to the
core or can be connected through an arbitrary number of
NATs.

This scenario is depicted in Figure 1. An example of
several layers of NATs is the case in which a virtual
host runs behind a virtual NAT, and these virtual
machines together run on an actual host which is
physically attached to a NAT in someone’s private
home network. Continuing the example, the physi-
cal NAT is connected via a cable modem to the core,
and so the physical NAT’s uplink port has a globally
reachable IP address.

3 Design of DOA
We follow [1] and call it—and this project—DOA
(because both [1] and we advocate a DHT-Oriented
Architecture). The authors of [1] refer to host iden-
tifiers as EIDs (End-Point Identifiers). These EIDs
are 160 bits and, as mentioned in the introduc-
tion, they are carried in IP packets, just after the IP
header but before the transport header. We assume
a one-to-one mapping between hosts and EIDs and
that users will get out-of-band (e.g., via a directory
service or DNS) the EIDs of hosts they are trying to
contact. Figure 2 depicts the major components we
envision and the interfaces between them. The re-
mainder of this section discusses these components.

3.1 DOA Packets

The protocol layer we are adding in between trans-
port and IP is called DOA. DOA packets are deliv-
ered over IP, with the IP protocol field set to 203 (an
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Figure 2: Overview of DOA architecture.

unassigned IP protocol as of May 2004). The DOA
header is depicted in Figure 3, and the fields therein
are as follows: the version is 0 but can change;
the header length measures the length of the DOA
frame header in words; the “protocol” field specifies
what transport-level protocol is encapsulated by the
given packet; the last 16 bits give the total length
of the DOA packet, in bytes. The DOA packet will
usually have a header size of 11 words. One word is
used for the header, five words for the source EID,
and five more words for the destination EID.

3.2 Resolution Substrate

End-hosts resolve EIDs to IP addresses by query-
ing a resolution substrate. The resolution sub-
strate could be any global service offering a simple
put()/get() interface. In our design, the lookup ser-
vice is a globally-reachable DHT infrastructure that
provides robust and scalable resolution. To protect a
given host’s EID against unauthorized modification,
we use self-certification: EIDs must be the hash of
a public key (and optionally a salt). Entities who do
get() operations on the DHT should ensure that the
returned IP address is signed with the private key
whose corresponding public key was hashed to cre-
ate the EID.

3.3 Host Software

This subsection describes the logical API to DOA
seen by applications running on DOA-enabled
hosts. The interface that DOA actually exports in
our prototype differs from this logical API and is
discussed in Section 5.

160−bit source EID

4−bit
header
lengthversion

4−bit 8−bit
protocol 16−bit total length

0 3115 16

bytes
44

160−bit destination EID

Figure 3: The DOA Packet Header.

3.3.1 Logical API

• fd = DOA Connect(EID,port): The applica-
tion supplies this function with the EID (ob-
tained out-of-band) of the desired connection
endpoint. The application also supplies the
(TCP or UDP) port to which it would like to
connect. In response to this call, the DOA soft-
ware issues a DHT lookup to resolve the EID
into an IP address.3 If the resolution fails, this
function returns an error.

• fd = DOA Accept(sockfd, &EID, &port):
A server accepts connections on the given
socket sockfd using this function. On success-
ful return, EID and port are set to the identifier
and port of the connecting host.

• EID = DOA GetPeerEID(fd): This function
returns the EID of a remote, connected entity.

3.3.2 Sample API Usage

We believe that using this API to construct DOA-
enabled applications will be straightforward for de-
velopers. In place of the usual connect system
calls, they will instead call DOA Connect using an
EID they have obtained out-of-band (perhaps by
having resolved a DNS name). On the other end
of the connection, a server will have been listen-
ing on a certain port and will be accepting connec-
tions via DOA Accept. When the DOA Accept call
returns, the server will know the EID of the connect-
ing host; it may also retrieve the EID later using the
DOA GetPeerEID call, in analogy with the current
getpeername system call.

4 Design of NATs under DOA

We now present an approach to making end-hosts
behind layers of NATs reachable under DOA.

3The host software might have cached the EID-to-IP map-
ping and thus would not do a DHT lookup.
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4.1 DOA NATs Need Per-Host State, Only

NATs, under DOA and under the status quo, must
demultiplex, i.e., they must replace the destination
IP address of packets sent to their own IP address
with the private IP address of the packet’s ulti-
mate destination. Whereas today’s NATs demulti-
plex by using the IP address and port fields plus
per-connection state that the NAT creates oppor-
tunistically (in response to connections initiated by
hosts behind the NAT, for example), a NAT box un-
der DOA need neither maintain per-connection state
nor overload existing protocol fields.

Under DOA, the NAT gets the private IP
address—which replaces the original destination IP
address in the packet—by looking up the packet’s
destination EID in a static EID-to-IP lookup table
maintained by the NAT. A mapping from an EID to
an IP is also called a route. For packets that origi-
nate behind the NAT, the NAT replaces the source
IP address with its own.

4.2 Automatic and Secure NAT Hole Punching

As we discussed in Section 2, we imagine that end-
hosts are leaves in a tree whose internal nodes are
NATs, and as we discussed in the Introduction, a
principal goal of this project is exposing hosts be-
hind NATs to other hosts. However, consider the
following situation: a host, h, outside the private ad-
dress space of an end-host, e, wants to gain access
to e. In order for this communication to succeed, all
of the NATs on the path between h and e must have
static entries in their lookup table that map the EID
of e to the IP address of either the end-host or the
next NAT in the path of NATs. Creating this static
state in the NATs is a challenge: we would like a
protocol that is at once automatic and secure. Be-
low we define what “secure” means.

4.2.1 Security Assumptions and Threat Model

End-hosts and internal nodes (i.e., NATs) inside a
tree of NATs must naturally trust all NATs upstream
of them; our design provides machines with no re-
course if an upstream NAT is compromised or dis-
honest. We assume that an end-host can acquire, via
a trusted out-of-band channel, the EID of its gate-
way, defined as its parent in the tree. End-hosts trust
neither other end-hosts nor downstream NATs. We
also assume all links in the NAT tree are vulnerable
to eavesdropping and tampering.

4.2.2 Security Goals

Recall that we are searching for a protocol that al-
lows an end-host to establish state at each NAT on
the path from itself to the globally-reachable core.
We require the protocol to satisfy these security
properties:

1. A mapping from EID to private ip must be au-
thorized by the party who holds the private key
corresponding to EID.

2. If all NATs along the path from the end-host to
the core behave honestly, then the path estab-
lished is correct.

Property 1 prevents unauthorized hosts from
spoofing routes and diverting traffic from its right-
ful destination. Property 1 also implies resilience to
a form of replay attack. IP address reassignment is
common in private networks. If host A is assigned
host B’s old IP address, A should not be able to
replay B’s protocol messages to steal B’s traffic.
Rather, protocol messages must expire after they are
processed so that hosts cannot rollback routes with-
out authorization.

Property 2 is a response to potential man-in-
the-middle attacks during route establishment. Con-
sider a host A that learns about host B’s attempt to
establish a path to the core. Even if A can tamper
with packets between B and the core, it should not
be able to insert itself into B’s route. That is, we
require the route establishment protocol to be “cor-
rect,” meaning the logical path it establishes to the
core should be topologically equivalent to the direct
physical path through the NAT network.

We emphasize that our goal is securing the con-
trol and not the data plane of DOA NATs; an at-
tacker can always tamper with data traffic.

4.2.3 DOA-RIP

We present DOA-RIP (DOA Route Implementa-
tion Protocol) and argue it meets the two security
goals above. DOA-RIP is a two-round protocol ini-
tiated by a NATed end-host that wants to make itself
reachable. The first round of the protocol creates a
traceroute, signed by all NATs along the host’s path
to the core. The second round propagates the state
to these NATs so they can make appropriate inser-
tions in their EID-to-IP lookup table.

Assume that an end-host has EID e0 and IP
address i0. Assume that there are n NATs between
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e0 and the core. The NAT closest to the end-host
has EID e1 and IP address i1. Similarly, the NAT
connected to the core has EID en and IP address
in. Before the protocol begins, we assume that a
host knows the public key of its parent NAT.4 The
protocol is as follows.

Round 1: Secure Traceroute

1. e0 sends an initialization message with its EID
to e1; for all 1 ≤ k < n, the NAT ek forwards
the initialization message to NAT ek+1.

2. NAT en receives the initialization message. It
then picks random nonce rn, and associates it
with the EID e0 in a local cache. The NAT
then constructs a message xn = 〈en, in, rn〉.
It signs xn with its private key and sends xn

and its signature to en−1.

3. For all 1 ≤ k < n, the NAT ek receives the
message xk+1 from NAT ek+1 and verifies the
signature using ek+1’s public key. If this verifi-
cation succeeds, NAT ek likewise picks a ran-
dom nonce rk and associates it with e0 in its
local cache. It appends the triple 〈ek, ik, rk〉 to
the message xk+1 and calls this new message
xk. It signs xk and sends both the message and
the signature to ek−1.

4. When the end-host e0 receives x1, it verifies
the message using e1’s public key. If the verifi-
cation succeeds, then the end-host has a com-
plete traceroute to the core.

Round 2: Routing rule propagation

1. For 1 ≤ k ≤ n, the end-host prepares a route
insertion request yk = 〈e0, ik−1, rk〉. It signs
each request individually with its private key.
It then concatenates all requests, appends its
public key, and sends this package up the NAT
chain.

2. For 1 ≤ k ≤ n, the NAT ek receives the route
insertion request yk. It verifies the signature of
this message using the public key whose hash
is e0. It verifies that the nonce in yk is indeed
the nonce rk it previously issued for EID e0.

4A host can obtain and verify its parent’s public key given
the parent’s EID, which is known, as assumed in Section 4.2.1.

If these two verifications succeed, the NAT
will insert the rule 〈e0, ik−1〉 into its routing ta-
ble and will propagate the insertion request up
the NAT chain. It then clears the nonce rk from
its cache. If NAT ek does not hear a valid yk

message within T seconds of issuing its nonce
in the first round, it times out rk and flushes its
cache. In our implementation, T is set to 10.

Assuming that all steps succeed, DOA-RIP es-
tablishes correct “back pointers” at all NATs be-
tween an end-host and the core, as we desired.

4.2.4 Security Discussion

We argue informally that DOA-RIP has security
property 1 since the EID is self-certifying. The
nonces ensure that the self-certified route insertion
request expires immediately after use and therefore
cannot be replayed. The timeout mechanism de-
scribed in Round 2, Step 2 protects against the at-
tack in which host A delays host B’s messages and
then releases B’s messages once it has control of
B’s local IP address.

DOA-RIP securely creates correct routes, as
Property 2 requires, because each host ek knows the
EID of the NAT ek+1 directly upstream of it. Each
host can therefore verify that the traceroute message
received in Step 3 of the first round is from the au-
thorized upstream NAT, not from a malicious man-
in-the-middle. The entire path from the host to the
core is therefore correct, by induction.

DOA-RIP currently assumes that the topology of
the NAT tree is stable and that end-hosts clean up
when they leave the network. To be more robust, the
NATs should periodically time out lookup entries,
and end-hosts should periodically refresh them. A
study of DOA-RIP under route and host instability
is left to future work.

5 Implementation
5.1 Core DOA Implementation

It goes almost without saying that in a produc-
tion deployment of DOA, software for processing
DOA packets would be integrated into the kernel’s
networking software, applications would traffic in
EIDs, and the logical API (Section 3.3.1) would be
the actual API. However, our instantiation of DOA
was not intended to be a production deployment.
Our implementation goals were instead maximiz-
ing compatibility with legacy applications and de-
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Figure 4: The control and data paths in our prototype implementation of DOA. This figure depicts sending a
packet to a given EID obtained out-of-band. Events are numbered in chronological order.

veloper convenience. Our prototype satisfies these
goals as follows:

• Making a host DOA-enabled requires only three
steps: (1) installing doad, a user-level daemon (2)
patching the kernel to accommodate Click! [15]
and (3) installing a Click! rewriter module;

• The kernel’s networking software is blissfully
unaware of DOA. Functions to create, process,
and consume DOA packets are implemented by
the Click! rewriter module and executed, in the
host-to-network direction, only after the kernel
washes its hands of the packet.5

• The software we expose to applications mostly
hides EIDs; when using the sockets API, which
we do not modify, both applications and the ker-
nel traffic in opaque handles that bear a suspi-
cious resemblance to IP addresses in the 1.0.0.0/8
subnet; these opaque handles are later mapped to
EIDs by the Click! module.

The control and data planes for our implemen-
tation are depicted in Figure 4. The purpose of the
control plane is to use a DHT to resolve a given
EID, obtained by the application out-of-band, to the
globally reachable IP address of the end point with
which the application is trying to communicate.
The application invokes the control plane via the
GetHostByEID RPC, which is exposed by doad.
The return value of this RPC is an opaque han-
dle, OIP, that the application treats as an IP address

5The network-to-host direction is opposite; both directions
are discussed in more detail below.

and that doad had obtained from the packet rewriter
module.

The data plane, at a high-level, works as follows:
in the host-to-network direction, for example, the
application hands OIP (which is an IP address of
the form 1.x.y.z) to appropriate calls in the socket
API (e.g., sendto() or connect()). This use of
OIP results—owing to an entry in the host’s rout-
ing table inserted by the Click! configuration—in
the data path depicted in Figure 4. Namely, after the
kernel forms a complete non-DOA IP packet, the
Click! module turns it into a DOA-over-IP packet
and sends the packet into the network. More detail
follows.

5.1.1 Application Interface to DOA: doad

doad listens on a Unix domain socket for
GetHostByEID RPC calls from local applications.
The daemon queries the OpenHash [14] DHT via
Sun RPCs to a nearby well-known gateway, as spec-
ified by the OpenHash interface. Communication
between doad and the packet rewriter is always ini-
tiated by doad and happens via control messages of
the form “Create an entry for EID; EID’s real IP ad-
dress is IP” to which the rewriter responds “Sure
thing; the opaque handle corresponding to EID is
OIP”. These messages are exchanged via Click’s
/proc file system interface. doad is written in C++
and uses the SFS libasync library [18].

5.1.2 Packet Rewriter

The rewriter maintains a one-to-one mapping be-
tween OIPs and EIDs; some of the mappings are in-
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serted by doad, described above, and others are dy-
namically created by the rewriter. Each EID is also
associated with a globally reachable IP address. The
mapping is invoked both in the host-to-network and
network-to-host directions. Whereas the host-to-
network direction maps OIPs in the packet to actual
EIDs and associated IP addresses, in the network-
to-host direction, the rewriter maps the source and
destination EIDs to OIPs before handing the rewrit-
ten packet up to the kernel. In the network-to-host
direction, if the packet rewriter sees a source EID it
does not recognize, it first allocates a new OIP and
then inserts EID (and associated IP address, which
is the source IP address of the packet) and OIP to-
gether in a new mapping entry.

The mechanics of rewriting are as follows: in
the host-to-network (network-to-host) direction, the
rewriter changes the source and destination IP ad-
dresses from (to) OIPs; inserts (removes) a DOA
header; changes the protocol field in the IP header
to (from) 203; recalculates the IP checksum; and, if
the packet is TCP or UDP, recalculates the pseudo-
headers (which, for DOA packets, are taken over the
IP header and the DOA header).

5.2 NAT Implementation under DOA

We used Click! to implement a DOA NAT, as de-
scribed in Section 4.1. The NAT module maintains
a simple lookup table, rewrites IP addresses and re-
computes TCP checksums. A DOA NAT’s lookup
table is populated as the end-hosts behind the NAT
boot up and run our implementation of DOA-RIP.
The same protocol allows an end-host to discover
its own external IP address, which is equal to the ex-
ternal IP address of the outermost NAT on its path
to the core. After DOA-RIP completes, the end-host
can advertise its location in the DHT: it puts a map-
ping between its EID and its external IP address.

5.3 Support for Legacy Applications

Legacy applications can use DOA with no recom-
pilation, using techniques like those in [13]. Po-
tential human users of this feature must be work-
ing on DOA-enabled hosts and must set their DNS
resolver to our DOA-aware DNS proxy, doadns,
which must be running on the local host. When a
DNS query for, e.g., f12a.DOA arrives—as happens
when a human types ssh f12a.doa—doadns sends
a GetHostByEID RPC to doad and returns the re-
sulting opaque handle in an A-record. The legacy

application treats the opaque handle as an IP ad-
dress, so the application’s traffic is steered to the
DOA data path.

6 Related Work

Saltzer [23] was one among many [11, 17, 25] who
made fine distinctions between network identifiers;
the most common, and least practiced, of these dis-
tinctions is between a host’s identifier and its ad-
dress (see [16] for comprehensive discussion of this
topic).

The arguments that these host identifiers should
be flat and that a DHT should be used as the res-
olution mechanism are articulated in a recent pro-
posal [1]. This proposal is an unabashed heist of in-
sights and mechanisms from many places, includ-
ing HIP [19–21] and SFR [31]. The HIP project,
wishing to separate identity and location, advocates
for a set of host identifiers with cryptographic prop-
erties; the SFR project articulates the case for flat
names.

Today, the closest thing to a persistent host iden-
tifier in the presence of renumbering is a Dynamic
DNS name (see [7] for an example of a commer-
cial provider of a Dynamic DNS service). Dynamic
DNS ensures that a given domain name always re-
solves to the given host’s current IP address. Dy-
namic DNS has the same limitations as standard
DNS for our purposes: because the DNS names are
not inside the packet, middleboxes cannot use the
names to tell for which host the packet is actually
destined.

UIP [9] seeks to interconnect heterogenous net-
works by assigning each host a persistent and flat
identifier with cryptographic properties. UIP uses a
routing algorithm inspired by DHTs to route pack-
ets based on the identifier, and participating hosts
route packets in UIP space for each other. UIP con-
trasts with our approach in that we resolve host
identifiers to IP addresses all at once and then use
IP routing to send the packet. Also, our goal is to
enhance the functions of the middleboxes whereas
UIP tries to make them transparent by using an
overlay. Peernet [8] is another peer-to-peer inspired
project that seeks to decouple identity and location.
Its primary focus is the wireless realm.

The i3 [27] project proposes a DHT-based infras-
tructure to decouple sending and receiving; the au-
thors’ intend to separate location and identity. The
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vision of i3 is that packets would contain flat identi-
fiers representing hosts and that the act of sending to
a host (represented by a flat identifier) would consist
of injecting the packet into a DHT. The DHT node
responsible for the flat identifier would receive the
packet and then forward it to the ultimate destina-
tion. Whereas i3 uses the DHT as a sending mecha-
nism, we use it as a lookup service.

IPNL [12] shares many of our motivations. This
work is intended to make renumbering easier, cre-
ate separate end-host identifiers, and leave the core
IPv4 routing infrastructure untouched. Under IPNL,
the end-host identifiers are domain names, though
the authors acknowledge that a flat, cryptographi-
cally strong identifier, as in HIP, may be preferable
for security reasons.

P6P [30, 33] proposes a DHT-based infrastruc-
ture as a way to deploy IPv6: sites send IPv6 pack-
ets to their gateway DHT node, which treats the
IPv6 destination address as a flat identifier, uses this
identifier to look up the IPv4 address of a counter-
part DHT gateway, and then sends the packet over
traditional IPv4 to this counterpart, where the en-
capsulation is inverted and the packet is delivered
to its destination. P6P shares many of our motiva-
tions but does not give hosts persistent names (if a
site changes ISPs, all of the identifiers at the site
change).

There are an increasing number of proposals for
radically new network architectures. These include
earlier proposals like PIP [10], IPv6 [6], Dynamic
Networks [22], Active Networks [28], Nimrod [4],
and more recent proposals like Smart Packets [24],
Network Pointers [29], Role-Based Network Ar-
chitecture [2], and Ephemeral State Processing [3].
Each of these proposals is an ab initio design that
would (in its full glory) require significant modifi-
cations to all network elements, not just hosts.

Finally, FARA [5] presents a novel organization
of network architecture concepts. While many of
its goals are similar to ours, one directly conflicts:
FARA deliberately avoids creating new global
namespaces whereas we strongly advocate creating
one new flat global namespace.

7 Discussion

DOA’s fate will be decided by the functionality it
simplifies and the applications it facilitates. How-
ever, we do not mean to say that DOA, by itself, di-

rectly enables any one application. Rather, DOA’s
benefit is improved architectural coherence. This
coherence results from two aspects of DOA: first,
that DOA is a platform (and is thus “built exactly
once”) and second that DOA is a layer of indirec-
tion. We believe these two aspects can foster inno-
vative, yet previously impractical, technology.

We have taken a small step toward validating
this belief: We illustrated here that DOA exports an
architectural primitive (host identities contained in
packets) that one can use to punch holes through
NATs automatically, thereby allowing “previously
impractical” technology. Below we speculate about
other uses of the DOA architecture.

Packet washing. One type of middlebox not pre-
viously discussed in this paper is the packet washer:
a machine that inspects packets on the way to a
host and ensures that packet contents conform to the
user’s specification of “safe”. For example, a fire-
wall shields machines behind it from certain classes
of traffic.

Today, the current network architecture requires
these boxes to exist at network choke-points so
that all packets destined for an end-host are forced
through the intermediary. NATs and firewalls are
often co-located for this reason. We argue that the
robust notion of host identity provided by DOA,
along with the ability to express to the network an
identity-independent location, allows these packet-
washers to exist anywhere in the Internet.

A host could use the DHT to map its EID to
the IP address of the packet washer and also reg-
ister with the packet washer each time its location
changes. All packets destined for the host would
then be automatically routed through the packet
washer, which could demultiplex incoming pack-
ets based on the EID, inspect the packets, and then
forward them to the ultimate destination. The host
could then check and verify (perhaps with a signa-
ture or other token contained in packets) that a given
packet originated from the packet washer.

DOA’s abstraction of network location means
that packet washers would not require topological
proximity to their clients and, moreover, that packet
washers could associate policies with host identi-
ties. This separation of function and location creates
the opportunity for third-parties to provide packet
washing as a service, perhaps benefiting from the
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economies of scale for costs like hardware mainte-
nance and virus definition updates.

DDoS remediation. An end-host using a packet
washer would still be vulnerable to a distributed
denial of service (DDoS) attack that overwhelmed
the end-host’s access link. However, we conjecture6

that it is possible to defend against such attacks with
the primitives given by DOA in conjunction with
new pieces of infrastructure that are perhaps sup-
plied by ISPs as a service. We might be able to bor-
row heavily from a recent proposal [32] for DDoS
alleviation based on per-packet capabilities.

Other intermediaries. In addition to the packet
washer discussed above, we imagine DOA could be
useful for other types of intermediaries. We briefly
give two examples.

First, consider a load balancer for Web servers.
This load balancer accepts requests destined for
a canonical EID that is associated with a given
Web site. The load balancer distributes load by for-
warding requests to any of several equivalent Web
servers, as do today’s load balancers. The primitive
supplied by DOA, however, allows this machine to
exist at a location other than a network choke-point,
and the machines behind the load balancer to be
globally reachable via their distinct EIDs (e.g., for
debugging and maintenance).

Second, DOA could simplify the logistics of con-
ducting network measurement studies by taking all
packets addressed from and to the EIDs of a con-
senting group of machines and then routing this
traffic through a statistics-collection box for an ar-
bitrary amount of time.

Although DOA’s mechanism—a robust set of
host identifiers that are carried in packets—was
originally proposed to address mobility and multi-
homing problems, the NAT scenario that occupies
much of this paper, and the examples just discussed,
suggest that this same mechanism is actually a pow-
erful architectural primitive for enhancing middle-
boxes. We hope that over time, many benefits will
arise from this primitive. Discovering, enumerating,

6Whereas much of this paper is informed conjecture, this
one is baseless.

and fully flushing out these new possibilities is our
future work.
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