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Abstract

In thepastseveral years, contentistributionhas
movedfromtraditional meango theInternet. With
the introduction of peerto-peer (P2P) networks,
millions of uses nowconnectindshate contental-
lowing filesto be distributedat a mud fasterrate
than ever before. However, bandwidthlimitations
male larger contentmud harder to shake. If many
clients are interestedin somelarge piece of soft-
ware, manymirror serves are often necessaryo
handletheload.

With the introduction of BitTorrent and swarm
downloading distribution of large filesis now far
more efficient. However, despitethe decentalized
nature of the nodesin a particular swarm,there is
still asinglepointof failurein thesysem. Addition-
ally, there are several shortcomingshatrestrictthe
standad BitTorrent systemfrom becominga gen-
eral purposeP2P network.

In this paper we proposeand implementeTor-
rent, a content-distrilnution networkbasedaround
the BitTorrent protocol. We increasethe robust-
nessof the systenby replicating the single points
of failure, the tracking nodes. Thisis doneby use
of a dynamicmappingwhich allows for an elegant
failoverprocedue. In addition,wemalethesystem
more capableof handlingmore standad P2P-like
functions,allowing usess to more easilyshate con-
tent.

1. Intr oduction

BitTorrentis afile transfersystemoriginally de-
signedby Bram Cohenin May 2001 to quickly
and efficiently distribute content. To achiese this,

BitTorrent introduceda new featureto the peer
to-peermarket: swarm downloading[2]. In it,
clientsdownloadingthe file (known asthe swarmnj
alsoupload to other clients, thus shifting the bur-
denof contentdistribution from the original source
onto the interestedparties. Clients find nodes
from whichto downloadthroughacentralizechode
known asthetracdker, whichis usedto trackclients
servingor downloadinga particularfile.

There are two problemswith this approach.
Firstly, thetrackerbecomes singlepoint of failure
for ary givenfile’'sswarm. Tracker failureor down-
timeis amajorcomplaintamongsBitTorrentusers.
When a file's tracker fails, clients can no longer
contactthe tracker to find new nodes,which elim-
inatesthe nodes’ability to actively find new con-
nections. Additionally, it preventsnew clientsfrom
joining the swarm. Sincenodescanexit the system
atary time, the swarm’s possibleefficiencgy, which
comeslargely from the numberof nodestransfer
ring afile, is capped.

Secondly the BitTorrent systemis not particu-
larly well suitedfor P2P applicationsasit is op-
timized on the distribution of a singlefile. Tra-
ditional P2P applicationsrely on nodessharing
mary different piecesof content. As clients of-
ten enter and exit P2P networks, the files avail-
ableis constantlychanging BecausditTorrentre-
guiresa statictracker for every file aswell assome
meansof finding thistracker (in theform of a static
torrent file hostedon a website),a general-
purposeBitTorrent-basedP2P systemwould re-
quire a lot of maintenancen orderto handlethe
dynamic natureof the network. Thus BitTorrent
needsa mechanisnto dynamicallyassigntrackers
to handlethe dynamicnatureof P2Pfile sharing.

OtherP2Pnetworks areableto decentralizeéhe



location of files; however, they do not leverage
swarm downloadingbecauseahey lack a compre-
hensve list of clientstransferringafile. Also, there
is neithera built-in incentve for sharingfiles with
otherclientsnor a systemfor obtainingor sharing
differentpartsof afile you have or need.

To solve the issuesof maintaininga robust Bit-
TorrentP2Psystem we introduceeTorrent,a new
P2P network that preseres the efficiengy of Bit-
Torrent’s swarm downloadingwhile increasinghe
robustnesof trackers. Specifically the two goals
of eTorrent areto provide a systemthat:

1. Provides efficient contentdistribution in the
faceof possiblenode/netwrk failure,whether
causedy thedynamicnatureof P2Pmember
shipor actualhardwarefailure;and

2. Allows clients to find the node responsible
for somecontentquickly and easily given a
uniquecontentidentifier,

We approactour goalshy first replicatingthe task
of clienttrackingacrossmultiple nodes.Replicated
trackersperiodicallysynchronizeheir clientinfor-
mationwith eachother thusmaintaininga consis-
tentview of the swarm. Files aredynamicallyas-
signedto trackersusinga consistenhashingtech-
nigue.Along with one-hoprouting,which provides
to eachnodea completelist of trackers,consistent
hashingprovidesa simple mechanisnfor locating
trackersanddeterminindile trackingresponsibility
amongstraclers.

It shouldbenotedthateTorrent doesnotaddress
the task of searchingof contentidentifiers. It is
left to theuserto find appropriatéheidentifiersvia
someothersystem(e.g. searchenginesdedicated
directories).

1.1.RelatedWork

Although thereis an abundanceof literatureon
the web on BitTorrentand P2Pnetwork technolo-
gies, there has beenrelatively little work on im-
proving therobustnes®f trackers.

To helpcombatracker failure,arecentproposal
was madeto extendthe BitTorrentprotocolto in-
cludemultiple trackers[3]. However, the proposed

designspecificationsloesnot indicatehow multi-
ple trackers are synchronizednor doesit indicate
how replicatedrackersareto bemanagedwhether
manuallyor automatically).

ShareAzal[5] is a P2P client that file shares
over severalexisting P2Pnetworks: BitTorrent[2],
Gnutella[6] andeDonley [7]. Whenafile tracker
for BitTorrentfailsits trackedcopiescanstill beac-
cessedn the othernetworks. This addsa level of
redundang to BitTorrenttracked files. However it
doesnotaddresshekey issue;namely trackersare
still singlepointsof failure.

An approachto finding contenton BitTorrentis
discussedn Metz [8] involving a modified client
that searchesnultiple trackersin orderto find the
desiredfiles. This methodologyaddressesobust-
nesshy having redundantrackers, but it doesnot
adequatelydealwith how to dynamicallyallocate
new trackersshouldthe original onesfail. Further
more, its doesnot provide sharingof information
acrosdraclers.

1.2.Paper Organization

Sections2 and 3 provide anoverview of the de-
sign of the eTorrent network. Section4 discusses
the implementatiorof the nodesandintercommu-
nicationmethods.Theperformancef thesystems
analyzedn section5. We discussfuture improve-
mentsthatwill be madeto the systemin section6.
Finally, in section7 we concludeon the stateof the
eTorrent network.

2. Architecture

In this section,we discussthe generalarchitec-
ture of the eTorrent system:the nodesin the net-
work, the messagepassedetweemodesandthe
mechanisnusedto assignfiles to nodes.

2.1.Nodes

Eachnodeon the eTorrent network cansene
two differentroles: client andtracker. Notethata
nodecanbe both a client and a tracker, for either
the samefile or differentfiles. For clarity we will
treattracker andclientasseparateodes.



A clientnodeis onethatis sharingor download-
ing files from the network. In particular a leecher
of file f is a client who is currently dowvnloading
thatfile. Similarly, a seedfor file f is aclientwho
currentlyhasacompletecopy of thefile andis only
uploadingthatfile.

A tracker node maintainsa set of tracks, one
per file for which it is responsible. Each track
keepsstateof all leechesand seedsfor a partic-
ular file (e.g. bytesleft to download, IP address,
port). Informationmaintainedn atrackis equiva-
lentto whata singleBitTorrenttracker stores.Each
tracker nodealso maintainsa global routing table
containingall live trackersin the network. This ta-
bleis discussedn furtherdetailin section2.3.

2.2.ConsistentHashing

We usea consistenhashingechniqueo accom-
plish the taskof mappindfiles to trackers. We as-
sign uniquefixed lengthidentifieis forming a uni-
fied identifier spaceto both trackersandfiles. We
designatea tradker identifier as Nodeld(T") for
sometracker T'. ldentifiersfor files are referred
to as contentidentifiers and are designhatedCon-
tentld(f) for afile f.

We definethe successoof identifieri, succ(i),
to bethetrackerT with thesmallesidentifierlarger
thani. More precisely (VI € {Traclkers}. i <
Nodeld(T) < Nodeld(7")) = succ(i) = T.
If nosuchT exists (i.e. for i > Nodeld(7")),
succ(i) = T. Nodeld(7) = min (Nodeld(T")).
Similarly, tracker T' is the predecessoof identifier
i (or pred(¢)) if T" hasthe largestnodeidentifier
smallerthani.

To determinewhich trackersareresponsibldor
a given file, we usea sequencef hashfunctions
indexed by the naturalnumbersto generatdoca-
tor identifiers. We defineLocateld(f, s) to bethe
cryptographichashof a Contentld(f) for afile f
concatenatedith aseednumbers (s € N).

A tracler T), is the n'” tracker for afile if 3s €
N suchthatsucc(Locateld(f,s)) = Nodeld(T},)
andthereareexactly n — 1 otheruniquetrackersin
{succ(Locateld(f,s")) | s > s’ € N}. In thecase
wheren is largerthanthe numberof trackersin the
systemwe remove the uniquenessequiremenfor
thetrackers.

hash(F, 0) = 2 hash(F, 1) = 8
T, [0] T,[4 T,[6] T,[14]

Figure 1. Example of the consistent hash-
ing scheme. T; are trac kers with their iden-
tifier s in brackets. F' designates a file with
two locator identifier s.

We designatethat k£ trackers must be actively
trackingary file F' in the system.Thesek trackers
arereferredto asco-tradkersin areplicatedracker
set. Thesetrackersarein generalthefirst k track-
ersresponsibldor a file. However, trackers may
refuseto becomea tracker for afile dueto loadis-
sues. In this case,the next assignedracker will
take its place.

Figure 1 shovs an example of the tracker
file mapping: file F is assignedto 7> and
Ty since succ(Locateld(F,0)) = T and
succ(Locateld(F, 1)) = Ty.

2.3.0ne-Hop Routing

Recent publications have suggesteda scal-
ableapproacho maintaininginformationamongst
nodesin a large network [10]. We usea one-hop
routing approach11] to synchronizeglobal infor-
mation amongstothernodes. In one-hoprouting,
thenodesform a virtual ring orderedby their node
identifiers. This ring is divided into slices which
are further divided into units A slice leader is
electedn eachslice by the correspondingpodes.

Eachnodeis responsibldor monitoringthe sta-
tus of its two neighbors.Wheneer a nodedetects
a new or failed neighbor a nodenotifies its slice
leader Eachslice leaderis responsibldor aggre-
gatingupdateswithin its sliceandexchanginghem
with othersliceleadersThesliceleaderthensends
all theupdatest recevvesto themedianof eachunit
(calledtheunit leader11]), which proceedgo for-
ward it to its neighboringnodes. Theseupdates
travel from one neighborto anotheruntil the end
of aunitis reached.

The hierarchicalpassingof eventsallows rout-
ing informationto be propagtedefficiently to all



the nodes. By building our tracker network using
one-hoprouting, every nodehasa completelist of
all theothertrackers,whichwe call theglobal rout-
ing table Usingthislist andthe consistenhashing
algorithm,ary tracker in the systemcandetermine
the k co-traclersfor ary file givenits contentiden-
tifier. Thus,a client canconnectto ary tracker in
the systemin orderto geta list of trackersfor the
file it is interestedn.

Sincewe usea consistenthashingscheme we
introducesomepossiblenefficienciesin datapass-
ing astrackersexit andenterthesystem.We choose
to dothis becausé¢hebenefitsof nothaving to keep
a coherenffile-to-tracler table over the entire sys-
tem greatly overshadw the costsassociatedvith
trackchanges.

2.4.eTorrent Messages

Nodesmust be able to communicatemember
ship changewith othernodesin the systemin or-
derto maintainthe one-hoprouting network. Also,
traclkers in the samereplicatedtracker set must
be ableto communicatewith co-traclersregarding
new clients,etc. Thus,we definea seriesof mes-
sageghatcanbeusedin orderfor nodeso commu-
nicate.Thesemessagearesummarizedn Tablel.

3. Tasks

In this sectionwe describehow the client and
tracker nodesinteractwith othernodesin theeTor-
rent network in orderto accomplistsomecommon
operations.

3.1.Contacting the Tracker Network

For a client C to join the eTorrent network, it
mustcontactthetracker network. ClientC mustal-
readyhave alist of previously known active track-
erson the tracker network. C' attemptsto contact
trackersone-by-oneonit’s list until it successfully
contactsa live tracker G or exhaustghelist. G
is referredto as C’s gatevay tracker. C' usesG¢
for all its futurerequestsnto the network. If atary
point G fails, C repeatghis entire processn or-
derto find anew gatewvay tracker.

KeepAlive() Tracker — Tracker
Usedby thetracker network to checktrackerlive-
ness.

InitPred/InitSucc() Tracker — Tracker
Sentto a tracker’'s successorand predecesso
whenenteringthetracker network.
InitRouteTable() Tracker — Tracker
Usedto initialize a tracker’s routing table when
enteringthetracker network.

Update(ip, port, type) Tracker — Tracker
Usedto sendupdatesdhetweera subsebf nodes.
Event(ip, port, type) Tracker — Tracker
Usedto sendeventsto asliceleader
FindTracker(content-id)  Client— Tracker
Usedby aclientto requesthenode-ids of nodes
trackingcontent-id.

IsTracking(track) Tracker — Tracker
Usedto probepotentialfile trackersto determine
whetherthey arealreadyor arewilling to tracka
particularfile.

SynchronizeTrack(track) Tracker — Tracker
Usedto synchronizerack metadatdetweerco-
trackers. track containsa list of clientsandthe
statusof their transfers.
NotifyRetirement(track)  Tracker — Tracker
Usedby atrackerto notify co-tracler peerghatit
is nolongertrackingagivenfile.

Table 1. Messages used by eTorrent.

In order to increasethe chancesof C' finding
some active tracker, we update and maintain a
known tracker list muchlike in Gnutella[6]. Ev-
erytime C findsa new gateway tracker, it updates
its known trackers list with a subsetof the G¢'s
globalroutingtable.

3.2.Downloading Files

To download a file, client C' first acquiresthe
Contentld(f) of the interestedfile throughsome
external search. Next, C' contactsits gatavay
tracker G¢ askingfor a tracker thatis responsible
for tracking f. G¢ returnsto C' arandomsubsebf
trackersthataretrackingthefile. C thenattemptgo
contactsomeT’y from this subsetjf it fails, it asks
G for anew tracker until it findsonethataccepts
its requesto download.Notethata; mayrejecta

r



clientbasedonits currentload, evenif is currently
tracking that particularfile. OnceC successfully
finds a tracker it initiates a download sessiorvia

corventionalBitTorrentprocesses.

3.3.SeedingFiles

WhenC wantsto sharesomefile f, it first cal-
culatesContentld(f). It thencontactsthe tracker
network which returnsa list of potentialtrackers
thatcanpotentiallytrack f giventhe constraintsn
section2.2. It is the responsibilityof the client to
contactnodeson thislist to find aworking tracler.

Oncea tracker T is found, C' contactsT’y via
normal BitTorrent protocol. However, insteadof
reportingthatit starteda download,it reportsthatit
hasa completeddownload. Trackersdo not explic-
itly differentiateclients that are seedsfrom those
thatareleechers.

3.4.Tracker Replication

The tracker network tries to maintainat leastk
replicatedtrackersfor eachfile. WhenT first en-
countersa new file (whena client seedghefile), it
createsanew trackassociatedvith thisfile. It then
proceedso find k — 1 co-traclersto maintainthis
track.

The replicatedtracker set(or co-tracker list) is
establishedoy probing tracker nodes starting at
succ(Locateld(f, 0)). For eachnode,theT; sends
alsTracking(f) messageThegivennodemay re-
ply true, false,or unwilling. Whenthe nodeis un-
willing, thenit is abngatingresponsibilitybecause
of bandwidthor load limitations. T’y stopsprobing
whenit hasfoundk — 1 co-traclers.

Oncea co-tracler sethasbeenestablished
will regularly synchronizegrack informationwith
nodesin the set. Synchronizatiorof trackinforma-
tion ensureghata client canconnectto ary of the
k trackers,andrecevie the sameclientlist. Clients
may not geta consistentlientlist all thetime, but
over time, the list will eventually becomeconsis-
tent.

During synchronizatioreachtracker broadcasts
its currentclientlist to all co-traclers. This update
will containa list of clientswith ownershipinfor-
mationandtheBitTorrentclient metadataA client

is definedasownedby atrackerif it hasmadedirect
contactwith thattracker.

Eachtracker maintainsa tableof all the updates
it receved from its replicatedtrackers. Eachtrack
is updatedoy takingtheunionof therecevedclient
liststo createa completeview of clients.

During the mewging of client lists, theremay be
conflictinginformationaboutclientsthathave mul-
tiple tracker owners. This canoccurif the client
contactedseveral differenttrackers. To resole po-
tentialmemge conflicts,theownerwhichreportsthe
mostdownload progresqleastbytesleft to down-
load)for a particularclientwill be asignedasthat
client’s primary owner.  Only track information
from the primary owner copy will be usedin the
memgedlist.

3.5.Tracker Intr oduction

Whena new tracker T' entersthe systemit first
contactghetracker network. Throughthe one-hop
protocol,T" learnsof its successoQpredecessand
the globalrouting table. In addition,the predeces-
sor and successoreportT's arrival to their slice
leademwhicheventuallypropagtesthis eventto ev-
ery othernodein the system.

An enteringtracker T' may be responsiblefor
trackingfiles alreadyexistingin the network. After
enteringthe network, f's existing co-traclerswill
broadcastheir trackinformationto 7', makingit a
new co-traclerfor f.

3.6.Tracker Failure

Everysooften,akeep-alve messagés sentfrom
eachtracker nodeto its successorlf anodelearns
thatits successohasfailed, it immediatelyreports
this to its leaderwhich eventually propagtesvia
the one-hopprotocolto every othernode.

Onceall Ty nodeshave beennotified of thefail-
ure event, f’s existing co-traclerswill find a new
tracker andsendtheir tracksto it.

4. Implementation
eTorrent is implementedin Python so as to

smoothly integrate with the original BitTorrent
clientandtracler.



4.1.Client

BitTorrent already provides functionality for
performing a swarm download given a hashand
tracker list in a .torrent file. In BitTorrent,the
.torrent file containsan “announce”URL that
pointsto the tracker. In the eTorrent system,the
announceURL is ignored, and announcesJRLs
aregeneratedlynamicallyfrom thetrackerlist pro-
vided by the gatevay G~. We implementeda us-
ableeTorrent client thatwrapsaroundan existing
BitTorrentclient.

The userprovidesa contentidentifier either di-
rectly (from userinput) or througha pre-«isting
.torrent file. Theclient C next sendghis con-
tentidentifierto G¢, whichin turn returnsa setof
trackersto C. Thewrapperclientgeneratean“an-
nounce”URL correspondingo oneof thetrackers
in the returnedlist and handsthis to the standard
BitTorrentclientfor furtherprocessing.

The eTorrent client periodicallychecksin with
its tracker via the“announce”URL, announcingts
progressiuringthedownload. If it failsto connect
to thetracker, the clientwill locateanothertracker
eitherfrom its list or by contactingthe tracker net-
work.

4.2.Tracker

Giventhetraclker-file mappingdescribedn sec-
tion 2.2, we desireidentifiersto be closeto uni-
formly distributed given somerandomset of files
that are on the network. In addition, in orderto
make it difficult for trackersto enterwhererer they
wish, the hashshouldbe noninvertible. Thisis im-
portantbecausetherwisea maliciousparty could
easily block accesgo somefile f by placing it-
self as succ(Locateld(f, s)) and thus becoming
the trackersof f. In orderto achieve theseprop-
erties,we usea 160-bit SHA1 hashto calculateall
theidentifiers.

In oureTorrent tracker we useathreaded-model
with locks to securethe tracker’s internal shared
state.Four threadswere spavnedfor eachtracler:
onefor handlingclient connectionspne for one-
hoprouting,onefor co-tracler synchronizatiorand
onefor eTorrent messagéandling.Thefirstthread
runsthe original BitTorrenttracker; the next three

will bediscussedn moredetailbelow.
4.3.0ne-Hop Routing

Themainpartof one-hoprouting’simplementa-
tion is describedn [11]. We choosefor simplicity
to electsliceleadersasthe successoof themedian
of the slice. The numberof slicesandunitsin the
systemcanbeeitherstaticallyfixed or dynamically
chosen.In the latter case the numberof slice and
unitsis increasear decreased the averagenum-
berof nodesperunit hits certainthresholds.

Nodesusethreedifferenttype of naotifications:
internal events,which are eventsthat occurwithin
a slice but hasnot beenpropagtedto the whole
network; externalevents whichareeventsthathave
beernpropagtedto thewholenetwork; andupdates,
whichareexternaleventsthathave beenpropagted
from sliceleaderdo their correspondingnodes.

Note that one-hoprouting itself doesnot guar
anteethat the global routing tableswill stay con-
sistent. Events/updategsan be lost, or timing is-
suesmay causeupdatego not be sentto particular
nodes. To combatthis, if a tracker noticesan in-
consisteng in a routing table, it will propagte a
new event correspondingo this error  For exam-
ple,if atracker T' recevesa track updatefrom an-
othertracker or queryfrom aclientregardingsome
file f thatit is not tracking,this implies thatthere
is a discrepang regardingpred(7"). ThusT will
checkits predecessas’statusandsendout the cor
respondingavent. Clientsalsonotify their gatevay
trackersG if they noticesometrackeris down; the
gatevay tracker will independentlyverify this and
propag@tethis eventif necessary

4.4.Co-Tracker Synchronization

During track synchronizationtrackers use the
global routing table to determinethe statusof co-
trackers.As mentionecearlier trackersresponsible
for tracking f will eachindependentlymaintaina
list of k& co-traclers(wherek is the network mini-
mumon the numberof co-traclerspertrack).

The co-traclers list is cached, so that each
tracker canavoid probingits co-traclersevery syn-
chronizingcycle. This cachedist is checled each
cycle against the one-hoprouting table to prune



away ary deadtracker nodesin thelist. Whenthe
sizeof the cachedist falls belowv k&, the co-tracler
list is rehuilt.

Duringeverysynchronizatiorycle,eachtracker
sendsits client informationvia the Synchronize-
Track(f) message.All the client metadatas en-
codedusingthe samebinary encodingformat that
BitTorrentusesfor its network protocol. Remaal
of expiredclientsis automaticallytaken careof ei-
therwhena clientannounceshatits disconnecting
or whenit failsto reportaftertherequiredinterval.

We realizethata full clientlist updateis expen-
sive whenthe numberof clients per track grows.
We planto extendthe synchronizatiorprotocolto
allow for partialupdates.

4. 5.Tracker Retirement

Occasionally when a new tracker joins or
leaves the network, the responsibility of a file
tracker may change.For example,if sometracker
Ty = succ(Locateld(f,k)) and a new tracker
T’ entersthe systemsuchthat Locateld(f, k) <
Nodeld(T") < Nodeld(T¥), Ty will retire its re-
sponsibilitiego 7" by sendingt afull list of clients.
If the full updatecompletessuccessfullythe retir-
ing tracker will alsonotify its formerco-traclersof
this event throughthe NotifyRetirement(f) mes-
sage.This mechanisnensureghat subsequentp-
datesby peerco-traclerswill route correctly and
thatnew clientscanstill find thefile traclers.

Whena tracler retires,all clientsconnectingo
that tracker mustshift to the new tracker. Ideally
theretiredtracker shouldbeup long enoughsothat
all its clientscanshift to the new tracker. So,in ad-
dition to the minimum k trackers per file, we also
setaglobalconstanin > k thatspecifiegthe max-
imum numberof trackersperfile f. This constant
allows the network to buffer againstquick network
membershipchanges. A retired tracker may stay
ontracking thatfile, aslong asthe numberof total
trackersremainbelow m.

4.6.Communication
Nodescommunicatein the network via a Re-

moteProcedureCall (RPC)mechanismWe lever
agethe XML-RPC library for Python[12] in order

to achieve this. We implementedall the messages
listedin Tablel usingthis RPCpackagelt should
be notedthat messagedn the original BitTorrent
protocolarenot handledby this method;messages
betweenthe original BitTorrentclient and tracker
remainunchanged.

5. SystemPerformance

To testthe performancef eTorrent network we
createda seriesof testnetworks with 100trackers,
split into 2 slicesand4 units. We gatheredband-
width resultsby using Etherealand performeda
TCP dumpon the appropriatetracker portson all
systemsrunning trackers. In this setup,the co-
tracker synchronizatioroccursoncea minute,and
one-hopkeep-alvesare sentonceper second.For
our analyseswe further assumehat nodeswhich
enterthe network have an averagelifetime of one
hourandthatthe averagemessagdéransmissiona-
teng is 100 ms.

5.1.Global Routing Table Divergence

From our preliminary network analysis,we no-
ticedthatdiscrepanciesccurredn theglobalrout-
ing tablefrequentlybetweemodesin the network.
Keepingtheglobalroutingtableconsistents acen-
tral part of our system. Throughfurther analysis,
we narroved down the sourceof discrepancieso
two causes:

1. When a node passinga value fails immedi-
atelyafterreceving anupdatemessagéut be-
fore it can propagte the updateto the next
node,all nodesthat requireupdatesrom the
failed node will experiencea discrepang in
their globalroutingtable.

2. If a new nodewere to entera new unit (or
slice) and becomeits leader its slice leader
(or otherslice leaders)do not know which of
therecentupdateghenew leadethasreceved.
Thusit could potentiallymisssereralupdates.

Theseinconsistenciesan be found by tracker
or client during routine operations.Oncedetected
thesediscrepanciesanbe easilyfixed by the net-
work asdescribedn section4.3.



To quantify the possibleerror rate dueto these
two sourceswe derivedanequationfor the proba-
bility of errorusingresultsfrom the one-hoprout-

ing paper11]:

4 2(S + U)
P.., = E? E?— 4+ g? 2 2
(U + 3) + 7+ o

HereE is the expectednumberof entries(or exits)
during atime step,U is the numberof nodesin a
unit, and.S is the numberof unitsin a slice. The
first termrepresenterrordueto failing nodesand
the secondandthird termsrepresenerrorsdueto
unit and slice numberchangesespectiely. With
the assumedraluesfor our testscenario,P,,, =
7.33 - 10~ which equateso approximately0.0063
errorsperday.

We ran further experimentsto study the actual
effectsof nhodechangegtrackersenteringandexit-
ing the network) andits effect on the overall error
reportedin the global routing tables. For a given
churn rate r, we startedoff a network by having
100randomnodegoin atarateof r. Wethensimu-
latednodechangesy randomlykill ing andadding
new trackersatthesamechurnrate. After perform-
ing 50changesndallowing theone-hoproutingta-
blesto reacha steadystate we loggedeachnodes
globalroutingtableandcomparedt againsta cor
rect global routing table, noting ary discrepancies
we found.

We ranthistestfive timesfor eachr we usedand
averagedheresults.Note thatthe error correction
describedn section4.3wasdisabledsinceit relies
on thefile track lookupsby a client or co-tracler,
neitherof whichwereperformedfor thesetests.

Figure 2 shavs the averageof discrepancies
measurevarying churn rate from 0.5 changes
per second (2 seconds between changes) to
100 changesper second(0.01 secondsbetween
changes)Our resultsshow thatevenwith frequent
changesn the network (100 changeer second)
the averagenode experienceonly 2.1 differences
from thetrueglobalroutingtable.

Figure 3 shawvs the averagenumberof unique
discrepanciesversus membershipchangein the
system. We canseethat the numberof uniqueer
rors hasa sublinear(roughly logarithmic) growth
rate. This implies that when correctve measures
aretakenin networkswith higherchurnrates(less
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Figure 2. Average number of errors per
node versus time between node changes

time betweenchanges)geachcorrectionwill have
a larger effect on the total percentagef errorsin
the system. This makes senseasthe errorsdueto
one-hoproutingtendto have highlocality.

Our experimentalresultsshawv that in general
one-hoproutingwill producefairly consistentout-
ing tables.Without correctionthe discrepang rate
is fairly reasonable. Further improvementscan
be achiezed with the simple error correcton de-
scribedin section4.3. Therefore,we expectthat
ourschemewill scalefor reasonablyarge P2Pnet-
works.

5.2.Bandwidth Overhead

From analysisof TCP dumpfrom Ethereal,we
wereableto measurdhe network overheadof var
ious messaged our system. We found that the
costof synchronizatiorof the network tablesvia
theone-hopsystentook 350 bytespersecondThis
amountremainsconsistenaswe vary network size.

The currentfile tracker synchronization(with
full updatesyequiresroughly 45 bytesper second
perfile trackedwith anadditionall bytepersecond
per client for thatfile. This may increasefor very
popularfiles (which haslarger clientlists). We be-
lieve that by modifying the synchronizatiormeth-
odsto performdifferentialupdateswe candrasti-
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Figure 3. Average number of unique er-
rors per node versus time between node
changes

cally cutdown thesecosts.

A major overheadfor communicationwas the
marshallingmethodof XML-RPC. A simplecom-
pressedversionof it would yield a factor of two
improvement.Otherreductionsn theformatcould
furtherreducethis by anadditional50%.

6. Futur e Work

While meetingtheinitial goalof distributingand
replicatingthetaskof file trackingseamlesslythere
area numberof problemsthat prevent the system
from widespreaduse. In this sectionwe discuss
theseproblemsn eTorrent andpossiblesolutions.

6.1.Tracker Rewards

Currently thereis no motivationfor someondo
volunteerto be a tracker nodein the eTorrent net-
work. Becauseve wantthe responsibilityof track-
ing afile to be sharedamongclientsandnot dedi-
catedseners, clientswould ideally actastrackers
whenconnectedo the system. However, tracking
afile addsloadto anodesysem,asit hasto poten-
tially communicatevith mary trackersandclients.

In orderto promotevolunteerdo track,areward
systemcould be addedthat to compensatdrack-

ersfor providing trackingservices.One proposed
methodwould actasfollows:

1. ClientC maintainsalist of trackersit hasused
in the past,rewardingthemonecreditfor each
trackused.

2. WhensomeclientT is interestedn file pieces
thatC has,andT hassenedasC’strackerin
the past,C will favor uploadingcontentto T’
over othernodesanddeductonecredit.

3. Thislist will bemaintainecdusinganLRU pol-
icy; creditscanexpire if notused.

The mechanisnto choosewhomto uploadcon-
tentis alreadyanintegral partof the BitTorrental-
gorithm, so addingthis extra condition of which
clientto favor would berelatively simple. This sys-
temwould alsobe difficult to cheat,aseachclient
keepdrackof which nodesshouldreceve benefits.

6.2.Security

The current systemassumeghat trackers are
trustworthy (i.e. they do notattemptto sabotagé¢he
network). With the currentmethodof getting as-
signedIDs basedon SHAL, it is difficult, but com-
putationallyreasonableto situatemaliciousnodes
suchthat they are assignedo be file trackersfor
certainfiles. Additionalwork will beneededo pre-
ventnodesfrom disruptingtheroutingtables.

6.3.Routing Robustness

Optimizationsin the global routing table syn-
chronizationprotocolare possible. The electionof
slice and unit leadersin the one-hoprouting sys-
tem could be doneonly when needed(i.e. if the
leaderwentdown). Additionally, trackerscouldbe
enteredinto the systemfrom the pool of possible
traclers(i.e. clients)asneedednsteadof the ag-
gressie system.

6.4.File Tracking Scaling
A quality-of-sevice measureshould be imple-

mentedo varythenumberof trackersperfile based
on load. Such a feature could also be usedto



do more sophisticatedoad-balancingamongsthe
trackers. Thiswould allow the systemto efficiently
allocatemore co-traclers to the files that needit
most.

6.5.Communication

Using the XML-RPC library incurred a large
penalty Analysis revealedthat RPC calls used
roughly 300% the messagepaceto marshallcalls
over what could have beenaccomplishedwith a
moread-hogprotocol. Suchachangavouldgreatly
extendthe scalabilityof theeTorrent system.

6.6.Searching

TheeTorrent systemcurrentlyhasno integrated
way of searchingfor contenton the system. Pro-
posalsfor performinga generaldistributed meta-
datasearchhave beendiscussed9]. It would be
straightforvard to meige thesesystemsn orderto
incorporatethis functionality,

7 Conclusion

TheeTorrent network we designedsuccessfully
distributes the task of tracking files acrossmul-
tiple nodesto provide robustnessin the face of
traclker failure or overloadingwith an acceptable
bandwidthoverhead.Althoughthere arestill limi-
tationsin thesystemthatpreventit from beingavi-
ablechoiceasa generapurposeP2Psystemthere
are clear stepsto take in orderto make the eTor-
rent systemafeasiblereal-life application.
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