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Abstract

In thepastseveral years,contentdistributionhas
movedfromtraditional meansto theInternet.With
the introduction of peer-to-peer (P2P) networks,
millionsofusersnowconnectandsharecontent,al-
lowing files to bedistributedat a much fasterrate
than ever before. However, bandwidthlimitations
make larger contentmuch harder to share. If many
clients are interestedin somelarge pieceof soft-
ware, manymirror servers are oftennecessaryto
handletheload.

With the introductionof BitTorrent and swarm
downloading, distribution of large files is now far
more efficient. However, despitethe decentralized
nature of thenodesin a particular swarm,there is
still a singlepointof failurein thesystem.Addition-
ally, thereareseveral shortcomingsthatrestrictthe
standard BitTorrent systemfrom becominga gen-
eral purposeP2Pnetwork.

In this paper, we proposeand implementeTor-
rent, a content-distribution networkbasedaround
the BitTorrent protocol. We increasethe robust-
nessof the systemby replicatingthe singlepoints
of failure, the tracking nodes.This is doneby use
of a dynamicmappingwhich allowsfor an elegant
failoverprocedure. In addition,wemakethesystem
more capableof handlingmore standard P2P-like
functions,allowing users to more easilyshare con-
tent.

1. Intr oduction

BitTorrentis a file transfersystemoriginally de-
signedby Bram Cohenin May 2001 to quickly
andefficiently distribute content. To achieve this,

BitTorrent introduceda new featureto the peer-
to-peermarket: swarm downloading [2]. In it,
clientsdownloadingthefile (known astheswarm)
alsoupload to otherclients, thusshifting the bur-
denof contentdistribution from theoriginal source
onto the interestedparties. Clients find nodes
from whichto downloadthroughacentralizednode
known asthetracker, which is usedto trackclients
servingor downloadingaparticularfile.

There are two problems with this approach.
Firstly, thetrackerbecomesasinglepointof failure
for any givenfile’sswarm.Trackerfailureor down-
timeis amajorcomplaintamongstBitTorrentusers.
When a file’s tracker fails, clients can no longer
contactthe tracker to find new nodes,which elim-
inatesthe nodes’ability to actively find new con-
nections.Additionally, it preventsnew clientsfrom
joining theswarm.Sincenodescanexit thesystem
at any time, theswarm’s possibleefficiency, which
comeslargely from the numberof nodestransfer-
ring afile, is capped.

Secondly, the BitTorrent systemis not particu-
larly well suitedfor P2Papplicationsas it is op-
timized on the distribution of a single file. Tra-
ditional P2P applicationsrely on nodessharing
many different piecesof content. As clients of-
ten enter and exit P2P networks, the files avail-
ableis constantlychanging.BecauseBitTorrentre-
quiresa statictracker for every file aswell assome
meansof finding this tracker (in theform of astatic
.torrent file hostedon a website),a general-
purposeBitTorrent-basedP2P systemwould re-
quire a lot of maintenancein order to handlethe
dynamicnatureof the network. Thus BitTorrent
needsa mechanismto dynamicallyassigntrackers
to handlethedynamicnatureof P2Pfile sharing.

OtherP2Pnetworksareableto decentralizethe
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location of files; however, they do not leverage
swarm downloadingbecausethey lack a compre-
hensive list of clientstransferringafile. Also, there
is neithera built-in incentive for sharingfiles with
otherclientsnor a systemfor obtainingor sharing
differentpartsof afile youhaveor need.

To solve the issuesof maintaininga robust Bit-
TorrentP2Psystem,we introduceeTorrent,a new
P2Pnetwork that preserves the efficiency of Bit-
Torrent’s swarmdownloadingwhile increasingthe
robustnessof trackers. Specifically, the two goals
of eTorrent areto provideasystemthat:

1. Provides efficient contentdistribution in the
faceof possiblenode/network failure,whether
causedby thedynamicnatureof P2Pmember-
shipor actualhardwarefailure;and

2. Allows clients to find the node responsible
for somecontentquickly and easily, given a
uniquecontentidentifier.

We approachour goalsby first replicatingthe task
of client trackingacrossmultiplenodes.Replicated
trackersperiodicallysynchronizetheir client infor-
mationwith eachother, thusmaintaininga consis-
tent view of the swarm. Files aredynamicallyas-
signedto trackersusinga consistenthashingtech-
nique.Along with one-hoprouting,whichprovides
to eachnodea completelist of trackers,consistent
hashingprovidesa simplemechanismfor locating
trackersanddeterminingfile trackingresponsibility
amongsttrackers.

It shouldbenotedthateTorrent doesnotaddress
the task of searchingof contentidentifiers. It is
left to theuserto find appropriatetheidentifiersvia
someothersystem(e.g. searchengines,dedicated
directories).

1.1.RelatedWork

Although thereis an abundanceof literatureon
the web on BitTorrentandP2Pnetwork technolo-
gies, therehasbeenrelatively little work on im-
proving therobustnessof trackers.

To helpcombattracker failure,a recentproposal
wasmadeto extendthe BitTorrentprotocol to in-
cludemultiple trackers[3]. However, theproposed

designspecificationsdoesnot indicatehow multi-
ple trackersaresynchronized,nor doesit indicate
how replicatedtrackersareto bemanaged(whether
manuallyor automatically).

ShareAza[5] is a P2P client that file shares
over severalexisting P2Pnetworks: BitTorrent[2],
Gnutella[6] andeDonkey [7]. Whena file tracker
for BitTorrentfails its trackedcopiescanstill beac-
cessedon theothernetworks. This addsa level of
redundancy to BitTorrenttrackedfiles. However it
doesnotaddressthekey issue;namely, trackersare
still singlepointsof failure.

An approachto finding contenton BitTorrentis
discussedin Metz [8] involving a modified client
that searchesmultiple trackersin orderto find the
desiredfiles. This methodologyaddressesrobust-
nessby having redundanttrackers,but it doesnot
adequatelydealwith how to dynamicallyallocate
new trackersshouldtheoriginal onesfail. Further-
more, its doesnot provide sharingof information
acrosstrackers.

1.2.Paper Organization

Sections2 and3 provide anoverview of thede-
signof theeTorrent network. Section4 discusses
the implementationof the nodesandintercommu-
nicationmethods.Theperformanceof thesystemis
analyzedin section5. We discussfuture improve-
mentsthatwill bemadeto thesystemin section6.
Finally, in section7 weconcludeon thestateof the
eTorrent network.

2. Ar chitecture

In this section,we discussthe generalarchitec-
ture of the eTorrent system:the nodesin the net-
work, themessagespassedbetweennodes,andthe
mechanismusedto assignfiles to nodes.

2.1.Nodes

Eachnodeon the eTorrent network can serve
two differentroles: client andtracker. Note that a
nodecanbe both a client anda tracker, for either
the samefile or differentfiles. For clarity we will
treattrackerandclientasseparatenodes.
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A clientnodeis onethatis sharingor download-
ing files from thenetwork. In particular, a leecher
of file f is a client who is currentlydownloading
thatfile. Similarly, a seedfor file f is a client who
currentlyhasacompletecopy of thefile andis only
uploadingthatfile.

A tracker node maintainsa set of tracks, one
per file for which it is responsible. Each track
keepsstateof all leechesand seedsfor a partic-
ular file (e.g. bytesleft to download, IP address,
port). Informationmaintainedin a track is equiva-
lent to whatasingleBitTorrenttrackerstores.Each
tracker nodealsomaintainsa global routing table
containingall live trackersin thenetwork. This ta-
ble is discussedin furtherdetail in section2.3.

2.2.ConsistentHashing

Weuseaconsistenthashingtechniqueto accom-
plish the taskof mappingfiles to trackers. We as-
sign uniquefixed length identifiers forming a uni-
fied identifier spaceto both trackersandfiles. We
designatea tracker identifier as NodeId(T ) for
sometracker T . Identifiers for files are referred
to as contentidentifiers and are designatedCon-
tentId(f ) for afile f .

We definethesuccessorof identifier i, succ(i),
to bethetrackerT with thesmallestidentifierlarger
than i. More precisely, (∀T ′ ∈ {Trackers}. i <

NodeId(T ) ≤ NodeId(T ′)) ⇒ succ(i) = T .
If no suchT exists (i.e. for i ≥ NodeId(T ′)),
succ(i) = T. NodeId(T ) = min (NodeId(T ′)).
Similarly, tracker T is thepredecessorof identifier
i (or pred(i)) if T hasthe largestnodeidentifier
smallerthani.

To determinewhich trackersareresponsiblefor
a given file, we usea sequenceof hashfunctions
indexed by the naturalnumbersto generateloca-
tor identifiers. We defineLocateId(f, s) to be the
cryptographichashof a ContentId(f ) for a file f

concatenatedwith aseednumbers (s ∈ N).
A tracker Tn is thenth tracker for a file if ∃s ∈

N suchthatsucc(LocateId(f, s)) = NodeId(Tn)
andthereareexactlyn− 1 otheruniquetrackersin
{succ(LocateId(f, s′)) | s > s′ ∈ N}. In thecase
wheren is largerthanthenumberof trackersin the
systemwe remove theuniquenessrequirementfor
thetrackers.

T1 [0] T2 [4] T4 [14]

hash(F, 0) = 2 hash(F, 1) = 8

T3 [6]

Figure 1. Example of the consistent hash-
ing scheme. Ti are trac kers with their iden-
tifier s in brac kets. F designates a file with
two locator identifier s.

We designatethat k trackers must be actively
trackingany file F in thesystem.Thesek trackers
arereferredto asco-trackers in a replicatedtracker
set. Thesetrackersarein generalthefirst k track-
ers responsiblefor a file. However, trackers may
refuseto becomea tracker for a file dueto loadis-
sues. In this case,the next assignedtracker will
take its place.

Figure 1 shows an example of the tracker-
file mapping: file F is assigned to T2 and
T4 since succ(LocateId(F, 0)) = T2 and
succ(LocateId(F, 1)) = T4.

2.3.One-HopRouting

Recent publications have suggesteda scal-
ableapproachto maintaininginformationamongst
nodesin a large network [10]. We usea one-hop
routingapproach[11] to synchronizeglobal infor-
mationamongstothernodes. In one-hoprouting,
thenodesform a virtual ring orderedby their node
identifiers. This ring is divided into slices, which
are further divided into units. A slice leader is
electedin eachsliceby thecorrespondingnodes.

Eachnodeis responsiblefor monitoringthesta-
tusof its two neighbors.Whenever a nodedetects
a new or failed neighbor, a nodenotifies its slice
leader. Eachslice leaderis responsiblefor aggre-
gatingupdateswithin its sliceandexchangingthem
with othersliceleaders.Thesliceleaderthensends
all theupdatesit receivesto themedianof eachunit
(calledtheunit leader[11]), whichproceedsto for-
ward it to its neighboringnodes. Theseupdates
travel from one neighborto anotheruntil the end
of aunit is reached.

The hierarchicalpassingof eventsallows rout-
ing information to be propagatedefficiently to all
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the nodes. By building our tracker network using
one-hoprouting,every nodehasa completelist of
all theothertrackers,whichwecall theglobalrout-
ing table. Usingthis list andtheconsistenthashing
algorithm,any tracker in thesystemcandetermine
thek co-trackersfor any file givenits contentiden-
tifier. Thus,a client canconnectto any tracker in
the systemin orderto get a list of trackersfor the
file it is interestedin.

Sincewe usea consistenthashingscheme,we
introducesomepossibleinefficienciesin datapass-
ing astrackersexit andenterthesystem.Wechoose
to dothisbecausethebenefitsof nothaving to keep
a coherentfile-to-tracker tableover the entiresys-
tem greatly overshadow the costsassociatedwith
trackchanges.

2.4.eTorr ent Messages

Nodesmust be able to communicatemember-
shipchangeswith othernodesin thesystemin or-
derto maintaintheone-hoprouting network. Also,
trackers in the samereplicatedtracker set must
beableto communicatewith co-trackersregarding
new clients,etc. Thus,we definea seriesof mes-
sagesthatcanbeusedin orderfor nodesto commu-
nicate.Thesemessagesaresummarizedin Table1.

3. Tasks

In this sectionwe describehow the client and
tracker nodesinteractwith othernodesin theeTor-
rent network in orderto accomplishsomecommon
operations.

3.1.Contacting the Tracker Network

For a client C to join the eTorrent network, it
mustcontactthetrackernetwork. ClientC mustal-
readyhave a list of previously known active track-
erson the tracker network. C attemptsto contact
trackersone-by-oneon it’s list until it successfully
contactsa live tracker GC or exhauststhe list. GC

is referredto asC ’s gateway tracker. C usesGC

for all its futurerequestsinto thenetwork. If atany
point GC fails, C repeatsthis entireprocessin or-
derto find anew gateway tracker.

KeepAlive() Tracker→ Tracker
Usedby thetrackernetwork to checktracker live-
ness.
InitPred/InitSucc() Tracker→ Tracker
Sent to a tracker’s successorand predecessor
whenenteringthetrackernetwork.
InitRouteTable() Tracker→ Tracker
Usedto initialize a tracker’s routing table when
enteringthetrackernetwork.
Update(ip, port, type) Tracker→ Tracker
Usedto sendupdatesbetweenasubsetof nodes.
Event(ip, port, type) Tracker→ Tracker
Usedto sendeventsto asliceleader.
FindTracker(content-id) Client→ Tracker
Usedby a client to requestthenode-ids of nodes
trackingcontent-id.
IsTracking(track) Tracker→ Tracker
Usedto probepotentialfile trackersto determine
whetherthey arealreadyor arewilling to tracka
particularfile.
SynchronizeTrack(track) Tracker→ Tracker
Usedto synchronizetrack metadatabetweenco-
trackers. track containsa list of clientsandthe
statusof their transfers.
NotifyRetirement(track) Tracker→ Tracker
Usedby a tracker to notify co-trackerpeersthatit
is no longertrackingagivenfile.

Table 1. Messages used by eTorrent.

In order to increasethe chancesof C finding
some active tracker, we updateand maintain a
known tracker list muchlike in Gnutella[6]. Ev-
ery time C findsa new gateway tracker, it updates
its known trackers list with a subsetof the GC ’s
globalroutingtable.

3.2.Downloading Files

To download a file, client C first acquiresthe
ContentId(f ) of the interestedfile throughsome
external search. Next, C contactsits gateway
tracker GC askingfor a tracker that is responsible
for trackingf . GC returnsto C a randomsubsetof
trackersthataretrackingthefile. C thenattemptsto
contactsomeTf from this subset;if it fails, it asks
GC for a new tracker until it findsonethataccepts
its requestto download.NotethataTf mayrejecta
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client basedon its currentload,evenif is currently
tracking that particularfile. OnceC successfully
finds a tracker it initiates a download sessionvia
conventionalBitTorrentprocesses.

3.3.SeedingFiles

WhenC wantsto sharesomefile f , it first cal-
culatesContentId(f). It thencontactsthe tracker
network which returnsa list of potential trackers
thatcanpotentiallytrackf giventheconstraintsin
section2.2. It is the responsibilityof the client to
contactnodeson this list to find aworking tracker.

Oncea tracker Tf is found, C contactsTf via
normal BitTorrent protocol. However, insteadof
reportingthatit startedadownload,it reportsthatit
hasacompleteddownload.Trackersdonotexplic-
itly differentiateclients that are seedsfrom those
thatareleechers.

3.4.Tracker Replication

The tracker network tries to maintainat leastk
replicatedtrackersfor eachfile. WhenTf first en-
countersa new file (whena client seedsthefile), it
createsa new trackassociatedwith this file. It then
proceedsto find k − 1 co-trackersto maintainthis
track.

The replicatedtracker set (or co-tracker list) is
establishedby probing tracker nodesstarting at
succ(LocateId(f, 0)). For eachnode,theTf sends
a IsTracking(f ) message.Thegivennodemay re-
ply true, false,or unwilling. Whenthenodeis un-
willing, thenit is abnegatingresponsibilitybecause
of bandwidthor loadlimitations. Tf stopsprobing
whenit hasfoundk − 1 co-trackers.

Oncea co-tracker set hasbeenestablished,Tf

will regularly synchronizestrack informationwith
nodesin theset.Synchronizationof trackinforma-
tion ensuresthata client canconnectto any of the
k trackers,andreceive thesameclient list. Clients
maynot geta consistentclient list all thetime, but
over time, the list will eventuallybecomeconsis-
tent.

During synchronizationeachtracker broadcasts
its currentclient list to all co-trackers.This update
will containa list of clientswith ownershipinfor-
mationandtheBitTorrentclientmetadata.A client

is definedasownedby atrackerif it hasmadedirect
contactwith thattracker.

Eachtracker maintainsa tableof all theupdates
it received from its replicatedtrackers. Eachtrack
is updatedby takingtheunionof thereceivedclient
lists to createacompleteview of clients.

During themerging of client lists, theremaybe
conflictinginformationaboutclientsthathavemul-
tiple tracker owners. This can occur if the client
contactedseveraldifferenttrackers.To resolve po-
tentialmergeconflicts,theownerwhichreportsthe
mostdownloadprogress(leastbytesleft to down-
load)for a particularclient will beassignedasthat
client’s primary owner. Only track information
from the primary owner copy will be usedin the
mergedlist.

3.5.Tracker Intr oduction

Whena new tracker T entersthesystem,it first
contactsthetracker network. Throughtheone-hop
protocol,T learnsof its successor, predecessorand
theglobal routing table. In addition,thepredeces-
sor and successorreport T ’s arrival to their slice
leaderwhicheventuallypropagatesthiseventto ev-
eryothernodein thesystem.

An enteringtracker T may be responsiblefor
trackingfilesalreadyexisting in thenetwork. After
enteringthe network, f ’s existing co-trackerswill
broadcasttheir track informationto T , makingit a
new co-tracker for f .

3.6.Tracker Failur e

Everysooften,akeep-alivemessageis sentfrom
eachtracker nodeto its successor. If a nodelearns
that its successorhasfailed,it immediatelyreports
this to its leaderwhich eventually propagatesvia
theone-hopprotocolto everyothernode.

Onceall Tf nodeshave beennotifiedof thefail-
ure event, f ’s existing co-trackerswill find a new
trackerandsendtheir tracksto it.

4. Implementation

eTorrent is implementedin Python so as to
smoothly integrate with the original BitTorrent
clientandtracker.
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4.1.Client

BitTorrent already provides functionality for
performing a swarm download given a hashand
tracker list in a .torrent file. In BitTorrent,the
.torrent file containsan “announce”URL that
points to the tracker. In the eTorrent system,the
announceURL is ignored, and announcesURLs
aregenerateddynamicallyfrom thetracker list pro-
vided by the gateway GC . We implementeda us-
ableeTorrent client thatwrapsaroundanexisting
BitTorrentclient.

The userprovidesa contentidentifier eitherdi-
rectly (from user input) or througha pre-existing
.torrent file. Theclient C next sendsthis con-
tent identifier to GC , which in turn returnsa setof
trackersto C. Thewrapperclientgeneratesan“an-
nounce”URL correspondingto oneof thetrackers
in the returnedlist andhandsthis to the standard
BitTorrentclient for furtherprocessing.

TheeTorrent client periodicallychecksin with
its trackervia the“announce”URL, announcingits
progressduringthedownload.If it fails to connect
to thetracker, theclient will locateanothertracker
eitherfrom its list or by contactingthetracker net-
work.

4.2.Tracker

Giventhetracker-file mappingdescribedin sec-
tion 2.2, we desireidentifiers to be close to uni-
formly distributedgiven somerandomsetof files
that are on the network. In addition, in order to
make it difficult for trackersto enterwherever they
wish, thehashshouldbenoninvertible. This is im-
portantbecauseotherwisea maliciousparty could
easily block accessto somefile f by placing it-
self as succ(LocateId(f, s)) and thus becoming
the trackersof f . In order to achieve theseprop-
erties,we usea 160-bitSHA1 hashto calculateall
theidentifiers.

In oureTorrent trackerweuseathreaded-model
with locks to securethe tracker’s internal shared
state.Four threadswerespawnedfor eachtracker:
one for handlingclient connections,one for one-
hoprouting,onefor co-trackersynchronizationand
onefor eTorrent messagehandling.Thefirst thread
runsthe original BitTorrenttracker; the next three

will bediscussedin moredetailbelow.

4.3.One-HopRouting

Themainpartof one-hoprouting’s implementa-
tion is describedin [11]. We choosefor simplicity
to electsliceleadersasthesuccessorof themedian
of theslice. Thenumberof slicesandunits in the
systemcanbeeitherstaticallyfixedor dynamically
chosen.In the latter case,thenumberof sliceand
units is increasedor decreasedif theaveragenum-
berof nodesperunit hits certainthresholds.

Nodesusethreedifferent type of notifications:
internalevents,which areeventsthatoccurwithin
a slice but hasnot beenpropagatedto the whole
network; externalevents,whichareeventsthathave
beenpropagatedto thewholenetwork; andupdates,
whichareexternaleventsthathavebeenpropagated
from sliceleadersto their correspondingnodes.

Note that one-hoprouting itself doesnot guar-
anteethat the global routing tableswill stay con-
sistent. Events/updatescan be lost, or timing is-
suesmaycauseupdatesto not besentto particular
nodes. To combatthis, if a tracker noticesan in-
consistency in a routing table, it will propagate a
new event correspondingto this error. For exam-
ple, if a tracker T receivesa trackupdatefrom an-
othertrackeror queryfrom aclient regardingsome
file f that it is not tracking,this implies that there
is a discrepancy regardingpred(T ). ThusT will
checkits predecessor’s statusandsendout thecor-
respondingevent. Clientsalsonotify their gateway
trackersGC if they noticesometrackeris down; the
gateway tracker will independentlyverify this and
propagatethiseventif necessary.

4.4.Co-Tracker Synchronization

During track synchronizationtrackers use the
global routing table to determinethe statusof co-
trackers.As mentionedearlier, trackersresponsible
for trackingf will eachindependentlymaintaina
list of k co-trackers(wherek is thenetwork mini-
mumon thenumberof co-trackerspertrack).

The co-trackers list is cached, so that each
trackercanavoid probingits co-trackerseverysyn-
chronizingcycle. This cachedlist is checkedeach
cycle against the one-hoprouting table to prune
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away any deadtracker nodesin the list. Whenthe
sizeof thecachedlist falls below k, theco-tracker
list is rebuilt.

Duringeverysynchronizationcycle,eachtracker
sendsits client informationvia the Synchronize-
Track(f ) message.All the client metadatais en-
codedusingthe samebinary encodingformat that
BitTorrentusesfor its network protocol. Removal
of expiredclientsis automaticallytakencareof ei-
therwhena client announcesthatits disconnecting
or whenit fails to reportaftertherequiredinterval.

We realizethata full client list updateis expen-
sive when the numberof clients per track grows.
We plan to extendthe synchronizationprotocolto
allow for partialupdates.

4.5.Tracker Retirement

Occasionally, when a new tracker joins or
leaves the network, the responsibility of a file
tracker may change.For example,if sometracker
Tf = succ(LocateId(f,k)) and a new tracker
T ′ entersthe systemsuchthat LocateId(f, k) <

NodeId(T ′) < NodeId(Tf ), Tf will retire its re-
sponsibilitiestoT ′ by sendingit afull list of clients.
If the full updatecompletessuccessfully, the retir-
ing trackerwill alsonotify its formerco-trackersof
this event throughthe NotifyRetirement(f ) mes-
sage.This mechanismensuresthatsubsequentup-
datesby peerco-trackerswill routecorrectly, and
thatnew clientscanstill find thefile trackers.

Whena tracker retires,all clientsconnectingto
that tracker mustshift to the new tracker. Ideally
theretiredtrackershouldbeup longenoughsothat
all its clientscanshift to thenew tracker. So,in ad-
dition to the minimum k trackersper file, we also
seta globalconstantm > k thatspecifiesthemax-
imum numberof trackersperfile f . This constant
allows thenetwork to buffer againstquick network
membershipchanges.A retired tracker may stay
on tracking thatfile, aslong asthenumberof total
trackersremainbelow m.

4.6.Communication

Nodescommunicatein the network via a Re-
moteProcedureCall (RPC)mechanism.We lever-
agetheXML-RPC library for Python[12] in order

to achieve this. We implementedall the messages
listedin Table1 usingthis RPCpackage.It should
be notedthat messagesin the original BitTorrent
protocolarenot handledby this method;messages
betweenthe original BitTorrent client and tracker
remainunchanged.

5. SystemPerformance

To testtheperformanceof eTorrent network we
createda seriesof testnetworkswith 100trackers,
split into 2 slicesand4 units. We gatheredband-
width resultsby using Etherealand performeda
TCP dumpon the appropriatetracker portson all
systemsrunning trackers. In this setup, the co-
tracker synchronizationoccursoncea minute,and
one-hopkeep-alivesaresentoncepersecond.For
our analyseswe further assumethat nodeswhich
enterthe network have an averagelifetime of one
hourandthattheaveragemessagetransmissionla-
tency is 100 ms.

5.1.Global Routing TableDivergence

From our preliminarynetwork analysis,we no-
ticedthatdiscrepanciesoccurredin theglobalrout-
ing tablefrequentlybetweennodesin thenetwork.
Keepingtheglobalroutingtableconsistentis acen-
tral part of our system. Throughfurther analysis,
we narrowed down the sourceof discrepanciesto
two causes:

1. When a node passinga value fails immedi-
atelyafterreceiving anupdatemessagebut be-
fore it can propagate the updateto the next
node,all nodesthat requireupdatesfrom the
failed nodewill experiencea discrepancy in
their globalroutingtable.

2. If a new node were to enter a new unit (or
slice) and becomeits leader, its slice leader
(or otherslice leaders)do not know which of
therecentupdatesthenew leaderhasreceived.
Thusit couldpotentiallymissseveralupdates.

Theseinconsistenciescan be found by tracker
or client during routineoperations.Oncedetected
thesediscrepanciescanbe easilyfixed by the net-
work asdescribedin section4.3.
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To quantify the possibleerror ratedueto these
two sources.we derivedanequationfor theproba-
bility of errorusingresultsfrom theone-hoprout-
ing paper[11]:

Perr = E2(U + 3) + E2
4

U
+ E2

2(S + U)

SU

HereE is theexpectednumberof entries(or exits)
during a time step,U is the numberof nodesin a
unit, andS is the numberof units in a slice. The
first termrepresentserrordueto failing nodes,and
the secondandthird termsrepresenterrorsdueto
unit andslice numberchangesrespectively. With
the assumedvaluesfor our test scenario,Perr =
7.33 · 10−9 whichequatesto approximately0.0063
errorsperday.

We ran further experimentsto study the actual
effectsof nodechanges(trackersenteringandexit-
ing the network) andits effect on theoverall error
reportedin the global routing tables. For a given
churn rate r, we startedoff a network by having
100randomnodesjoin atarateof r. Wethensimu-
latednodechangesby randomlykill ing andadding
new trackersat thesamechurnrate.After perform-
ing50changesandallowing theone-hoproutingta-
blesto reacha steadystate,we loggedeachnode’s
global routing tableandcomparedit againsta cor-
rect global routing table,noting any discrepancies
we found.

Weranthistestfivetimesfor eachr weusedand
averagedtheresults.Notethat theerrorcorrection
describedin section4.3wasdisabled,sinceit relies
on the file track lookupsby a client or co-tracker,
neitherof whichwereperformedfor thesetests.

Figure 2 shows the average of discrepancies
measurevarying churn rate from 0.5 changes
per second (2 seconds between changes) to
100 changesper second(0.01 secondsbetween
changes).Our resultsshow thatevenwith frequent
changesin the network (100 changesper second)
the averagenodeexperiencesonly 2.1 differences
from thetrueglobalroutingtable.

Figure 3 shows the averagenumberof unique
discrepanciesversus membershipchangein the
system.We canseethat the numberof uniqueer-
rors hasa sublinear(roughly logarithmic) growth
rate. This implies that when corrective measures
aretaken in networkswith higherchurnrates(less
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Figure 2. Average number of errors per
node versus time between node chang es

time betweenchanges),eachcorrectionwill have
a larger effect on the total percentageof errorsin
the system.This makessenseasthe errorsdueto
one-hoproutingtendto havehigh locality.

Our experimentalresultsshow that in general
one-hoproutingwill producefairly consistentrout-
ing tables.Without correctionthediscrepancy rate
is fairly reasonable. Further improvementscan
be achieved with the simple error correction de-
scribedin section4.3. Therefore,we expect that
ourschemewill scalefor reasonablylargeP2Pnet-
works.

5.2.Bandwidth Overhead

From analysisof TCP dumpfrom Ethereal,we
wereableto measurethenetwork overheadof var-
ious messagesin our system. We found that the
cost of synchronizationof the network tablesvia
theone-hopsystemtook350 bytespersecond.This
amountremainsconsistentaswevarynetwork size.

The current file tracker synchronization(with
full updates)requiresroughly45 bytespersecond
perfile trackedwith anadditional1 bytepersecond
per client for that file. This may increasefor very
popularfiles (which haslargerclient lists). We be-
lieve that by modifying the synchronizationmeth-
odsto performdifferentialupdates,we candrasti-
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Figure 3. Average number of unique er-
rors per node versus time between node
chang es

cally cutdown thesecosts.
A major overheadfor communicationwas the

marshallingmethodof XML-RPC. A simplecom-
pressedversionof it would yield a factor of two
improvement.Otherreductionsin theformatcould
furtherreducethisby anadditional50%.

6. Futur eWork

While meetingtheinitial goalof distributingand
replicatingthetaskof file trackingseamlessly, there
area numberof problemsthat prevent the system
from widespreaduse. In this sectionwe discuss
theseproblemsin eTorrent andpossiblesolutions.

6.1.Tracker Rewards

Currently, thereis no motivationfor someoneto
volunteerto bea tracker nodein theeTorrent net-
work. Becausewe wanttheresponsibilityof track-
ing a file to besharedamongclientsandnot dedi-
catedservers,clientswould ideally act astrackers
whenconnectedto the system.However, tracking
afile addsloadto anodesystem,asit hasto poten-
tially communicatewith many trackersandclients.

In orderto promotevolunteersto track,a reward
systemcould be addedthat to compensatetrack-

ersfor providing trackingservices.Oneproposed
methodwouldactasfollows:

1. ClientC maintainsalist of trackersit hasused
in thepast,rewardingthemonecreditfor each
trackused.

2. WhensomeclientT is interestedin file pieces
thatC has,andT hasservedasC ’s tracker in
the past,C will favor uploadingcontentto T

overothernodesanddeductonecredit.

3. This list will bemaintainedusinganLRU pol-
icy; creditscanexpire if notused.

Themechanismto choosewhomto uploadcon-
tent is alreadyanintegral partof theBitTorrental-
gorithm, so adding this extra condition of which
client to favor wouldberelatively simple.Thissys-
temwould alsobedifficult to cheat,aseachclient
keepstrackof whichnodesshouldreceivebenefits.

6.2.Security

The current systemassumesthat trackers are
trustworthy (i.e. they donotattemptto sabotagethe
network). With the currentmethodof gettingas-
signedIDs basedon SHA1, it is difficult, but com-
putationallyreasonable,to situatemaliciousnodes
suchthat they are assignedto be file trackers for
certainfiles. Additionalwork will beneededto pre-
ventnodesfrom disruptingtheroutingtables.

6.3.Routing Robustness

Optimizationsin the global routing table syn-
chronizationprotocolarepossible.Theelectionof
slice and unit leadersin the one-hoprouting sys-
tem could be doneonly when needed(i.e. if the
leaderwentdown). Additionally, trackerscouldbe
enteredinto the systemfrom the pool of possible
trackers(i.e. clients)asneededinsteadof the ag-
gressivesystem.

6.4.File Tracking Scaling

A quality-of-service measureshouldbe imple-
mentedto varythenumberof trackersperfile based
on load. Such a feature could also be used to
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do moresophisticatedload-balancingamongstthe
trackers.Thiswouldallow thesystemto efficiently
allocatemore co-trackers to the files that needit
most.

6.5.Communication

Using the XML-RPC library incurred a large
penalty. Analysis revealed that RPC calls used
roughly300% themessagespaceto marshallcalls
over what could have beenaccomplishedwith a
moread-hocprotocol.Suchachangewouldgreatly
extendthescalabilityof theeTorrent system.

6.6.Searching

TheeTorrent systemcurrentlyhasno integrated
way of searchingfor contenton the system. Pro-
posalsfor performinga generaldistributed meta-
datasearchhave beendiscussed[9]. It would be
straightforward to merge thesesystemsin orderto
incorporatethis functionality.

7 Conclusion

TheeTorrent network we designedsuccessfully
distributes the task of tracking files acrossmul-
tiple nodesto provide robustnessin the face of
tracker failure or overloadingwith an acceptable
bandwidthoverhead.Althoughthere arestill limi-
tationsin thesystemthatpreventit from beingavi-
ablechoiceasa generalpurposeP2Psystem,there
are clear stepsto take in order to make the eTor-
rent systema feasiblereal-lifeapplication.
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