Zebra: Peer To Peer Multicast for Live Streaming Video

Maya Dobuzhskaya, Rose Liu, Jim Roewe, Nidhi Sharma
{mdob,rliu, jimr,nidhi}@mit.edu

May 6, 2004

Abstract

The high bandwidth requirement for serving live
streaming video and audio restrict residential Inter-
net users from distributing content to multiple view-
ers. In a client-server model, the same data is simul-
taneously sent to all viewers. Instead of the server
sending data independently to clients, Zebra uses a
peer-to-peer multicast scheme that redistributes the
serving load among the clients. This shift dramati-
cally reduces the server’s resource requirement, en-
abling low bandwidth sources to serve high quality
live media to up to 100 clients. Zebra is resilient
to client failures and takes advantage of locality to
reduce network traffic.

1 Introduction

Individuals use the Internet to express themselves
through daily web-site logs, audio broadcasting, and
web cams. However, live video, the most expressive
form, is not currently possible due to the large band-
width requirement. Clear, smooth video requires ap-
proximately 100 kbps of upstream speed. Even with
a high speed DSL or cable connection of several hun-
dred kbps, the source can only send the video to a
couple of people.

1.1 Background

Commercial content providers use the traditional
client-server model to distribute live streaming me-
dia. For instance, a Shoutcast [1] server receives
audio content from an individual and distributes it
to thousands of clients on its high bandwidth con-
nection. The drawback of Shoutcast is the cost to
the source individual, who has to pay for this dis-
tribution service. In principle, a scheme similar to
Shoutcast can be applied to serving live streaming
video. However, the high bandwidth requirement for

serving video would significantly increase the cost to
the source individual.

For live media, all clients receive the same content
at the same time. The ideal solution for simultane-
ous data distribution is IP multicast. In this model,
the server sends out one copy of each packet, which
is duplicated by routers to reach clients on differ-
ent paths. Unfortunately, multicast is not available
because of difficulties in implementation and agree-
ments between ISPs. The only viable alternative is
end-layer multicast [2].

Application-level multicast [3] distributes the re-
sponsibility of disseminating data to the clients, in a
peer-to-peer manner. SplitStream and P2PCAST
use application-level multicast in cooperative en-
vironments to distribute high-bandwidth content
[4, 5]. These systems are intended for 1000s of nodes
and require complex lookup schemes such as Chord
[6] or Pastry [7]. For an individual hosting content,
the target audience will be much smaller, allowing a
more tightly controlled, easier to use system.

1.2 Proposed Solution

Zebra is designed to support about 100 clients.
The source server only needs to send one complete
copy of the data, which the clients then distribute
amongst themselves. These clients can be managed
by a single coordinating entity, allowing for better
control over the entire system. Because the video
source is already a single point of failure in the sys-
tem, making the coordinating entity share this fate
does not decrease the fault tolerance of the system.

1.3 Goals

For our system to be useful, it should have the fol-
lowing features:

o Functionality. All clients must receive the full
media stream.

_ﬂ@l—a A
Video Server | D@2 | Server Proxy _
Stripe 2
Packetsin
Stripe trees Length| Seq#| Data

Network

Stripe 1 from Client

Proxy A
Client Proxy Medlaplayer
:
Stripe 2 from
Client Proxy B
Serving Stripe 1
to other client proxies

Figure 1: General system layout.

e Robustness. The system should be resilient
against client node failures.

e Network Traffic. Overall network traffic should
not increase and should decrease if possible.

Our system divides the constant stream of data
into stripes to improve performance and robustness.
In a peer-to-peer system, the stream of data is dis-
rupted whenever a client leaves the system either
due to a failure or a regular disconnect. Since clients
receive pieces of the content from different senders,
they can continue to receive some data even if one
of the senders disconnects.

To further hide disruptions from the user, a client
keeps a buffer of several seconds of data. When a
client reconnects after being cut off from a sender,
the buffer allows the video to play smoothly as the
client catches up on the data that was missed during
the disconnection. In a one-directional live video
streaming system, it is allowable for the video to be
viewed a few seconds after its creation.

Since video bandwidth is large, a naive distribu-
tion tree can lead to higher network traffic by send-
ing data to further clients instead of closer ones. In
order to reduce network traffic, Zebra estimates the
network distances between clients to build a distri-
bution tree that increases locality within the system.

2 Design

2.1 System Structure

Our system is divided into two parts: the server
proxy and client proxies. We use proxies in order to

make our system easily portable to different video
servers and media players. As shown in Figure 1,
the server proxy sits between the video server and
client proxies. The client proxies sits between the
client media players and the server proxy.

Data is sent using a peer-to-peer multicast scheme
with striping. The video server sends one copy of
the data to the server proxy, which forwards this
data to two client proxies. These client proxies then
distribute to other client proxies and their respective
media players. In the rest of this paper, we use the
term node to refer to a client proxy.

2.2 Data Distribution - Striping

The server proxy divides the video data-stream into
two stripes, which it sends down different distribu-
tion trees (see Figure 2). A node serving in one dis-
tribution tree must be a leaf in the other tree. This
constraint maintains the invariant that each node
can only serve data in one stripe. Therefore, if a
serving node dies, its children still receive data on
the other stripe, provided that the children’s second
parents do not simultaneously disconnect.

In order to maintain certain nodes as leaves in a
distribution tree, a new node assigned to serve may
need to splice in front of a leaf or another serving
node, as shown in Figure 4. Splicing will only cause
a brief disconnection in the tree because all nodes
involved are known before the disconnection.

2.3 System State

Since our system is designed to only support around
100 nodes, the server proxy can maintain full system

Stripe 1 Stripe 2

Figure 2: The two stripe distribution trees.

state. It maintains state about the distribution tree
for each stripe, including which nodes are connected
to each other. It also maintains specific information
about each client in order to provide information to
requesting clients upon connection.

Client proxies are responsible for updating the
server proxy when important events occur. Impor-
tant events include client connections and disconnec-
tions. When a new client connects to the system,
it informs the server proxy of its parents. When a
client node fails, its immediate parents and children
notify the server proxy.

2.4 Connection Protocol

All clients wishing to connect to the system must
first communicate with the server proxy. The server
proxy determines which stripe the new client should
serve, based on the number of nodes currently serv-
ing each stripe. It tries to keep the number of nodes
serving each stripe approximately equal. If more
nodes serve one stripe, then the other stripe would
not contain enough serving nodes. The server proxy
also searches through the distribution trees of each
stripe to find potential parent nodes for the new
client.

For each stripe, the server proxy returns up to ten
potential parent nodes selected at random. These
ten nodes are divided into two categories: available
nodes and splice-able nodes. Available nodes are ca-

pable of serving at least one more child, while splice-
able nodes may not be able to support an extra child.
The system does not have enough information to
be certain of the splice-able node’s serving capacity,
so it tries to add an extra node, and monitors the
children’s data rate. Therefore new connections to
splice-able nodes either require splicing or forcing a
splice-able node to serve another child.

A new client always tries to connect to the clos-
est available node in a stripe. If no available nodes
exist, the new client connects to the closest splice-
able node. In the stripe it is assigned to serve, a
new client connecting to a splice-able node splices
between the splice-able node and one of its children.
In the stripe in which it must be a leaf, the new client
forces the splice-able node to become its parent. If
the new client node detects that data is getting sent
at a reasonable pace, then the system records that
the parent node can serve one more child than pre-
dicted. However, if the added stress of an extra
node causes the connection to be slow, the new node
should disconnect and try to reconnect to the sys-
tem.

Once the new node has established a connection
to both parents, it informs the server proxy of its
parents. The server proxy updates the state of each
parent node and creates a state for the new client
node.

Zebra initially assumes that each node can send
as much data as it receives (two stripes worth of
data). If this assumption holds, then there would
always be available nodes in each stripe. However,
since our system supports clients of various band-
widths, there might exist nodes that can serve less
than two children. Zebra compensates by having
clients with higher bandwidth serve more than two
children. Since it is impossible to accurately deter-
mine the total number of children a node can sup-
port, it is necessary to evaluate this node charac-
teristic by asking nodes to serve extra clients when
needed.

When there are no available nodes in a stripe, Ze-
bra should force extra children onto nodes, and have
a way of evaluating the arrangement. One possible
scheme requires children nodes to detect the rate at
which they receive data, and determine if their par-
ents are fit to serve additional children. In the case
of a new connection, if the new child determines that
it is receiving data too slowly, it can find a new par-
ent and tell the server to decrement the number of
children the old parent can serve.

Lastly, in a system that supports nodes who serve
less than they receive, it is possible for the system
to become temporarily full. However, since arbitrary
clients may disconnect at any time, new clients can
attempt to connect until they are successful.

=7

Figure 3: Disconnection and reconnection.

2.5 Disconnection Protocol

A serving node disconnecting from a distribution
tree also disconnects its immediate children from the
tree. If these children are also serving, the discon-
nection causes the subtree to lose service on that
stripe. If all disconnected nodes individually con-
tact the server proxy to re-establish connection, the
server proxy may be flooded with requests.

To reduce reconnection overhead, Zebra requires
the immediate children of a failed node to keep their
respective subtrees intact. Only the immediate chil-
dren contact the server proxy for reconnection (see
Figure 3). They inform the server proxy of changes
within the distribution tree (i.e. which nodes are
detached). The server proxy temporarily keeps the
state of disconnected nodes and their subtrees in
case they attempt to reconnect.

If the root of a disconnected subtree requests to
reconnect when there are no available nodes in a
stripe, it has to splice. Unlike the case of a new client
splicing, this reconnecting node already has children.
Therefore, splicing forces this node to support an
extra child. If it cannot support this extra child,
then its children could detect slower service and the
extra child should reconnect in that stripe.

3 Implementation

Zebra’s server and client proxies extend the Real
Networks’[8] application level RTSP proxy for
UNIX. This section describes the implementation of
the salient features of our system; namely, commu-
nication between system entities, striping, splicing,
maintenance of server state, and locality in the con-
nection protocol.

3.1 System Communication

The video server, proxies, and media players all
communicate through messages sent over TCP. Ze-
bra employs the RTSP protocol [9] to communicate
between the server proxy and video server, as well
as between a client proxy and media player. In
addition, Zebra has separate messages for commu-
nication between proxies. As shown below, each of
these messages is composed of a length, followed by
header-value pairs.

00054
"MessageType":"ListOfAddresses"
"StripeToServe":"Stripe 1"

3.2 Striping

The server proxy splits data it receives from the
video server into two stripes. It appends a length
and sequence number to each packet, and sends it
over TCP to the root node for each stripe. Odd
packets are sent on one stripe and even packets on
the other. The sequence number is incremented with
each stripe segment sent. Client proxies use this
number to reconstruct the total packet order, and
to figure out which packets need to be forwarded on
to children.

Upon receiving data from its parents, each client
performs two tasks: forward the data from one stripe
on to its children, and merge and send data to its me-
dia player (see Figure 1). The client proxy forwards
packets to its children as it receives them. If packets
arrive in order, it also forwards them to the media
player. If they arrive out of order, the client proxy
reorders them according to the sequence numbers.
Furthermore, the client proxy timestamps incoming
packets and waits for missing packets only until a
preset time interval expires.

Stripe 1 Stripe 2

Figure 4: The splicing process.

3.3 Splicing

Splicing is required when there are no available
nodes for a client to connect to within the stripe
it should serve. In Figure 4, node D is a new client
that has been assigned to serve in stripe 2 to keep
the number of serving nodes in each stripe balanced.
While node C can serve stripe 1 to D, there are no
available nodes to serve stripe 2 because node B is
serving at its capacity and nodes A and C have to
remain as leaves within this tree. Therefore D has to
splice after node B in the distribution tree for stripe
2.

Upon splicing, D sends a message to B indicating
that it will splice behind B. The message contains
D’s IP address and message port number. B accepts
D’s connection and then randomly chooses one of its
children to reconnect to D. In Figure 4, B sends C a
message to reconnect to node D, and then B closes
its connection to C. Upon receiving this message, C
reconnects to D, who is now receiving stripe 2 from

B.

3.4 Server State

The server proxy maintains the stripe distribution
trees, lists of disconnected nodes, and some client
state.

In particular, it manages the following state for
each stripe:

e The root node of the distribution tree.

e A list of disconnected nodes and their subtrees.

e The number of nodes currently serving in that
stripe.

The server proxy manages the following state for
each client node:

e The client’s IP address and port number for
messages.

e The stripe it serves.
e The additional number of nodes it can serve.

e A list of children nodes.

3.4.1 Stripe Distribution Trees

Since the server keeps track of the root nodes in each
stripe distribution tree, it can traverse down a tree to
lookup any client within the system and update its
state. When a new client contacts the server proxy,
the proxy searches down the trees to find available
and splice-able nodes. The server proxy also tra-
verses and modifies these trees when notified that
a node has connected or disconnected from the sys-
tem. In the disconnection case, the server proxy puts
the immediate children of the disconnected node and
their subtrees, in the list of disconnected nodes for a
stripe. If these children reconnect, the are removed
from the list and their state is reintroduced into the
distribution trees.

3.5 Locality in the Connection Pro-
tocol

Zebra tries to reduce the network traffic it gener-
ates by connecting clients who are closer to each
other. When a new client receives a list of avail-
able or splice-able nodes to connect to, it sends five
ping packets to each client and chooses a parent by
picking the lowest average round trip time. Send-
ing five packets provides a reasonable estimate of
round trip times without causing additional over-
head of sending many packets. Since sending five
ping packets takes a few seconds (4-5 seconds) our
implementation pings multiple client nodes in par-
allel. The client proxy forks a new process for each
client node it pings and the parent process parses
each ping output to find the client with the lowest
average ping time.

10+ L0 Zebra

-1 Client/Server

—~ 8+

8

2 7t

(@]

5 6F

*

= 5T

ERl

& 3T

s

o 2T

>

(% 1__ @) (@) (@) (@) (@) (@) (@) (@)
|

| | | | | | |
I I I I I I I I
1 2 34 5 6 7 8 9
Number of Clients

Figure 5: Server bandwidth requirement for Zebra
and client-server systems.

4 Evaluation

Zebra reduces the required bandwidth for the server
since it only needs to serve a single copy of the data.
As shown in Figure 5, the amount of data a Ze-
bra server sends out remains constant with an in-
creasing number of clients. On the other hand, in a
traditional client-server system, the amount of data
distributed by the server increases linearly with the
number of clients.

Zebra is successful in sending video data to all
clients, satisfying our functionality goal. It has been
tested for up to 10 clients. Due to resource and
time constraints we were not able to more aggres-
sively test our system. However, in terms of pro-
tocols, adding clients at this point is not different
from when the 5th or 6th client was added. Since
the only message overhead in the system is during
transient times when clients enter or leave, the sys-
tem design should scale without trouble up to 50 or
100 nodes. Even though 10 clients in the system is
not many, this scenario already provides functional-
ity that previously did not exist. For one of our test
cases, a server sent content at 40 kbps to 10 clients,
showing Zebra allows a video source on a cable mo-
dem to broadcast video to 10 people. Furthermore,
since our system only requires command line config-
uration of the server address, Zebra is simple enough

to be run by a regular Internet user.

In order to evaluate how well the stripe technique
increases tolerance to node failures, we designed a
test case where a client completely loses one of its
incoming stripes, and is unable to instantaneously
reconnect. In this case, the client still received some
data, allowing for a degraded level of service as op-
posed to no service. Video still appeared on the
client media player, although it was choppy and in-
cluded some artifacts. This test proves that data
from the working stripe was able to be used by the
client. Hence, striping proves to be an effective tech-
nique in improving system robustness.

We also tested how well Zebra evaluates physical
distances between clients by performing several tests
using ping. We found that hosts that are substan-
tially further away in fact return longer ping results.
Since Zebra chooses connections based on this in-
formation, it prefers to connect to clients that are
closer, reducing the physical distance that data trav-
els. For most networks, this reduces network traffic
by reducing the number of connection segments the
data traverses.

5 Future Work

Currently our system uses TCP to transport data
between proxies. TCP’s congestion management
keeps packets from being dropped during bursty
sends, ensuring that all nodes in the system receive
all the data. If UDP were used, then when pack-
ets in our system become clumped, the loss of a
clump during transmission would mean the loss of
several packets, and nodes at the bottom of distribu-
tion trees could see degraded performance. However,
TCP provides ordered delivery, which hurts Zebra’s
overall performance. If a packet is dropped between
two clients, TCP stops the delivery of all subsequent
data until the missed packet is resent. In live video,
packets have a limited useful lifetime. If data is de-
layed while waiting for a packet to re-send, it will
expire while sitting in a TCP buffer on the receiving
side. The ideal solution is to add only congestion
management on top of the UDP transport. We did
not have time for this enhancement, but it would be
a valuable addition to our system.

Another extension that would improve the abil-
ity of Zebra to handle adverse network conditions
would be for clients to constantly monitor the speed
at which they receive both of their stripes. If the
receive speed for a stripe falls below what it should

be, the client proxy could try to determine where
the bottleneck is. If both stripes are being received
at a low speed, then the bottleneck is likely to be
the receiving client. If only one stripe is slow, then
the bottleneck is likely to be the parent node serv-
ing that stripe. This information could be used to
decide whether to force a client out of the network
or to have it receive data from a different sender.

6 Conclusion

Zebra shows that a simple peer-to-peer distribution
system allows a user with limited sending bandwidth
to serve live video on the Internet. Separating the
video stream into stripes makes the system resilient
to disruptions caused by connecting and disconnect-
ing clients. Connecting peers by physical locality
reduces Zebra’s network traffic. By targeting a dis-
tribution size of 100 clients, the system can be cen-
trally coordinated by maintaining full state.

7 Acknowledgements

We take this opportunity to thank Professor Robert
Morris for his ideas on improving and focusing our
design and motivation. We also thank Sanjit Biswas
for his feedback and helpful ideas.

References

[1] Shoutcast, http://www.shoutcast.com

[2] Y. Chu, S. Rao, S. Seshan, and H Zhang. A
case for end system multicast, IEEE Journal on
Selected Areas of Communications (JSAC), Oc-
tober2002.

[3] Y. Chawathe, S. McCanne, and E. Brewer.An
architecture for Internet content distribution as
an infrastructure service, Unpublished work,
February 2000.

[4] M. Castro, P Druschel, A.-M. Kermarrec, A.
Nandi, A. Rowstron, and A. Singh. SplitStream.:
High-bandwidth content distribution in coopera-
tive environments, In IPTPS ’03, Berkeley, CA,
USA, 2003

[5] A. Nicolosi, S. Annapureddy. P2PCAST: A
Peer-to-Peer Multicast Scheme for Streaming
Data

[6] I. Stoica, R. Morris, M. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications, In
Proc. Of ACM SIGCOMMO1, San Diego, CA,
USA, August 2001.

[7] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems, In Proc. Of 18th
IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2001),
Heidelberg, Germany, November 2001.

[8] Real Networks, http://www.real.com

[9] Real-Time Streaming Protocol,
http://www.cs.columbia.edu/ hgs/rtsp/

