
DIBS: Distributed Backup for Local Area Networks

Eugene Hsu Jeff Mellen Pallavi Naresh

Abstract

DIBS (Distributed Intranet Backup System) is a dis-
tributed file backup system for computers in local area
networks that lack dedicated or secondary data storage.
DIBS exploits the unused disk space among a set of con-
nected machines and the high speed of local area net-
works to provide a transparent peer-to-peer backup solu-
tion. Each node in the DIBS system contains a module
that manages its list of critical files and the files it stores
for other nodes, a server that responds to requests from
other nodes, and a client interface to perform backup op-
erations. Each node is responsible for its own files, and,
given adequate space on the network, will ensure the sat-
isfaction of replication invariants. The system is designed
to provide complete recovery for a crashed node, recovery
from transient machine failures, protection for mistaken
file overwrites and deletion, and flexibility in the face of
changing network-wide storage conditions.

1 Introduction

The loss of data due to hardware, software, or user error
is at best inconvenient; at worst, it can cost innumerable
hours and dollars of lost productivity. The common so-
lution to data loss is backup. And yet, computer users
continue losing data. The simple reason is that backup
is inconvenient. For backup to be effective, data must be
stored separately from the computer. This requires the
use of cumbersome removable media or expensive, cen-
tralized storage with skilled administration. Many indi-
viduals and organizations can not afford the time or cost
of such solutions.

To remedy this, we propose a solution that takes ad-
vantage of two trends in computing: the rapid growth of
disk capacity and the increasing prevalence of local area
networks. Not too long ago, several hundred megabytes
of storage was considered more than adequate. Now, it
is common to find consumer workstations equipped with
tens or hundreds of gigabytes of data. From 1961 to 1991,
average hard disk areal density has increased steadily at
a rate of about 30% per year. Beginning in 1991, that
rate doubled to 60% a year until 1997, when capacity be-
gan doubling annually until 2001 [3]. Density continues
to improve. The average computer user, as a result, of-
ten leaves many gigabytes of unused space. At the same

time, networked environments are still increasing in mar-
ket penetration. Most businesses, and often many homes,
have multiple computers connected by very fast local area
networks.

We are interested in providing a low cost backup solu-
tion for recovery of critical data and unique files (such as
media files). We are not interested in providing backup
for program or operating system files which may be re-
covered in more cost effective ways.

In this paper, we propose DIBS, a system that utilizes
unused aggregate disk space and the speed of local area
networks to provide a transparent peer-to-peer backup so-
lution for critical user files. At a very high level, our sys-
tem distributes a user’s files among semi-trusted peers. By
querying peers, a user can reconstruct damaged or lost
files. In a sense, the network of peers functions as a reli-
able, self-administering storage device.

We begin in Section 2 by enumerating our design goals.
In Sections 3 and 4 we describe the data structures used
by DIBS and the usage and behavior of the file operations
DIBS provides. Section 5 uses the understanding devel-
oped in previous sections to describe how DIBS provides
versioning and security. We follow with a discussion and
evaluation of our implementation in Sections 6 and 7 and
conclude in Sections 8 and 9 with a description of related
work and possible areas of future work.

Throughout this paper we use the terms peers, nodes,
clients, and servers. It is important to understand the con-
text of these terms. DIBS functions among a set of coop-
erating peers or nodes. At any time, a node may act as
either a client or a server. We may thus characterize a
node as a client or a server, with the understanding that
neither term is meant to exhaustively describe that node’s
functionality.

2 Design Goals

DIBS targets efficient maintenance and reliable data re-
covery in the face of multiple disk failures and accidental
deletions. It is designed to balance the following goals.

Reliability. A backup system is useless if a user can not
rely on its availability when various failures occur.
Indeed, these are the moments when backup is most
important. To achieve this goal, DIBS uses file repli-
cation and attempts to preserve replication invariants

1



andy@M1
ID Owner IP Space Last Ping
M2 bill 18.228.0.10 1252M 10s
M3 carla 18.228.0.11 3329M 7s
M4 dick 18.228.0.12 501M 9122s

Figure 1: Server list for andy@M1, showing three other
machines on the network.

under various modes of failure.

Transparency. A backup system should be nearly trans-
parent under normal usage; that is, it should not in-
terfere with the normal operation of the system. As
a result, automation and efficiency are of paramount
importance for operations that occur when systems
are stable.

Security. Users of the system should not have to worry
about others seeing or modifying their sensitive data.
DIBS provides encryption and checksums to ensure
privacy and integrity of data.

Simplicity. A system should solve a problem without un-
necessary complexity, as this is beneficial to effi-
ciency. DIBS does not use techniques intended for
more general problems with different cost models.

These goals often conflict. DIBS attempts to achieve a
compromise through assumption and design. In the fol-
lowing sections, we will elaborate on some of these de-
tails.

3 Component Architecture

DIBS provides functionality for various backup opera-
tions as well as security and versioning. For clarity, we
postpone a discussion of security and versioning to Sec-
tion 5 and describe a simplified version of DIBS. These
features can be easily understood once the underlying data
structures and operations have been explained.

Each DIBS node maintains a list of other currently ac-
cessible nodes, known as the server list. The server list,
shown in Figure 1, contains a list of other nodes cur-
rently on the network. Each node builds this list by lis-
tening to broadcasts from other nodes. All nodes periodi-
cally broadcast their unique identifiers (possibly MAC ad-
dresses), their owners, their IP addresses, and the amount
of space that they choose to offer for backup. In addi-
tion to storing this information, a node will store the time
since the last received broadcast from other nodes. This
information is used to determine whether a node has left
the network.

A node keeps track of the files that it wants to back up,
and the files that it is backing up for others in its file list,
shown in Figure 2. Each entry in this list stores the local

andy@M1
Path Owner Locations MD5
/home/andy/f1 andy M2,M3 9ff9efd5
/home/andy/f2 andy M3,M4 b260e1f3
/BACKUP/tmp/f3 dick M4 ef5a13fa

Figure 2: File list for andy@M1. /home/andy/f1 is a
local file that is replicated on M2 and M3. /BACKUP/f3
is a replica of a file, stored for dick@M4.

path of the file, the owner of the file, the owner’s machine,
and an MD5 hash of the file contents. This list functions
as a cache of system state that can be rebuilt with varying
levels of effort.

4 System Operation

In this section, we describe how DIBS nodes handle var-
ious operations that are associated with backup. Again,
we assume no versioning and security until Section 5 for
clarity. Here again we will also refer to the node perform-
ing the operation as the client and the node that responds
to the operation is the server.

4.1 Primitives

We begin by describing a few primitive operations of our
system. A user may call these directly, but they are also
used as subroutines for more complex operations in our
system.

4.1.1 Single-File Commit

The single-file commit operation either adds a file for
backup or updates a file that is already in backup. In either
case, it attempts to verify k replicates exist on the system,
preserving k-replication.

To commit a new file to the backup system (we can
check if it’s a new file using the file list), the clients use the
server list to identify k servers that are willing to accept
the file. In our implementation, the client selects these
servers randomly from the server list, with probabilities
weighted by free disk space. The file is sent to each of
these servers, and all file lists are updated accordingly.

If a file is already in the backup system, then the client’s
file list will indicate which servers are holding replicas.
The client attempts to send the updated version of the file
to all of those servers. If any of those servers are off of the
network, then the client will randomly select new servers
to preserve the k-replication. File lists are then updated
accordingly.

Note that, if a server is temporarily offline, it will not
realize if a client reassigns responsibility for a given file
to another machine. As a result, the server will retain the

2



file, thinking that it still has an obligation to the client
to replicate it. What is important at this point is the that
client knows, through its file list, where the correct repli-
cas are stored. We handle the case of extraneous replicas
in future sections.

4.1.2 Single-File Retrieval

To retrieve a file from the backup system, a client need
only refer to its file list for a list of servers that hold repli-
cas. Any one of these servers can be queried for the file,
which can then be restored to the appropriate location on
the client. No changes to any file lists are necessary.

4.1.3 Single-File Removal

The client may want to explicitly remove a file from the
backup system, perhaps as a courtesy to others. To do so,
a client sends a message to all servers that are replicat-
ing the file that indicates that it can be removed. A server,
upon receiving this message, verifies permissions and per-
forms the removal. Again, it is possible that a temporarily
offline server will not receive the message and therefore
hold the file unnecessarily. As in the commit operation,
the client’s file list will be correct, and extraneous repli-
cas are handled separately, as described in the following
section.

4.2 Synchronization

The primitive operations described in the previous section
are inefficient in the case where multiple files are being
committed to a server. Furthermore, it has the potential
of leaving extraneous replicas that should be flushed from
the system. The sync operation resolves both of these is-
sues.

During a sync operation, the client and server exchange
lists of files. More specifically, the client sends the server
a list of files that it believes the server should be hold-
ing, and the server sends the client a list of files that it is
holding for the client. These lists can be extracted from
the file managers on each machine; however, the server
should verify that it is actually holding the files it claims
that it is holding.

By comparing these lists, the client and server can de-
termine the proper actions to take. In stable state, these
lists will be consistent. However, there are several impor-
tant cases in which this will not be the case.

• The server may not actually have the files that the
client believes that it is holding. This may occur if
the user of the server decides to reclaim space by
deleting some of the backup files.

• If the server is off the network, the client may decide
to transfer responsbility for certain files to another
machine to protect the k-replication invariant.

DIBS handles these scenarios in a unified manner. To
allow for a more concrete explanation, suppose that the
client and server exchange file lists C = {x,y} and S =

{y,z}, respectively. In other words, the client believes that
the server is holding files x and y for it, and the server
believes it is holding files y and z for the client.

The objective of the sync operation is to rectify the in-
consistencies in file lists. This can be either handled by
the client or the server, and is performed on a case-by-
case basis.

• If file x is in C but not in S, then the client realizes
that x is not properly replicated on the server. Thus,
the client must update its file list accordingly. If this
should cause a violation of the replication invariant,
then it is the responsibility of the client to reassign
the file to another server.

• If file z is in S but not in C, then the server real-
izes that it no longer has responsibility for holding
it. Thus, the server is free to delete the file. This re-
solves the extraneous file situations mentioned pre-
viously.

• If file y is in both C and S, then both of the lists agree.
In this case, the server simply timestamps the file to
reflect the sync operation. While this does not ap-
pear necessary at this point, it is helpful information
that allows DIBS to automatically expunge lost files.
This will be discussed in greater detail in the follow-
ing section.

4.3 Replication Maintenance

A DIBS client will attempt to preserve k-replication. If
this invariant is violated, then the client will reassign re-
sponsibility to another server. In this section, we describe
how this can be performed reliably.

4.3.1 Violation Detection

The replication invariant is violated if one of the k servers
is permanently removed from the network. This is im-
possible to detect with certainty, as it is possible that its
absence is only temporary (perhaps due to a reboot or an
overnight shutdown). DIBS uses a simple heuristic to dis-
tinguish between these cases: if, based on the information
in the server list, a server has been offline for a given pe-
riod of time, then it is assumed to be permanently down.
In practice, the time might be set at several days, to allow
for overnight or weekend shutdowns.

3



There is a more subtle case in which the replication in-
variant is violated. Even if a server remains on the net-
work, there is nothing preventing the user of the server
from manually deleting some of the backup files, perhaps
to make extra space on the disk. This case is detected
by the sync operation. Thus the client must initiate the
sync operation on a timely basis to maintain ensure k-
replication.

4.3.2 Reassignment

When a client detects that a file’s replication invariant has
been violated, it will reassign that file to another server.
If the file currently exists on the client machine, it can
just select a new server and perform a standard single-file
commit. However, if the file does not exist on the client
machine (perhaps it was accidentally deleted), it is still
desirable to maintain the replication invariant.

Recall that a deleted file will still have an entry in the
client file list. This entry stores a list of servers that repli-
cate the file. If one of those servers should go down or
lose the file, then the client can simply fetch a temporary
copy of the file and forward it to a new server, as before.
This implies that it is desirable to have a replication factor
of k > 1.

4.3.3 Cleanup

The stated reassignment scheme works if the violation
detection is always accurate. However, as implied pre-
viously, it is not possible to know with certainty that a
server has gone offline permanently. Consider a scenario
in which a client replicates a file x on a server. The server
is taken offline for a period of time, and the client reas-
signs responsibility of x. If the server rejoins the network,
then it will still be holding x even though it no longer has
any responsibility for it.

As described previously, the sync operation will handle
this case. However, since the client may not be storing any
files on the server, there is no guarantee that a sync will
ever occur. This is why the sync operation places times-
tamps on each file, even if they have not been updated. If
a server notices that a file has not been synced for a long
period of time, then it can be deleted.

4.4 Restoration

If a machine has crashed, and its owner has lost all data,
that owner can attempt to restore files and state by query-
ing all other nodes on the network. Once the server list is
updated, a client can ask all connected servers to return a
list (LS) of the files it owns. After that, the node can re-
trieve each file to completely restore the set of backed-up
files on a new or restored machine.

5 Extended Features

Equally important to the system are the issues of secu-
rity and versioning. In this section we describe how these
features are provided alongside the previous DIBS opera-
tions. A full assessment of the security provided by DIBS
is deferred to Section 7.

5.1 Security

DIBS operates under the assumption that participating
peers are semi-trusted. Communication does not take
place over an anonymous network but a LAN where all
participants are known to each other. We assume that if
malicious participants exist, they will have more direct
means to attack other users, such a physical access to
other computers. Our main security consideration is thus
ensuring privacy by protecting the contents and names of
files backed up on other machines from being read by
other users. Secondary considerations are authentication
and guaranteeing file integrity.

Protecting the contents and even names of files is im-
portant to ensure the privacy of potentially sensitive doc-
uments. To this end, we use symmetric secret key en-
cryption to encode data and filenames, where the key is
a user supplied password. All filenames and file data are
encrypted before being sent to a peer. Upon retrieving lo-
cally owned files, file names and contents are decrypted
to reveal the plaintext name to the owner.

DIBS uses address-based authentication. It assumes
that the identity of the source can be inferred based on
the network address from which packets arrive. A prob-
lem with this scheme is that IP addresses may be assigned
by a DHCP server, which are subject to change, depend-
ing on the lease interval of a user’s IP address. Making
“HELLO” messages somewhat regular would reduce the
severity of this problem. The problem of IP spoofing and
permissions is discussed in Section 7.

DIBS maintains integrity of retrieved files through use
of the MD5 and encryption mechanism. User M1, hold-
ing files for user M2, may intentionally or unintentionally
tamper with M2’s files. The corresponding MD5 of the
file serves as a loose check against tampering. M2 can
retreive a file, decrypt it, and calculate the MD5. If the
MD5 matches M2’s records, the integrity can be verified.
On the otherhand, if a user looses the MD5, she will not
have a point of comparison. In this case, the encryption
mechanism serves as a checksum. If M1 does not know
M2 password then M1 cannot change M2’s file in a deter-
ministic manner. Thus when M2 retrieves a file from M1

and decrypts it, if the file does not contain garbage than
M2 knows that the file had not been tampered with.

4



5.2 Versioning

Versioning is an important feature of DIBS. We did not
implement the complex features provided in such applica-
tions as CVS but we did feel it was important to provide
some level of versioning. The rationale for providing ver-
sioning is that without it, if a user backs up a file and that
file is unknowingly corrupted and recommitted to backup,
the user will have no way of retrieving the uncorrupted
copy. The backup system will thus prove useless. In pro-
tecting against this case, we provide a simple versioning
system.

The versioning system works as follows: every file
manager stores a version table with a list of committed
filenames mapped to a list of committed version numbers.
Upon a commit, in addition the operations previously de-
scribed, the file manager increments the last version num-
ber and adds the number to the list of committed versions.
It then commits the file under the original filename, con-
catenated with a suffix indicating the version number. The
version manager maintains the maximum number of ver-
sions that can be stored per file. If a commit causes the
number of versions supported to be exceeded, it issues a
delete on version no longer supported by the manager.

6 Implementation

Our DIBS software is divided into three primary compo-
nents: the main DIBS backup module, a discovery ser-
vice, and a user-facing GUI. The backup module, writ-
ten in Perl, is the main component in the system, manag-
ing system logic, inter-node communication, and ensuring
consistency and replication invariants across the network.
The other two components act as windows into and out of
the backup module. The GUI allows users to more easily
manage their stored files. The discovery service provides
a mechanism such that DIBS nodes can quickly and easily
find each other over a local area network.

6.1 Discovery

The discovery service, discd, written in C++, is an agent
that broadcasts basic information about DIBS nodes to
the local area network. Each user, when starting DIBS,
specifies a username and unique machine ID, as well as
a space-available parameter to discd, and a rebroadcast
interval. After each interval, the DIBS node will rebroad-
cast its statistics (as UDP packets) to the default broad-
cast IP address, 255.255.255.255. At the same time,
discd listens for similar broadcasts from other DIBS
nodes, and stores every message received.

The DIBS backup module, or any other agent, can
query discd by establishing a telnet connection over a
predetermined port, specified when discd starts. The

discovery manager will return a list containing the IP ad-
dress, machine ID, owner, free space (in bytes) available,
and time since the last message was received from each
node. This is the mechanism by which DIBS detects
crashed or disconnected nodes; if a node has not reported
to the discovery service within a certain period of time,
other nodes will assume it has left the network, and can
choose to reassign files stored on the departed node.

6.2 GUI

Our GUI, written in Java as a Swing application, allows
users to execute basic DIBS operations, such as restoring
a machine from scratch, retrieving a previous version of
a file, committing a file to backup, and removing a file
from backup. The DIBS GUI visualizes the file list for
a node, showing stored files and their locations in a ta-
ble. A user can select an individual row to manipulate
that record, such as committing a new version or remov-
ing that file from backup. In addition, the DIBS GUI acts
as a window into the status of the network, displaying in-
formation captured from discd (via the backup module)
in a table. A screenshot is shown in Figure 3.

6.3 Backup Module

Ultimately, both the discovery module and the GUI rely
on the backup module, which contains all logic and state
for the system. It is implemented completely in object-
oriented Perl, and is divided into a system manager, which
maintains a list of stored files and connected servers, and
a communication layer, which is responsible for sending
and receiving messages to and from other DIBS nodes.
The two components communicate with each other and
with other external agents over HTTP.

6.3.1 System Manager

The system manager contains the file and server lists,
mentioned in the system overview, an HTTP::Daemon
instance for listening to local requests from the commu-
nication layer or GUI, as well as a version table which
contains the valid version numbers for local files. It also
maintains behavioral state, initially specified in a con-
figuration file (dibs.config), including the maximum
number of versions to maintain and the default number k
of nodes to back up to. While this state adjusts the behav-
ior of the DIBS module, it is the data structures that drive
it.

The file table is stored as a Perl hashtable (encapsulated
in FileManager.pm) with local filenames as keys, and
4-tuples (owner, locations of backups by machine ID,
MD5, and timestamp) as value records. Because most
backup operations use files as parameters, making local

5



Figure 3: The DIBS GUI.

filenames keys in the table was a natural choice. We de-
cided to place one entry in the file table for each differ-
ent stored version of the file. To prevent key collision,
a unique, ascending version number is appended to each
filename. In this manner, each version of a file is treated
separately; it can be backed up onto different nodes, re-
trieved, and removed independently.

The file table contains both records for files owned by
the local user, and files stored on behalf of other users.
The main distinction between the two is the owner record.
The owner name for files owned by the local user will
be the same as the owner name stored within the system
manager. The manager’s logic prevents commits on files
belonging to other users, as well as explicit retrievals.

We added a version table (VersionManager.pm) to
the system manager as an optimization. The version table
contains records for all files owned by a local user, map-
ping local filepaths to an array of valid version numbers.
When committing a new version of a file, the manager
checks the version table against its parameter for maxi-
mum number of versions per file. If the size of the array in
the version table exceeds that maximum, it will attempt to
remove the oldest version from the remote backup servers
by checking where that version is stored, and issuing re-
mote remove commands for each server.

The server list (ServerTable.pm) maintains the re-
lationship between remote owners, IP addresses, and ma-
chine IDs. Like the file list, it is a Perl hashtable with
machine ID as a key and the 5-tuple (IP, owner, num-
ber of pings, time since last ping, available storage (in
bytes)) as a value. The manager consults this list in order
to determine which server it can and should deliver a mes-
sage to. For example, when retrieving a file from a remote
server, the manager must look up the locations field from
the file list to get the ID of the machines on which the file
is stored, and then retrieve the IP address for that server to
determine where to send the retrieve HTTP request.

In addition, the manager uses the space fields in the
server list to determine where a file should be stored. If
a new file is committed into the system, the manager will
check the server list to determine which servers have suf-
ficient space. It will then choose among those servers in a
random manner, weighted by the relative amount of disk
space a remote server has. In this manner, each DIBS
node should receive approximately the same amount of
load relative to how much space they offer.

The version table and file list are recoverable using
the restore operation, but as long as a node has not
crashed, it is stored locally on stable storage, using the
Perl Storable module. In this manner, a user can shut

6



off his/her machine and have a stable record of which files
he/she has backed up on the system, without having to
query a potentially incomplete network.

6.3.2 Communication & HTTP

The communication layer acts as an intermediary with
other nodes. It services requests from other nodes, makes
requests to remote nodes, and forwards commands onto
the system manager. HTTP acts as the glue between
the communication layer and the system manager, and
between the two components and any external agents,
such as the GUI. Both the system manager and particu-
larly the communication layer are designed to be multi-
process (although time constraints prevented us from
making the system manager MP), in order to concurrently
serve backup requests from multiple machines. Thus, we
needed some form of interprocess communication, as the
manager and a server process may be in different con-
texts. HTTP, although not as compact as System V, gives
us the side effect of easily supporting GUI or command-
line modules to steer DIBS’ operation, while facilitating
this communication.

6.4 Example: Commit

To show how all the parts fit together, consider
a backup (commit) instigated by the Java GUI.
The GUI forwards an HTTP POST message to
http://localhost:16824/backup commit,
with the local filename to store in the header, under the
key Filename. The local system manager M1, listening
on port 16824 (in a select loop), receives this message,
and calls its message handler. This message handler
disassembles the request, checks the size and availability
of the file, and then picks k servers to back the file up to.

Files are backed up in two steps; first, a candidate
server is selected based on the weighted-randomized al-
gorithm mentioned earlier. The manager M1 issues a re-
quest to the /canPut resource on that server S2. The
remote server manager M2 checks its file list to see if
there is a naming collision or insufficient disk space. If
M2 and S2 return a OK (HTTP 200) response, the local
manager M1 uploads the file to S2 using an HTTP POST
to the /put resource, with the (potentially encrypted) file
as request form-data content. Once the file is backed up
to k servers, or all candidates have been exhausted, the
manager updates the file list with a new entry. The key
of this entry is the local path of the stored file plus a ver-
sion number. The file list also will contains the MD5 of
the saved file, confirmed successful backup locations, and
the current time. It also updates the version table as nec-
essary. If all is successful, the local system manager will
finally respond to the GUI with an HTTP OK response,
and the GUI can acknowledge the backup. If at any point

Number of Number of files accessible
servers up w/o reassignment w/reassignment

7/7 53/53 53/53
6/7 53/53 53/53
5/7 52/53 53/53
4/7 47/53 53/53
3/7 38/53 53/53
2/7 27/53 53/53
1/7 20/53 53/53

Figure 4: Maintaining reliability through reassignment,
with light load and ample storage space on network.

the operation encounters a fundamental error, an HTTP
500 error will be generated, either by the local or remote
system manager, and the error will be propagated to the
GUI. This event-driven pattern is prevalent in most DIBS
operations, although the responses can be more compli-
cated.

7 Testing & Evaluation

We performed several tests on DIBS to test its reliability
and functionality given changing network conditions. Our
default environment was MIT’s cluster of dialup shells
(eight in all) as the default LAN, and a 15.9MB work-
ing set of files as a sample backup set. We verified the
correctness of our implementation and performance of the
system using these servers and the sample backup load. In
each section below, we will state a design goal and show
how our implementation met (or tried to meet) each one.

7.1 Reliability

We tested restoration, backup and retrieval of individ-
ual files and our entire working set, using multiple ver-
sions and storing on multiple servers. Our implementa-
tion meets the semantics required of each operation. By
default, the latest known version of a file in the network is
restored to a crashed node, although the complete version
table and file lists are completely reconstructed from the
information maintained by other DIBS nodes.

Reassigning files in the face of a node outage was the
key to ensuring the availability of files and reliability of
the system. We chose a value k of 2 for the default num-
ber of servers to back up to. Given enough storage space
across the network (our total available storage space for
the test was 1GB), this makes all files fully recoverable
in the case of a single node failure regardless of reassign-
ment. However, with multiple node failures, backups be-
came less and less available, as shown in Figure 4.

We decided to turn on file reassignment after 30 sec-
onds of a node outage to simulate network balancing over
time. The DIBS communication layer times out from a

7



select after 30 seconds, and checks the latest server
topology from the discovery service, discd. If it finds
that a remote node has not reported in the last 30 sec-
onds, it orders a reassignment. The system manager will
then commit the file to another server. When nodes were
allowed to reassign, the availability of all backups was
100%.

There is a potential problem with our implementation
for reassignment, and general version management. Old
versions are stored on other machines for retrieval and er-
ror correction, but they are not stored locally. Thus, if
a reassignment occurs, the system manager will commit
the latest stored version of a file, and not the last most-
recently-committed version. If this happens, the version
number of the file will be updated to reflect proper version
histories, but a volatile network (and low reassignment
time) can cause the inadvertent replacement of explicitly
committed versions. We view this as a tradeoff to having
at least one recent valid version of a file reside somewhere
else in the network.

7.2 Space Conservation

One of our goals was to make sure that not too many old
replicas and versions of backups existed within the DIBS
network, as space is a limited resource in such an applica-
tion. Our main weapon against excess replicas is the same
syncing confirm primitive. If node N1 presents node N2

with a list of files N1 thinks N2 has, and N2 has a file not
in N1’s list, N2 should delete that record (and backup file).
We noticed that this case may arise if N1 had crashed and
was recently restored, and N2 was absent for the restore
request. Thus, we decided to add a “seen list” to the sys-
tem manager. If N1 has not yet seen or talked to (restored
from) N2, then it will not sync with N2. Thus, there will
be no sync to trigger the deletion of files on N2 that really
should be on N1.

7.3 Performance

We incur moderate overhead over direct file transfer by
computing MD5s in each file operation, operating over
HTTP, transferring unchunked messages for file uploads,
and likely because using Perl for transport and processing
is slower than system calls. (Our primary motivation for
choosing Perl was access to existing modules.) Transfer-
ring the 15.9MB dataset between two AFS servers took 23
seconds using scp. Backing up the same dataset to two
machines took 93 seconds, and retrieval took 58. Perhaps
making the manager multi-process and enabling chunked
HTTP upload will increase speed. However, adopting a
conservative reassignment and storage policy may be the
best ways to reduce network chatter.

7.4 Security

In our implementation, we provide filename encryption,
but have not gone as far to encrypt the contents of the files.
This was postponed for ease of testing and is a small fix.
A production version of DIBS would be sure to include
this feature.

Assuming file encryption, data backed up by DIBS is
less secure than email systems or most password pro-
tected systems because these systems are often protected
from dictionary attacks. Encrypting data with a password,
as DIBS does, is vulnerable to brute-force dictionary at-
tacks. Our alternative was to use private and public key
encryption, but the private key in such a key pair may
be lost in the case of a machine failure. This key would
need to be stored separately on a removable media device,
which unless kept in a secure place would be susceptible
to theft. A lost private key would render all file data (and
filename data) encrypted with that key unreadable, and
theft of a private key may be a more likely attack than
a dictionary attack. In order for DIBS to be adopted by
users, we feel it is important that DIBS be simple and
easy to use. We believe private/public key encryption sig-
nificantly increases the burden upon users. Thus for the
above reasons, we choose secret key encryption.

DIBS is no more susceptible to eavesdropping attacks
as it is to dictionary attacks. An eavesdropper can obtain a
user’s encrypted files, but so may any other legitimate user
of the system. Without the password, an eavesdropper
cannot decrypt the files. DIBS is susceptible to known
plaintext or chosen ciphertext attacks. If user M1 has both
the plaintext version of and ciphertext version of M2’s file,
he may be able to deduce M2’s password.

DIBS uses address-based authentication. The process
of storing machine ID/username/IP pairs in a server list is
however susceptible to IP spoofing. We are not very con-
cerned with privacy in this case as this is no different thatn
an eavesdropping attack. However if a user launches an
IP spoofing attack, she may trick users into believing their
files are safely backed up. An alternative to address-based
authentication is a cryptographic authentication protocol,
such as certificate based authentication. These protocols
are often much more secure than address-based authenti-
cation, but are significantly more complicated, requiring
the use of such things as certificate authorities or public
and private key pairs.

Message authentication is also a problem. A user may
announce themselves as a person they are not and thus is-
sue commands on behalf of another user. We recognize
this as a significant security concern. A solution to this
problem is to require all messages be timestamped (to
avoid replay attacks) and signed by user specific private
key in order to be verified by the corresponding public
key. Again, this requires issuing and storing the private
key on a secure, removable device.

8



8 Related Work

Our system is similar to pStore [1] and Pastiche [2], which
are both peer-to-peer backup systems. They both have
similar design goals as well. Pastiche builds its system
atop the Pastry infrastructure for object location. pStore
uses Chord, a distributed hash table implementation, to
reliably store data. Instead of using such external over-
lay networks and location services, which are intended
to abstract the location of a particular node from a high-
level system [2], we assume the use of an intranet or local
area network. Such networks are more static and allow
for broadcast discovery and tracking of nodes. With this
assumption, we can make optimizations for greater effi-
ciency and simplicity in our system.

pStore does not actively try to protect replication in-
variants. As with our system, file data is kept on multiple
machines. pStore relies on probabilities to ensure that at
least one peer holds file data. Thus, it is unlikely that
all files can be retrieved if a small number of peers fail.
Our invariants are similar to those of Pastiche, if a peer
holding a client’s backup files should fail, it becomes the
responsibility of that client to ensure that the file data is
redistributed to another machine (during the creation of a
new snapshot). After much discussion, we elected to use
this strategy in DIBS. If a peer node goes down, the client
must find a new node to backup its files to.

An alternate strategy we discussed would be to main-
tain an invariant that two copies of a file must exist in the
network, if space allowed. Thus, nodes would be respon-
sible for the files of other nodes. If a client crashed, a
node would detect that it was the only one with a copy
of the bytes, and copy accordingly. This defends against
one type of failure ours does not: sequential catastrophic
crashes. If node N1 loses its data, all nodes with N1’s
data would copy to another node. If a second node (N2)
crashes, the data still exists, up to the point where it is
no longer possible to keep copies of all backed up files
on the network. In DIBS, the data backed up on N2 by
N1 may be lost, unless a user executes a restore opera-
tion on a different machine. However, we decided that the
potential for widespread copying in the face of transient
outages outweighed the benefits of protecting against that
particular outage, especially since in the face of complete
machine failure, a user will likely want to restore on an-
other machine as soon as possible.

It is also important to discuss things that we do not
do. pStore utilizes a sophisticated versioning system to
avoid redundancies (in a sense, an incremental backup).
We note that, for many types of files, this may not be ef-
fective. Compressed files such as images, for instance,
can change structure completely with small changes. We
leave the task of complex versioning to specific applica-
tions. CVS is an established system for any sort of text.
Microsoft Word stores in each document a log of changes.

Instead, each DIBS node supports simple versioning to
protect against accidental overwrites and deletions.

9 Conclusion

The strength of the DIBS system is that it is a rela-
tively lightweight, transparent solution to the problem of
backup. It requires little maintanence from the user and
unnecessary network chatter.

Further work should be done within the realm of secu-
rity. DIBS currently provides no strong form of authen-
tication. Fairly standard authentication techniques can be
applied to DIBS in a straightforward manner. However,
this increases the complexity of the system and burden
upon the users. Thus, it is important to understand the
needs of the potential users and what security measures
are necessary for users to adopt the system.

DIBS does not address timing and scheduling issues,
such as when synchronization actions should occur and
how long a server must be down before it is assumed to
be dead. These parameters are again user dependent and
should be set after studying user needs and habits. Just as
replication and maximum version parameters are stored in
the system manager, default timeout times can be added
as well.

Finally, DIBS can go faster. By chunking uploads and
converting the system manager into a multi-process com-
ponent, DIBS will achieve better performance in both
one-to-one and one-to-many communication. However,
making the manager a multi-process component will re-
quire more advanced synchronization methods, and we
would need to be careful not to introduce inconsistencies
in the file list.

References

[1] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: A
secure peer-to-peer backup system, December 2001.

[2] L. P. Cox and B. D. Noble. Pastiche: Making backup
cheap and easy. In In Proceedings of Fifth USENIX
Symposium on Operating Systems Design and Imple-
mentation, dec 2002.

[3] Steven J. Vaughan-Nichols. Hard drive technology
reaches a turning point. IEEE Computer, 36(12):21–
23, 2003.

9


