
Exploring Proximity Based Peer Selection in a BitTorrent-like

Protocol

Asfandyar Qureshi

(asfandyar@mit.edu)

May 7, 2004

Abstract

BitTorrent [1] is popular file-sharing tool, ac-
counting for a significant proportion of Inter-
net traffic. Files are divided into fragments and
transferred out of order among nodes trying to
download them. Individual nodes penalize and
reward other nodes, adjacent in the BitTorrent
overlay, depending on how willing others are to
share data. This incentives scheme and the sub-
sequent enforcement of sharing is credited with
making BitTorrent outperform other contempo-
rary file-sharing systems.

Nonetheless, BitTorrent builds its overlays by
randomly selecting peers, a fact that has the
potential to seriously handicap both individual
performance and waste global network resources.
This paper investigates a scheme which attempts
to build a more intelligent overlay network, par-
ticularly using synthetic network coordinates to
select overlay peers that are close by in the un-
derlying network. We evaluate our techniques
both from the network’s perspective (resources
used) and from the individual’s perspective (av-
erage time to complete a download). In both
cases, our results show that better peer selection
can lead to improved performance with no major
changes to the basic BitTorrent protocol. Our
evaluation is based on real-world experiments
performed over Planet-Lab [2].

1 Introduction

Traffic logs on the Abilene network [3] show that
in March 2004 BitTorrent accounted for almost
as much logged traffic as HTTP. Additionally,
BitTorrent transfers accounted for about three
times the amount of octets associated with all
other file sharing applications combined. Weekly
reports through March indicate a steady increase
in BitTorrent traffic.

With the development of ways to search Bit-
Torrent networks for files and the adoption of
BitTorrent-variants for legal activities—such as
the distribution of Linux ISOs and online game
binaries—this usage is likely to continue to rise.

This paper focuses on the BitTorrent overlay
and how it is used to transfer data. We largely
ignore other aspects of the protocol, such as its
incentives scheme. Our goal is to focus on one
specific problem (the overlay construction), eval-
uate an alternative using real-world globally dis-
tributed experiments, and to design a robust and
distributed algorithm that requires only minor
modifications to the current protocol.

BitTorrent avoids the P2P search problem and
builds a different overlay networ for each file that
is being shared. Clients contact a known server,
the tracker, to join the overlay network. There is
a different tracker for each file being shared. Bit-
Torrent divides a file into fragments and clients
download those fragments individually, possibly
out of order.

Each node is assigned a set of peers as soon as

1

it joins the overlay. This set is static, in the sense
that a node x never proactively seeks out new
peers, but new nodes may request to peer with
node x and some of node x’s peers may leave the
overlay. A node will only try to download file
fragments directly from its peers; it will never
try to search for a desired fragment using the
overlay.

What sets BitTorrent apart from other P2P
designs is its enforcement of sharing. In the ab-
stract, it models the P2P file-sharing domain as
a repeated evolutionary prisoner’s dilemma and
incentivizes rational individuals in the P2P net-
work to contribute some upload bandwidth to
others.

Each BitTorrent client tries to acquire the
rarest fragment among its peers, this leads to
the desirable property that any set of peers can
simultaneously download and upload to each
other. When a client notices that one of its
peers is not uploading to it that client chokes

the connection between the two, refusing to up-
load to that peer. Alternatively, a client rewards
peers by priortizing uploads for peers from which
download rates are high.

While this works quite well in practice, the for-
mation of a highly sub-optimal BitTorrent over-
lay network is not avoided in the present design
of the protocol. When a node joins a torrent,
the tracker gives it a list of peers, placing the
new node in the overlay network. The present
approach in BitTorrent trackers is to return a
random list of peers, from all the known nodes
that are part of the overlay. This randomiza-
tion can result in there being a significant diver-
gence between the logical overlay network and
the underlying network. Two nodes that are
peers in the overlay may be on different coasts,
in different countries, or even on different plan-
ets. The present overlay construction algorithm
would not consider either case worse than the
other.

We believe that the BitTorrent overlay net-
work should be constructed so as to better re-
flect the underlying network topology. Clients

in the torrent who are close by in the real world,
particularly those within the same AS, should be
close by in the overlay network. Such an over-
lay building approach would both reduce aver-
age latencies between peers and is likely to boost
the average bandwidth, since clients on the same
subnet are now far more likely to be paired to-
gether than they were before.

If the number of clients were small, one
could use network proximity measurements (e.g.
round-trip times) between each client pair to
build an overlay minimizing latencies between
peers. Such a simple approach does not scale
well, and real-world BitTorrent overlays are quite
large (we assume they are on the order of thou-
sands of nodes). Section 3 presents an approach
to building overlays which tries to avoid this scal-
ability problem. We base our approach on a dis-
tributed algorithm for calculating synthetic net-
work coordinates [4] coupled with a probabistic
flooding algorithm borrowed from ad hoc sensor
network research [5]. Our overlay retains some
degree of randomization to avoid hot-spots from
developing pathologically.

An important side-effect of chosing peers in
the overlay that are close by emerges from the
rarest fragment first algorithm used by the nodes
for deciding which fragment to download next.
Essentially, each node looks at all the file frag-
ments held by his peers and then tries to down-
load the rarest one. Thus, uncommon fragments
are replicated more quickly than common ones.
Further, among any set of peers, all nodes are
connected to the seed node, the original server
having all the fragments. Ideally, due to the
coordinated replication strategy, a duplicate re-
quest will never be sent to the seed for the same
fragment, as long as at least one peer has already
requested that fragment and notified all its peers
of that request.

When peers are on different coasts, common
fragments must still be shipped across the coun-
try when they are downloaded from peers in the
overlay. When peers are selected—and there-
fore clustered—according to real-world proxim-

2

ity, only fragments that are rare among peers will
normally need to be transferred from far away.
In an ideal case, with the improved overlay, for a
group of peers on the MIT subnet, each fragment
would only be transferred from outside MIT ex-
actly once and all other transfers would occur
on the internal MIT subnet. With a random
overlay, the MIT nodes may quite reasonably be
placed on the overlay many (overlay) hops apart.

We believe that selecting an overlay network
that corresponds more closely to the underlying
network proximity between the peers can result
both in increased individual performance (down-
loads finish earlier, because of better peer selec-
tion) and a more efficient usage of network re-
sources (packets need to travel shorter distances
between peers). Both are desirable goals, mak-
ing the overlay construction problem important.

The rest of this paper is structured as follows:
§2 is a more formal statement of the problem
and an outline of the P2P protocol we will be
using; §3 describes our approach to building a
proximity based overlay; §4 evaluates our im-
plementation, comparing it against the random
graph building used today; §5 provides our con-
clusions; and finally §6 surveys relevant related
work.

2 Problem Statement

This section first outlines the basic peer-to-peer
protocol we will be modifying and then explains
the goals that drive our modification decisions.

2.1 Basic Protocol Model

The peer-to-peer protocol we are experimenting
with is based on BitTorrent, but incompatible
since we use a different wire protocol and a re-
laxed threat model. This incompatibility is a re-
sult of the need for rapidly building a prototype,
not a fundamental flaw in our design. Later (§3)
we present our overlay construction algorithm as
a set of simple modifications to the protocol out-
lined here.

Node Arrivals and the Tracker A node
joins the overlay network by contacting a known
tracker node. The only job of the tracker is to
maintain the list of nodes who have joined the
network and to provide a random set of peers
to each new node. This set is a random subset
of the set of all nodes that have contacted the
tracker before the newly joining node.

Downloading/Uploading The goal of every
client in the network is to acquire the complete
set F of fragments that constitute the file the
overlay has been created for. All fragments are
of the same length. A node only downloads frag-
ments from each of its direct peers. A node also
simultaneously uploads any requested fragments
to each of its peers. The maximum upload rate
provided to any given peer is the same as the
download rate from that peer, based on moving
averages. To avoid the pathological case where
both peers stop uploading to each other due to
transient congestion or the like, if a peer is lim-
iting uploads to another, it will try to optimisti-
cally increase its upload rate to the other peer
and see if the other peer responds with a sym-
metric increase.

Rarest Fragment First Each node shares
with all its peers the set of fragments it has,
all the fragments it is downloading and their ex-
pected arrival times. Each node uses this infor-
mation to decide which fragment to download
next and which peer to download each fragment
from. A node will prefer to download the rarest
fragment among its peers. It will try to down-
load from nodes that offer the lowest expected
arrival time for that fragment.

Peer Ranking A node continuously ranks all
of its peers, only activating the top k of them at
any given time—a ranking based on measured
moving throughput averages. Downloads and
uploads proceed only for active peers. Occas-
sionally, a node randomly and optimistically ac-
tivates inactive peers, in order to ensure that a

3

better peer will be used in preference to one in
use, if a better peer exists.

Node Departure In our experiments we as-
sume that a node departs the network as soon
as it has completed its download of the file. Fur-
thermore, we assume a silent failure model: when
a node departs it does so without notifying the
tracker or any of its peers. The peers can deter-
mine departure since the relevant TCP sockets
will generate events, but the tracker’s list can
become stale.

Failure Model We ignore the problem of
Byzantine failures. Essentially, we use a stopping
failure model instead of the Byzantine failure
one assumed by the original BitTorrent protocol.
Consequently, the protocol we experiment with
does not implement explicit penalties or verify
each fragment against a hash. This is accept-
able, since we are only interested in how much
better we can do with a good overlay.

2.2 Goals

Our modifications to the protocol previously de-
scribed are driven by a very specific set of goals.

Proximity Based Overlay We want to build
a network proximity based overlay. Informally,
all things being equal, a node should prefer-
entially select those other nodes as peers with
which it has low observed communication la-
tencies. Formally, our overlay building algo-
rithm should have the following property: given
a random node arrival process, if any two nodes
x and y have a round-trip communication la-
tency rtt[x,y], the nodes x and z have a com-
munication latency rtt[x,z], rtt[x,y] < rtt[x,z] and
(rtt[x,z] − rtt[x,y]) > ε, then P (x, y) > P (x, z),
where P (x, y) is the probability that x and y are
peers in the overlay.

Tracker Limitations In the protocol design,
the tracker is a single point of failure. It is re-

quired, unfortunately, to introduce any new node
to others in the overlay. In pursuit of scalability,
we do not want to increase the responsibilities
of the tracker and so our protocol modifications
do not include any additional processing at the
tracker.

Individual Download Time Perhaps the
most important property to users of a peer-to-
peer file sharing program is the time it takes
to completely download an individual file. Our
protocol modifications are geared towards—and
evaluated on their ability to—minimize the aver-
age time to download a file. Another important
metric is the time taken by the fastest download-
ers. Consequently, intend to evaluate our ap-
proach by considering the distribution of down-
load times rather than just the mean.

Network Resources Used Although users
do not really care about whether or not network
resources are being wasted, reducing such waste
is a highly desirable goal. Our approach of prox-
imity peer selection was initially inspired by the
desire to optimize the use of available network
resources. It is a little harder to evaluate the
impact of our algorithms with respect to this
metric, given that we will be running globally
distributed experiments on Planet-Lab.

3 Design

This section describes a distributed proximity
peer selection algorithm as a set of modifica-
tions to the previously described protocol. Our
algorithm tries to minimize the communication
latencies between peers, using synthetic net-
work coordinates [4] and probabilistic flooding
to minimize the overhead introduced by having
to search for nearby nodes.

At a high level, the peer selection algorithm
consists of two phases:

Phase 1: Synthetic Network Coordinates
A node must first approximate its D-

4

dimensional synthetic network coordinates
using the peers randomly assigned to it
when it joined the overlay.

Phase 2: Nearby Neighbour Discovery
Using its own synthetic network coordi-
nates, a node discovers, and connects to,
an additional set of peers that are nearby
(by euclidean distance) in the synthetic
coordinate space.

We discuss each phase in detail in the next
two sections. We name this two phase algorithm
Giraud, after Anna Giraud1, in homage to the
fact that we are combining Vivaldi and Gossip.

Our algorithm is meant to run in the back-
ground, while the rest of the protocol works on
downloading the file. Even before phase 1 is com-
plete, the node knows about some peers and can
start downloading fragments right away. Phase
2 continues indefinitely, but runs at a controlled
low frequency in the background, as explained
later. New, better peers, are discovered and con-
nected to by Giraud. The rest of the protocol
need not worry about how the overlay is chang-
ing. The peer ranking system already in place
will use the best peers from among all known
ones, weeding out bad choices made by Giraud.

3.1 Network Coordinates

A joining node must quickly approximate its po-

sition in the network. This approximation is
then used to find nearby neighbours. Before we
continue, we must decide on a definite notion
of network position. To simplify the problem of
defining position, we define the network distance

between two hosts as the measured packet trans-
mission latency between them2.

Geographical location seems to be a possibile
proxy for network location[6]. However, this in-
formation is hard to obtain without either involv-
ing the user or relying on non-standard hardware

1An actress, a member of Antonio Vivaldi’s entourage
and the cause of much Venetian gossip.

2We simplify further by ignoring asymmetric latency
measurements.

(e.g. GPS). Furthermore, given the vagaries of
AS relationships and network connectivity in the
Internet, geographical distance will not likely be
a good proxy for network distance.

Using the enclosing Autonomous System (AS)
to define a node’s location is another viable pos-
sibility. Although, without relying on an internal
AS-connectivity model to predict inter-AS net-
work distances, the best we can do is find nodes
in the same AS, missing those nearby but in dif-
ferent AS’s. Furthermore, treating an AS as a
single point is a bad approximation for nodes in-
side large AS’s (e.g. Sprint).

There are other approaches we could take.
Landmark based location approximation algo-
rithms exist [7], and we could plausibly use
traceroute’s to known nodes (e.g. the tracker)
in order to gather information about a node’s
position.

We use a variant of the Vivaldi distributed al-
gorithm [4] to generate synthetic network coor-
dinates. These coordinates are only meant to
be consistent within our overlay. The only con-
straint for picking node coordinates is that the
euclidian distance between a pair of nodes in the
synthetic coordinate system should be propor-
tional to the measurable network distance be-
tween those two nodes.

When a client wishes to join the overlay, it ac-
quires a random list of peers from the tracker as
before. Since the node has no knowledge about
its relationships to other nodes in the overlay, it
cannot do better than selecting a random list of
peers. Using these initial peers, their synthetic
coordinates and measured communication laten-
cies, the client simulates a force directed spring
system to calculate its own coordinates. After
some number of measurements, and consequent
simulated iterations of the spring system, the
client moves into the next phase and begins a
search for nearby nodes. As in Vivaldi, the peers
will also update their own coordinates. Further-
more, we piggy-back latency measurements on
data packets.

We expect lower quality synthetic coordinates

5

than those produced by the version of Vivaldi
presented by Cox et al, since our variant of Vi-
valdi uses fewer probes and does not wait as
long for the system to stabilize. Nonetheless, we
believe these coordinates will be adequate hints
when it comes to finding nearby nodes. We are
not attempting to build the optimal overlay.

3.2 Nearby Neighbour Discovery

Once a node has approximated its position, it
proactively searches for other nodes in the over-
lay which are close to it.

A centralized approach to finding nearby
nodes is to contact the tracker again, provide
it the calculated coordinates and request a list
of nearby nodes. However, even with clever
lookup algorithms, this would—at least—double
the load on the tracker (each node now queries
the tracker twice). We avoid contacting the
tracker at all during the search phase.

The simplest distributed search would be for
the new node to flood a coordinate announce-
ment through the overlay (a message contain-
ing the originator’s network address and the
synthetic coordinates). Whichever nodes real-
ized that the new node was close by (using D-
dimensional euclidian distance) and were willing
to accept more peers, would initiate a direct con-
nection with the announcing node. Although
this form of flooding seems likely to waste more
network resources than is reasonable, it is other-
wise a simple and viable solution to our search
problem.

Instead of simple flooding, we propose to use
a low-rate probabilistic flooding mechanism sim-
ilar to that proposed by Haas et al in their
GOSSIP protocols [5] for ad hoc wireless net-
works. The basic idea behind their simplest pro-
tocol GOSSIP1(p) is that when a node receives
a route (or, in our case, coordinate) announce-
ment it discards that announcement with uni-
form probability (1−p) and forwards it on to all
its neighbours (overlay peers) with probability
p. Using heuristics, this basic protocol can be
tweaked to deliver the message to over 90% of

the nodes, with the authors demonstrating sav-
ings of up to 35% in message overhead, compared
to flooding. p can be varied to increase the sav-
ings at the expense of the fraction of nodes that
receive each announcement.

Giraud’s search phases presently uses
GOSSIP1(0.75), but further limits the rate
of the generated gossip. Every minute a timer
fires on the client causing it to send out a
bounded size gossip message to all of its active
peers. This message is a probabilistic aggrega-
tion of all the gossip messages heard since the
last such timer. The content is controlled by the
rules of GOSSIP1(0.75) and some additional
rules apply when too much information has been
received. We believe that using a maximum
of 32 bytes per second or so for gossipping on
each communication channel is acceptable. This
information can always be piggybacked onto
data packets. p = 0.75 was selected based on
the results cited by Haas et al [5].

We do not believe the choice of GOSSIP1 is
particularly special, nor is it integral to the func-
tioning of Giraud. Certainly more sophisticated
protocols exist. The optimal flooding protocol
by Paruchuri et al [8] is such a protocol, which
could be used in place of GOSSIP1.

4 Evaluation

4.1 Methodology

Original Plan Initially, the plan was to write
a fully functional real-world client for the pro-
tocol that we have described above. Then the
client could be evaluated using a set of nodes
distributed across Planet-Lab [2] to run our im-
plementation. The set was to consist of hundreds
of randomly selected nodes. Using experimen-
tal runs of our client on this test-bed we were
hoping to determine the nature of the perfor-
mance improvements, if any, our improved over-
lay would bring. The primary metric we were
concerned with optimizing was individual down-
load times. Since these would be real-world ex-

6

periments using a completely implemented P2P
client program, we hoped this roadmap would
produce something that was immediately useful
to people outside of 6.824.

Unfortunately, things did not work out so well
due to time constraints and some regrettable de-
cisions on our part3. While the P2P client code is
presently around 80% complete and the Planet-
Lab slice is primed, the experiments could not
be run in time.

Reality While we believe we will have to run
the Planet-Lab tests, or at least ns2 packet-level
simulations, to accurately gauge the impact of
an improved overlay on the P2P protocol’s per-
formance, simulation can shed some light on how
good an overlay Giraud actually builds. The re-
sults we present here use an implementation of
Giraud and simulations that ignore packet-level
semantics to explore the quality of the overlay
built by our algorithm.

4.2 Simulation

This section describes the simulations we ran.
Using the King data set [9], an n2 matrix of
measured round-trip-times between n hosts on
the internet, we generated a random poisson ar-
rival process at the tracker. Using this process
we simulated the following three overlay building
algorithms on various subsets of the King data
set.

Random When a node x arrived, it was as-
signed a random subset of peers selected uni-
formly over the set of all previously arrived

3Time sinks: 3. Worrying about malicious clients and
writing code to handle them; 2. Designing and imple-
menting a libasynch style helper library in Java so that
the application runs in essentially a single thread, instead
of going for the simpler–less efficient–multithreaded al-
terntive; 1. Worrying about writing well designed and
documented code so that I could look my 6.170 students
in the eye afterwards. I will probably get round to finish-
ing this after I wrap up my MEng thesis in July.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

RTT (ms)

Overlay Peer Latencies (128 Hosts)

Random
Best Peers

Giraud
90th percentile
75th percentile
50th percentile
25th percentile

Figure 1: The peer-to-peer round-trip-time CDF
measured during simulations for each of the three
overlay building techniques. Using Giraud instead
of Random almost doubles the number of peers who
are within 20ms of each other in the overlay.

nodes4.

Best-Peers When a node x arrived, it was as-
signed the best set of peers, from all previously
arrived nodes. This set was determined by pick-
ing the peers which had the K lowest RTT’s to
x.

Giraud When a node x arrived, it was as-
signed a random subset of peers from all previ-
ously arrived nodes. The number of these peers
was about a third of the number assigned in Ran-

dom. x ran about 30 iterations of our vivaldi
variant in 7-Dimensional space and then began
to gossip. Whenever x heard, through gossip, of
a node y such that the euclidian distance to y

was less than the average euclidian distance to
x’s best 8 peers (lowest actual RTTs), then x

would connect to y. The gossip timer fired every

4Even though selection is uniformly random during
any one subset selection, nodes with earlier arrival times
tend to have a higher expected number of selections than
later nodes, since earlier ones are included in more subset
selections. We did not compensate for this effect. This
effect causes the first few nodes to have a higher average
degree than later ones.

7

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10

N
um

be
r

of
 c

on
ta

ct
ed

 P
ee

rs
Average Overlay Peer Degrees (128 Hosts)

Best
Random

Giraud

Figure 2: The average degree of a peer in an overlay.
There is not much difference between the three meth-
ods. Our improved results for Giraud are therefore
not a consequence of picking a larger set of random
peers, but the result of picking a better set of peers.

60 seconds.

Simulation Results Figure 1 shows, for each
simulated protocol, the CDF of latencies be-
tween two peers. The CDF is based on observed
frequencies in the following set R = {rtti,j}
where rtti,j ∈ R iff rtti,j is the RTT between
i and j and either i is one of j’s best 8 peers or j

is one of i’s best 8 peers. The result in the figure
is for simulations on a set of 128 nodes. Larger
node sets produce similar results.

The first thing to note is how big of a difference
there exists between Random and Best-Pairs.
While around 75% of links in the Best-Pairs con-
structed overlay have a latency less than 20ms,
around 25% of links in Random have a latency
below 20ms. Giraud’s overlay quality lies be-
tween the other two. Giraud has almost twice
the number of links below 20ms compared to
Random.

One possibility for Giraud’s improvement is
that gossipping is producing a larger average
sized set of peers than Random has. A larger set
could account for all of the improvement in the
overlay, since we are only considering the best

8 peer links. Figure 2 shows that this is not
the case. In our experiments, Random and Best-

Peers start off with a set of peers 3x as large
as that initially assigned to a Giraud node. The
average number of known peers turns out to be
approximately equal for all three protocols.

Figure 2 shows the average number of other
nodes any given node knows about. We assume
only the best 8 peers are active at any given time,
so even a bloated number here would not be too
bad. Gossipping limits the rate at which this set
builds up, and our simulations run for over a few
hours of simulated time, so a large set does not
necessarily imply many wasted resources com-
municating with them.

5 Conclusions

Although we were not able to demonstrate that
a proximity based overlay would visibly effect
the distribution of individual download times
or lead to a more efficient utilization of global
network resources, we did construct, implement
and present a reasonably simple distributed algo-
rithm which constructs an intelligent proximity
based overlay. Much of the design decisions were
driven by the need to make minimal changes to
the present BitTorrent protocol. We feel that it
should not be too hard to integrate Giraud into
BitTorrent.

Our protocol can be improved significantly
and we hope to finish implementing and experi-
menting with the clien over this summer.

6 Related Work

Various proposals have been put forward for net-
work coordinate system mechanisms [10] [6] [11]
[7] [4]. Of these, one [6] tries to make the co-
ordinate system conform to external geographic
realities. As we noted earlier, geographic dis-
tance is a bad proxy for network distance, which
is what we really want to estimate using the net-
work coordinates. While IDMaps [10], the In-
ternet Coordinate System [11], and Global Net-

8

work Positioning [7] all promise to estimate net-
work distance well, neither of them are truly
distributed, in the sense that we need them to
be. All of them use landmark based calculations
to derive node coordinates; and the BitTorrent
overlay does not have enough stable nodes to be
used as landmarks. Vivaldi [4] offers a practical
distributed algorithm for building a synthetic co-
ordinate space without landmarks, one that we
can easily integrate into BitTorrent.

Flooding of announcements is a technique
used by almost all unstructured peer-to-peer net-
works (e.g. Gnutella [12]). It is a provably
effective, though wasteful, zero-knowledge rout-
ing mechanism. Researchers working on ad hoc
wireless sensor networks have had to invent new
variants on flooding, since resource wastage is
all the more important in such sensor networks
while global topology knowledge is quite limited.
Broch et al [13] survey various ad hoc sensor net-
work routing protocols. Furthermore, data dis-
semination protocols for sensor networks, such
as Trickle [14], use randomized variants of flood-
ing. We chose to use the gossip protocol pre-
sented earlier [5] primarily due to its simplicity.
As we noted earlier there are better, more ef-
ficient, flooding protocols available. The Opti-
mal Flooding Protocol is one such example [8].
Our choice of rate-limiting announcement floods
is driven by the fact that these announcements
are not integral to the performance of the proto-
col.

Content distribution networks, such as Aka-
mai [15], use approaches similar to, but much
simpler than, our clustering approach. Since the
set of servers is fixed and heavily optimized, their
job is considerably easier. Coral [16] uses a DHT-
based approach to the CDN problem. Unlike
our problem, Coral focuses on finding a single

nearby copy for a query. In principle, we could
have adapted some aspects of Coral’s approach,
but we decided to base our approach on net-
work coordinates and controlled rate flooding,
since these require simpler modifications to Bit-
Torrent.

Rinaldi et al [17] use a variant of CAN and
latency measurements to build their overlay net-
work. Joining nodes measure their latencies to
some small number of active nodes and then a
spring embedder algorithm is used to pick an ap-
propriate ID in the CAN d-dimensional ID space
so that overlay distances are close to the mea-
sured latencies. While this approach seems to
build good overlays, it relies heavily on the se-
mantics of CAN, so it is hard to adapt to the
BitTorrent overlay scheme.

References

[1] B. Cohen, “Incentives build robustness
in bittorrent,” in Workshop on Eco-
nomics of Peer-to-Peer Systems, 2003.
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf.

[2] “Planet-lab.” http://www.planet-lab.org/.

[3] “Internet2: Netflow weekly reports.”
http://netflow.internet2.edu/weekly/20031117/.

[4] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Mor-
ris, “Practical, distributed network coordinates,” in
Proceedings of the Second Workshop on Hot Top-
ics in Networks (HotNets-II), (Cambridge, Mas-
sachusetts), ACM SIGCOMM, November 2003.

[5] L. Li, J. Halpern, and Z. Haas,
“Gossip-based ad hoc routing.” cite-
seer.ist.psu.edu/haas01gossipbased.html.

[6] V. N. Padmanabhan and L. Subramanian,
“An investigation of geographic mapping
techniques for internet hosts,” Proceedings
of SIGCOMM’2001, p. 13, 2001. cite-
seer.ist.psu.edu/padmanabhan01investigation.html.

[7] T. S. E. Ng and H. Zhang, “Global network posi-
tioning: A new approach to network distance pre-
diction.” citeseer.ist.psu.edu/485391.html.

[8] V. K. Paruchuri, A. Durresi, D. S. Dash, and R. Jain,
“Optimal flooding protocol for routing in ad-hoc net-
works.” citeseer.ist.psu.edu/574649.html.

[9] “King data set.” http://pdos.lcs.mit.edu/p2psim/kingdata/.

[10] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson,
D. Raz, Y. Shavitt, and L. Zhang, “Idmaps: A global
internet host distance estimation service,” 2000. cite-
seer.ist.psu.edu/francis00idmaps.html.

[11] H. Lim, J. C. Hou, and C.-H. Choi, “Constructing
internet coordinate system based on delay measure-
ment,” in Proceedings of the 2003 ACM SIGCOMM
conference on Internet measurement, pp. 129–142,
ACM Press, 2003.

9

[12] “Gnutella.” http://www.gnutella.com.

[13] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva, “A performance comparison of multi-
hop wireless ad hoc network routing protocols,” in
Mobile Computing and Networking, pp. 85–97, 1998.
citeseer.ist.psu.edu/broch98performance.html.

[14] P. Levis, N. Patel, S. Shenker, and D. Culler,
“Trickle: A self-regulating algorithm for code
propagation and maintenance in wireless sensor net-
works.,” in First USENIX/ACM Symposium on Net-
worked Systems Design and Implementation, 2004.
http://www.cs.berkeley.edu/ pal/pubs/trickle-
nsdi04.pdf.

[15] “Akamai technologies.” http://www.akamai.com.

[16] M. J. Freedman, E. Freudenthal, and D. Maziéres,
“Democratizing content publication with Coral,” in
Proceedings of the 1st Symposium on Networked Sys-
tems Design and Implementation (NSDI 04), (San
Francisco, CA), March 2004.

[17] R. Rinaldi and M. Waldvogel, “Routing and data
location in overlay peer-to-peer networks,” Research
Report RZ–3433, IBM, July 2002.

10

