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Abstract

The Web relies on the Domain Name System (DNS) to
resolve the hostname portion of URLs into IP addresses.
This marriage-of-convenience enabled the Web’s mete-
oric rise, but the resulting entanglement is now hinder-
ing both infrastructures—the Web is overly constrained
by the limitations of DNS, and DNS is unduly burdened
by the demands of the Web. There has been much com-
mentary on this sad state-of-affairs, but dissolving the ill-
fated union between DNS and the Web requires a new
way to resolve Web references. To this end, this paper de-
scribes the design and implementation of Semantic Free
Referencing (SFR), a reference resolution infrastructure
based on distributed hash tables (DHTs).

1 Introduction

DNS’s original goal was practical and limited—allow
users to refer to machines with convenient mnemonics
[20, 21]—and it has performed this service admirably.
However, with the advent of the Web and the result-
ing commercial value of DNS names, profit has replaced
pragmatism as the dominant force shaping DNS. Legal
wrangling over domain ownership is commonplace, and
the institutional framework governing the naming system
(i.e., ICANN) is in disarray. Commercial pressures aris-
ing from its role in the Web have transformed DNS into a
branding mechanism, a task for which it is ill-suited.

At a logical level, a linked, distributed system such as
the Web requires a Reference Resolution Service(RRS) to
map from references(our generic name for links or point-
ers) to actual locations. In the current Web, references
are URLs with a hostname/pathname structure, and DNS
serves as the RRS by mapping the hostname to an IP ad-
dress where the target is stored. As the Web has matured,
content replication and migration have become more im-
portant. However, the host-based nature of URLs—which
ties references to specific hosts and hard-codes a path—
makes content replication and movement hard. 1 Conse-
quently, there have been many sensible calls, most no-

1Because DNS names hosts, not Web objects, it is easy to move
and replicate hosts. But DNS requires the sophisticated algorithms
and substantial infrastructure of content distribution networks (CDNs)
to achieve the same goals for individual Web objects.

tably in the URN literature [2, 5, 9, 19, 28, 29], to move
the Web away from host-based URLs.

Since the Web has imposed the burden of branding on
DNS, and DNS has restricted the flexibility of the Web,
we believe that both systems would benefit if they were
disentangled from each other. However, dissolving this
mutually unhealthy union would require a new RRS for
the Web. What should such an RRS look like? There
has been extensive discussion about this topic, largely
within the URN community but among many others as
well. While we don’t provide a comprehensive review
of the commentary, the literature suggests the following
two basic requirements for any such RRS (both of which
DNS-based URLs do not satisfy):

Persistent object references: A Web reference, like
any abstraction used for indirection, should always be
invariant, even when the referenced object moves or is
replicated. This principle has been central to the discus-
sion about URNs. Reference persistence implies that ref-
erences should not be tied to particular administrative do-
mains or entities, as they are currently in DNS.2

Contention-free references: Reference choice should
be free of ownership disputes or other forms of legal
interference. Disputes over human-readable names are
inevitable [22], but the reference resolution infrastructure
is a poor place to resolve those disputes. Thus, as has
been observed in the past [1, 10, 24, 29], references
should be inherently human-unfriendly; in fact, we
believe the infrastructure should enforce this property. Of
course, users must be able to associate meaning to ref-
erences, but the binding between human-friendly names
and these opaque references should be done outsidethe
referencing infrastructure. Such a separation would (a)
free the RRS to focus only on technical concerns and (b)
permit multiple, competing solutions to human-friendly
naming, thereby allowing the resulting tussle [3] to play
out through legal and other social channels.

2For instance, consider the Web page of someone who first created
the page while at institution X but later moves to institution Y . If the
reference record is controlled by the X domain (as it is with DNS) then
maintaining persistence would require that X allow the author to update
the record (if only to provide an HTTP redirect) for all time, even when
the author is no longer affiliated with X. This expectation is impractical.



To these two well-accepted requirements, we add a
third and less universally accepted design goal (which is
similar in spirit to the goal articulated in [33]).3

General-purpose infrastructure: The RRS should
be designed to support a wide class of “link-based”
applications. The use of links, or pointers, to refer to
objects or content on other machines is not unique to the
Web; links are used in a variety of distributed systems for
identifying objects and invoking remote code, for locating
devices, and for other purposes when one wants to refer
to objects by name, not location. The URN literature
deals with this multiplicity by having context-specific
resolvers [9]. However, since reference resolution is a
hard problem that requires delicate design, we believe it
should, if possible, be solved once and well.

How does one build a general-purpose RRS for persis-
tent and contention-free references? In our work here we
followed two key design principles:

Semantic-free namespace: We believe that the sim-
plest way to achieve persistence and contention-free refer-
ences is to use a namespace devoid of explicit semantics:
a reference should neither embed information about the
organization, administrative domain, or network provider
it originated in or in which it is currently located, nor be
human-friendly. We call such references semantic-free.

Minimal RRS interface and factored functionality:
A general-purpose RRS should not impose unwanted
semantics on applications, implying that the RRS
should support a minimal interface limited to reference
resolution. Therefore, all other functions required
by applications—including mapping between human-
friendly names and references—should be handled by
auxiliary systems. We believe that the RRS’s job is
to provide a platformthat allows for competition and
flexibility in application-specific support and not to solve
directly these higher-level problems.

We used these two design principles to develop both an
RRS with semantic-free references (SFR) and a version
of the Web that uses only SFR. The result is a system
decomposition that differs from today’s Web: whereas
humans today rely on being able to read, and occasion-
ally type, references (URLs), the Web-over-SFR handles
user-level naming outside the reference resolution ser-
vice by enabling a competitive market for canonicaliza-
tion servicesthat map human readable names to semantic-
free tags. In the Web-over-SFR, search engines func-
tion as they do today, except they return links backed
by semantic-free tags rather than by DNS-based URLs.
Web browsers in turn use the SFR infrastructure to resolve

3The Globe project [32, 33] shares many of the same motivations as
SFR, but, as we discuss in Section 7.2, the set of technical challenges
addressed is rather different.

these semantic-free tags to meta-data like IP addresses,
ports, and pathnames that identify Web objects.

In addition to a different factoring, SFR enables new
functionality for the Web, including: object-based migra-
tion wherein objects can move without requiring refer-
ring links to be updated or broken; flexible object repli-
cation wherein individual objects can be replicated with-
out heavyweight machinery, administrative control over
the hosts of the replicas, or hard-coding the administrative
entity responsible for the meta-data; and content location
services wherein individuals can provide reliable pointers
to objects they did not contribute.

SFR is a “clean-sheet” design; not only does our
design, in its pure form, require changes to all Web
browsers, it also requires an infrastructure that currently
does not exist. The Web-over-SFR is incrementally de-
ployable via Web proxies, and a transition strategy ex-
ists, but we will not dwell on these methods. Our goal is
rather to investigate, without regard to deployment issues,
how one might best support the Web and other applica-
tions that require reference resolution. We hope that the
lessons learned in this exercise will be useful, indirectly if
not directly, in any future evolution of the Web and DNS.

2 SFR Challenges

SFR’s advantages do not come without cost. Many
of the desirable features of today’s Web derive from
DNS. As examples, DNS’s hierarchical structure enforces
URLs’ uniqueness and provides fate sharing (a discon-
nected institution can still access local pages) while the
human readability of DNS hostnames gives users some
(perhaps misguided) confidence they have reached their
desired data. Since SFR has abandoned both hierarchi-
cal structure and human readability, the SFR design must
explicitly provide for the properties we have mentioned
and others like them. Some of these challenges must be
met by SFR itself, and some should be left to auxiliary
systems supporting the Web-over-SFR. Addressing these
challenges is the main focus of this paper. We now briefly
discuss them and defer solutions to Sections 3 and 4.

2.1 SFR Infrastructure Challenges

Scalable resolution. Until recently, there was no way
to scalably resolve references in a semantic-free names-
pace, which is largely why the URN literature chooses a
partitioned set of resolvers [9]. However, the recently de-
veloped DHT technology [15] is designed to do exactly
this: at their core, DHTs map an unstructured key from a
flat namespace to a network location responsible for the
key. But typical DHTs require O(log n) hops per lookup
in an n-node system and would introduce intolerable la-
tency. Thus, SFR must provide, on average, significantly
faster lookups than the usual DHT performance bound.



Security and integrity. Any RRS must secure content
providers’ meta-data and enforce reference integrityby
preventing two logically distinct objects from receiving
the same reference. DNS guarantees these properties by
relying on the administrator of each delegated namespace
to protect meta-data and avoid local conflicts. A semantic-
free namespace, however, has no natural administrative
partitioning and thus protecting references—even under
network partitions and malicious clients—is non-trivial.

Fate sharing. By delegating its namespace, DNS nat-
urally offers fate sharing: if a domain (e.g., foo.edu) be-
comes disconnected from the rest of the Internet, users in
that domain can usually still access content served by that
domain (e.g., content at x.foo.edu), since the authorita-
tive name server (e.g., for foo.edu) is typically on their
side of the partition. Since semantic-free names do not
reflect objects’ origin, SFR must be explicitly structured
to provide fate sharing.4

Trust and financing. DNS has a very simple financ-
ing and trust model: organizations provide the authori-
tative server for their own domain, and DNS nodes need
only serve requests for hosts or from users within the do-
main. Moreover, DNS requires only a small common
infrastructure—the root servers—so all other expenses are
incurred by the organization reaping the benefit (by allow-
ing others to access their hosts). References in SFR are
not tied to the content provider, so the “serve your own”
trust and financing model does not apply.

2.2 Web-over-SFR Challenges

When the Web (or other applications with human in-
teraction) runs over SFR, two important challenges arise:
how users will find objects and how users can be sure that
the content they see corresponds to the object they are
seeking. Rather than seek a single all-encompassing so-
lution to these problems, we instead factor our system so
that multiple, competing solutions can arise.

Canonical names. There is good reason for the con-
tention over DNS domains; they allow URLs to serve
as canonical namesthat are memorable, human-readable,
and easily transcribed. In contrast, the SFR approach pro-
vides opaque bit strings with none of these useful fea-
tures. There is great benefit in simple and recognizable
URLs, such as http://www.cnn.com. Thus, similar sets
of canonical names that users can remember, understand,
and transcribe must exist in the SFR framework.

Confidence. Humans browsing the Web are usually
confident that URLs beginning with www.nytimes.com
identify content published by The New York Times
newspaper. While this reliance on the human semantics
of a URL is hardly foolproof (as recent scams [4] have

4We must address fate sharing because we insist on semantic-free
references not because we use DHTs. The SkipNet DHT [12] provides
fate sharing, but it encodes administrative domains into references.

SFRTag: 0xf01212099abcab678ac345ba4d...
location: (ip, port),(DNS name, port),

SFRTag
oinfo: App-specific meta-data
ttl: time-to-live: a caching hint

Figure 1: The o-record

demonstrated), it does represent an important user need.
SFR must clearly provide an alternative mechanism for
giving users confidence in the content they are viewing.

3 SFR Design

Our proposed SFR system is a shared infrastructure
that provides a single service: mapping from a semantic-
free tag that references an object to meta-data associated
with the object. Content providers insert an object’s meta-
data into the infrastructure and associate it with a tag.
Consumers of the content submit these tags to the in-
frastructure and receive object meta-data in response. In
this section, we focus on this single service and not on
auxiliary questions, like how human-friendly names are
mapped to tags.

3.1 Essentials

SFR uses a distributed hash table (DHT) to map
semantic-free 160-bit strings, SFRTags, to o-records
(“object records”). The o-record, shown in Figure 1,
contains an object’s location and other meta-data. The
SFR infrastructure does not store objects, only their
o-records. Our implementation uses Chord [31] as the
underlying DHT routing protocol and DHash [8] to store
the o-records, but the SFR architecture is modular and
permits another DHT protocol to be substituted. In fact,
SFR could use any system that supports scalable lookups
on unstructured identifiers (such as the location service
in the Globe system [32, 33]). For convenience, we will
refer to DHTs as the fundamental resolving technology.

The location field is set by the application insert-
ing the o-record and holds one or more values describ-
ing the location of the data corresponding to the SFRTag.
Each location field entry is either an IP address and
transport port pair, a domain name and transport port
pair, or another SFRTag (that in turn resolves to another
o-record). These latter two options permit additional
degrees of indirection so that if many objects migrate to-
gether, they can all be updated by a single change to, re-
spectively, DNS or SFR (the SFR option allows objects
to move to different hostnames, while the DNS option
enables changes to IP addresses for a fixed hostname).
SFR’s use of DNS to abstract the location of a hostis not
a contradiction; as we noted before, DNS is designed for
exactly this function.

The resolving infrastructure imposes almost no con-
straints on applications since the structure, length, and



content of the oinfo field are application-defined; e.g.,
for the Web application, the field could hold the type of
transport protocol (HTTP, FTP, HTTPS), a pathname on
the server, etc. The SFR infrastructure does not look at
this field. Finally, like DNS’s TTL, the ttl field in the
o-record is a caching hint instructing entities outside the
infrastructure about how long to cache a given o-record.
Because SFRTags are persistent references, the copy of
the o-record in the infrastructure never expires and so
SFRTags cannot be reassigned. As a result, if a content
provider wishes to retire an o-record because the refer-
ence is no longer valid, the content provider empties the
o-record.

The trust and economic model we envision for SFR
is quite different from that of DNS because one cannot
“serve your own” when the tags are semantic-free. So,
instead of a DNS-like infrastructure comprised of “do-
nated” machines dedicated to specific domains, we en-
vision a more uniform infrastructure in which SFR nodes
are trusted to serve all o-records. While there may be
a startup period during which an “angel” (e.g., NSF, Eu-
ropean Union) funds the initial infrastructure (which may
require, say, only 1,000 machines), once SFR becomes
accepted as a viable service there could be competing
commercial offerings. We believe that eventually several
competing SFRs could peer with each other (exchanging
updates) much like today’s tier-1 ISPs, each holding mir-
ror copies of all data. These peered SFRs would together
form the global SFR infrastructure.

These SFR structures would be managed infrastruc-
tures with good connectivity (we repeat: even though we
are using DHTs, which are a so-called P2P technology,
we arenot relying on flaky personal machines connected
via cable modems!), so the SFR infrastructure machines
would be relatively stable5 and bandwidth between them
relatively plentiful. Obviously the issue of the economics
of such infrastructures is an open question, and our design
thus relies on the shaky premise that competitive SFR in-
frastructures would arise; however, here we hope to con-
vince the reader only that such infrastructures would in-
deed offer a better solution to the problems in today’s Web
and other linked services.

Before describing the rest of SFR’s design, we em-
phasize that SFR’s challenges derive from its semantic-
free namespace, and it is this characteristic, rather than
the particular choice of resolving substrate, that identifies
SFR. One way to implement SFR may in fact be to use
semantic-free DNS names. Indeed, one transition strategy
is deploying various nameservers for a .sfr domain that
would look up references in an SFR infrastructure. We
do not view this as a contradiction: our objective is not to
eliminate DNS but to change the way the Web uses DNS

5Nevertheless, in Section 6, we demonstrate that lookup performance
remains acceptable under node failures.
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to resolve references. A system of semantic-free names
built on DNS would face the same challenges as SFR and
would require similar machinery, such as a way to do scal-
able resolution in an unpartitioned namespace.

3.2 SFR Components

Figure 2 shows the components of the SFR system. At
the core is the SFR infrastructure, a collection of man-
aged nodes (of the kind we described above) that run SFR
serversoftware. This software runs on top of a DHT pro-
tocol and storage manager implemented at each node.

Applications store and retrieve o-records correspond-
ing to SFRTags using the SFR clientlibrary. The client
interacts with the SFR infrastructure using an SFR relay,
a software module that intermediates between client re-
quests for storing and retrieving o-records and the SFR
infrastructure. The relay handles o-record caching and
also ensures that clients can gain access to the o-records
for content hosted by the local organization even when
the organization is disconnected from the SFR infrastruc-
ture. The relay itself does not need to implement the DHT
routing protocol or the storage manager; it connects to the
SFR infrastructure at an SFR portal, which is simply a
node in the infrastructure.

If SFR becomes widely deployed, client machines will
need to discover a reachable SFR portal or relay. Clients
today find out about available DNS servers via DHCP
or via hard-coding; we envision identical techniques for
SFR. Providing access to an SFR portal or relay would be
one of the services offered by an ISP or large institution.

3.3 Security and Integrity

We now describe (a) how content providers who are
clients of SFR may create unique, contention-free refer-
ences without administrative namespace delegation and
(b) how the infrastructure secures the content providers’
meta-data. SFRTags and their associated o-records have
these properties:



• The infrastructure ensures that SFRTags are the output
of a hash function and thus have no human meaning.

• Content providers can create unique references without
consulting a naming authority or any other entity.

• Only an o-record’s creator, or someone who shares
his private key, can update that o-record.

• Given a reference, the o-record is self-certifying.

• Content providers can update their public keys without
invalidating references.

• The namespace is too massive for anyone to monopo-
lize a significant chunk of it.

To achieve these properties, the SFR infrastructure first
requires that an SFRTag is a secure, collision-resistant
hash of the content provider’s public key and an arbitrary
salt. So when a content provider wishes to create or up-
date a reference, it sends to its SFR portal (perhaps via an
SFR relay), a request with all of the following elements:

• o-record, and SFRTag = hash(public key, salt);

• public key, salt, and version;

• signature (o-record, salt, version);

Before accepting this request, the responsible SFR in-
frastructure node checks that the SFRTag is the correct
hash and that the signature is valid. The SFR infrastruc-
ture node then stores all of the data listed above. If the
SFRTag was already in the infrastructure, the responsible
node further checks that the request is signed with the cur-
rent private key. (For clients who do not use public keys—
and thus receive no protection—the SFR infrastructure
also accepts references that are the hash of a client-chosen
salt, only.) Because each reference is the output of a hash
function, it is highly unlikely to have mnemonic or brand-
ing value, which in turn removes the need for a naming
authority or other arbiter. In addition, SFR does not re-
quire, or use, a public key infrastructure.

On a lookup, a content consumer sends a request for
the SFRTag to its SFR portal (perhaps via an SFR re-
lay). If the tag is in the infrastructure, the responsible
DHT node returns the corresponding o-record along
with the auxiliary data mentioned above. Returning this
data makes the o-record self-certifying[18]: i.e., with-
out resorting to a public key infrastructure, a retrieving
client will be able to tell if a compromised node or male-
factor in the middle of the network alters any of the data
(since the reference is bound to the public key, and the
signature binds the public key to the data). Moreover,
SFR clients ensure that they are hearing from bona fide
SFR infrastructure nodes by verifying the signatures on
messages sent to them from the infrastructure nodes. We
presume that when a client receives the address of an SFR
node (e.g., by DHCP, as with DNS servers), the notifica-
tion also includes that SFR node’s public key.

Public key updates do not invalidate the reference since
the SFR infrastructure requires only that the relationship
between the SFRTag and the public key is satisfied when
the tag is first inserted. After that, the SFR infrastructure
ensures that updates to the public key or to the content
have been signed with the existing private key. To main-
tain the self-certifying property, the infrastructure must
store the content provider’s signed request to update its
public key and must also return these signed requests in
response to lookups.6 To guard against replay attacks,
SFR adopts DHash’s approach [8]: SFR clients incre-
ment, and sign, a version number each time they update
their o-record, and the infrastructure accepts updates
only with increasing version numbers.7

The sheer size of the SFR namespace prevents anyone
from monopolizing a significant portion. Protecting indi-
vidual SFR nodes or the DHT as a whole against loading
is a different matter, however. Our intent is that these at-
tacks will be addressed by management tools to prevent
content providers (where a content provider is defined by
its public key) from using too many resources.

3.4 Latency

SFR uses three kinds of TTL-based caching to reduce
latency and balance load among the infrastructure nodes.
First, each relay caches o-records (and the auxiliary
data like public keys and signatures), sharing that cache
among the clients that use that relay. Because the use of a
relay is optional, SFR clients also cache o-records.

Second, each DHT node in the infrastructure keeps a
location cacheof identifier-to-IP mappings for nodes it
has recently heard about. This reduces the number of hops
in certain DHT routing schemes that require O(log n)
hops in an n-node system. In Section 6 we present simu-
lation results showing that location caching can lower the
number of hops to two or three in over 99% of lookups.
“One-hop” DHT routing schemes [11] are another way to
lower the number of hops.

Third, SFR infrastructure nodes also cache o-records,
which helps balance load and ease hot-spots correspond-
ing to highly popular o-records: such o-records will
quickly be cached by the portals and so should not stress
the infrastructure. In addition to each portal’s caching the
o-record retrieved on behalf of a relay or client, our de-
sign also permits nodes on the DHT lookup path to cache
o-records, thereby proactively populating their cache. 8

6Without additional infrastructure, the loss of a key could be catas-
trophic, but one could imagine auxiliary services that would serve as
trusted and secure repositories of such keys. However, if a key is com-
promised, the situation is more dire; we think the only way the original
owner can prevent the takeover of his content is to breakall current tags
(i.e., render them unusable by anyone, adversary and victim alike).

7While we don’t discuss replication explicitly here, DHTs need repli-
cation to provide reliability. Thus, retrieving clients may need to down-
load from several locations to ensure they have the latest version number.

8In general, improving the performance of DHT-based systems is



3.5 Fate Sharing and Scoping

In the following, we define an “organization” as a set of
machines behind an access link. If an organization corre-
sponds to a single DNS domain, and if the organization’s
DNS servers are also behind the access link, then, when
the link fails, hosts in the organization can continue to
reach data within the organization. As described so far,
SFR does not provide such organizational fate sharing be-
cause an organization’s o-records are not explicitly as-
sociated with, or stored within, the organization.

However, SFR can ensure that clients in the same or-
ganization as the creator of an object can access the ob-
ject when an access link fails, thereby replacing domain-
based fate sharing with what we call write-locality-based
fate sharing. The enabling mechanism is a shared org-
storeholding copies of the o-records created or modi-
fied within the organization. Each time a new o-record
is created or modified via one of the relay nodes in the
organization, the relay stores a copy in the org-store and
arranges for it to be stored in the SFR infrastructure.

When retrieving, the relay first checks its internal
o-record cache. If the o-record is in the local cache
and the TTL is still valid, the relay returns the o-record
to the client. Otherwise, the relay contacts its portal to ini-
tiate a lookup of the SFRTag in the SFR infrastructure. At
the same time, the relay contacts the org-store, which re-
turns the o-record corresponding to the tag if one exists,
disregardingany TTL value set in the o-record. If the
relay does not hear from the SFR infrastructure, it times
out and infers that it cannot access any of the persistent
copies in the infrastructure. It returns to the client the
o-record returned by the org-store.

The reason the relay does not directly send the version
from the org-store beforewaiting for a response from the
SFR infrastructure is that another content provider, that
shares the same private key but is located in anotheror-
ganization, may have updated the o-record. For this
reason, whenever the relay retrieves an o-record from
the infrastructure, it also sends a copy to the org-store so
that the versions in the org-store and the infrastructure
can be reconciled if necessary. The version number in
the o-record, incremented on each update, and a UTC
timestamp set by the writer indicating the last update time,
facilitate this reconciliation.

Updating an o-record via a relay within the organi-
zation also requires the update to be sent both to the in-
frastructure and to the org-store. If the relay finds that the
infrastructure store request does not succeed because of

an active area of research, and we expect to use solutions from ongo-
ing work in the community on data replication, load balance, denial-
of-service defense, fault tolerance, and protection against compromised
nodes. While solutions to these problems are not all currently at hand,
we are optimistic that there is no fundamental obstacle to basing SFR on
DHTs, and so we focus on the many SFR-specific problems.

lack of connectivity, it asks the org-store to reconcile the
SFRTag whenever the organization is reconnected. Up-
dating an o-record that was originally created in a dif-
ferent organization does not immediately update the org-
store in the creating organization; that update happens
when the SFRTag is looked up via a relay in the original
organization. This level of inconsistency is unavoidable
without out-of-band synchronization.

The foregoing scheme improves availability for discon-
nected organizations but does not ensure that infrastruc-
ture nodes hold up-to-date versions of o-records. If an
organization remains internally connected, the semantics
of this write-locality-based cache are:

• For o-records created in an organization and never
updated from outside the organization, clients within
the organization always get the most recent version.

• For o-records updated by more than one organiza-
tion, a client within the currently disconnected orga-
nization mayreceive an older version that is no older,
and is possibly newer, than the last version written from
within the organization.

• When connectivity between the SFR infrastructure and
an organization is restored, (1) all subsequent retrievals
from within the organization return the o-recordwith
the highest version number, and (2) all subsequent re-
trievals from outside the organization return the latest
version after it has been reconciled.

• Reconciliation of o-records uses either the later
timestamp (which works reasonably well assuming
loose clock synchronization between writers and pre-
serves the same semantics as when multiple writers
update an o-record while connected to the SFR in-
frastructure), or an out-of-band mechanism (e.g., by
discarding one of them, perhaps with human involve-
ment). We believe this approach is reasonable because
conflicting updates are likely to be rare and suggest the
absence of higher-level human coordination.

• Unlike with DNS, clients in different organizations on
the same side of a network partition are not guaranteed
to be able to access the other organization’s meta-data.

Scoping arises naturally in the org-store framework: if
clients within the organization wish to limit their meta-
data to the organization, the relay simply stores the
o-record in the org-store only.

4 The Web-over-SFR

In today’s Web, references (i.e., URLs) encode the ad-
ministrative entity (i.e., the domain) responsible for an ob-
ject’s meta-data. Thus, if an object changes domains, hy-
perlinks to the object are almost guaranteed to break, and
a human browsing the Web might get a “notify the refer-
rer” message. Since references should not have to change



SFRTag: 0xf01212099abcd3848123ab38121
(ip addr1, port1, proto1, path1),
(DNS name, port2, proto2, path2), ...

Figure 3: Logical view of the o-record for the Web-over-
SFR. The proto field specifies the access protocol (e.g., HTTP,
HTTPS, FTP). The path field is the local pathname on the
server and identifies the referenced object to the server.

when objects move, we attempt, in the Web-over-SFR, to
provide a set of references that cleanly permit object mi-
gration and replication.

As we have already noted, the current Web supports ob-
ject migration only if the original domain(which may no
longer have any connection with the content creator) is-
sues HTTP redirects for objects it no longer hosts. In the
Web-over-SFR, in contrast, all of the information about
how to reach a particular Web object—the IP address
and port of the Web server and the pathname on the Web
server—is abstracted by the SFRTag. Content creators
(e.g., individuals, organizations, research groups) insert
this reachability information into an o-record and store
the o-record in the SFR infrastructure. To take advan-
tage of these persistent references, Web authors embed
hyperlinks like:

sfr://f012120.../optional path

where f012120... is an SFRTag resolving to a set of tuples
identifying the object, as shown in Figure 3.

To retrieve objects using this kind of URL, the Web
browser uses the SFR client to fetch the meta-data and
construct an HTTP request. The path in the HTTP re-
quest is the concatenation of a path from the oinfo field
with the optional path from the original URL. This
design preserves HTTP’s semantics. The SFR infras-
tructure is invisible to Web servers, which continue to
receive HTTP GET requests with server-specific paths.
The optional path permits flexibility, as we describe
below, and it also permits dynamic content because em-
bedded links can have paths with application-specific se-
mantics. Without the optional path, content providers,
Web clients, and Web servers would need to involve the
SFR infrastructure to construct unique URLs. That these
SFR-based URLs contain semantics illustrates that SFR
allows applications to define their own semantics while
still using a semantic-free referencing infrastructure. 9

4.1 Benefits of Web-over-SFR

Resilient linking. The SFR approach permits a general
migration solution: if a piece of content, currently refer-
enced by an SFRTag, moves to another Web server at a
different path, the content provider need only change the

9Note that DNS could certainly be enhanced with a record type that
abstracted individual Web objects, instead of hosts, but as we explain in
Section 7.2, such a system would either inherit the problems we have
identified with today’s use of DNS or else look very much like SFR.

location and oinfo fields in the o-record in order to
permit the correct reference resolution to occur for Web
clients. Web pages linking to the object continue to main-
tain the same references.

This approach is flexible about how much the reference
functions as an abstraction. An SFRTag can refer to a ma-
chine (so the optional path is the same as it is with
today’s URLs), to a file (so the SFRTag abstracts the en-
tire URL and the optional path is empty), or to a di-
rectory structure (so the SFRTag abstracts the entire URL
up until the root of the directory, and the optional path
is everything underneath the directory). For example, a
researcher might have a large collection of publications
in one directory and wish to abstract only the collection’s
location. In this case, the SFRTag would abstract the IP
address or domain name of the Web server as well as the
path on the server up until the document collection. The
publications would be differentiated by their file names.
So the SFR URLs could be:

sfr://fbcd123/pub1.ps
sfr://fbcd123/pub2.ps

If the researcher’s affiliation then changes, he or she al-
ters the o-record corresponding to fbcd123 and inserts
the new Web server and new path on the server. A refer-
ring Web page embedding sfr://fbcd123/pub1.ps can
safely be ignorant of the move.

If a particular object separates from a directory that had
been abstracted by an SFRTag, then, under the design as
so far explained, existing references would break. Our so-
lution for this case adds a level of indirection: the content
owner would update the o-record to point to a new loca-
tion that would maintain a map of old pathnames to new
location/pathname values. Although this solution can im-
plement HTTP redirection (if the new location were the
same as the old server location), our solution does not
mandate this approach. In Section 7.1, we discuss a more
elegant, but more demanding, solution that does not re-
quire this level of indirection.

The main reason the solution we have described
above is more powerful than today’s DNS-based RRS
for achieving resilient linking is that, unlike DNS,
SFR is able to resolve both the tag and the pathname
before any HTTP messages are sent to the Web server.
Achieving similar behavior today would either require
a prescient content provider to have a domain name for
each potentially movable piece of content beforehand, or
rely on HTTP redirection; the former is impractical and
a management challenge, whereas the latter is hard to
ensure when one moves between organizations.

Flexible object replication. SFR provides a natural
solution for replicating Web objects: in response to a re-
quest for an SFRTag, the infrastructure can return a num-



ber of different logical locations and paths. This prop-
erty might seem inconsequential, but consider how hard it
would be under the current Web to replicate a given ob-
ject in two places without creating mirror machines con-
taining exactly the same content. To do so would require
(a) creating separate DNS names for each object being
replicated, (b) using virtual hosting so that the two Web
servers were configured to recognize each per-object DNS
name and (c) configuring DNS entries to refer to both Web
servers. Using a domain like www.personalname.org
would not work since that forces all objects in the domain
to be resolved by the same administrative entity forever,
making it impossible, e.g., for an individual object like
www.personalname.org/photos to migrate later with-
out breaking existing, referring hyperlinks. The Web-
over-SFR solution is much simpler and would allow sev-
eral collaborators to replicate each other’s content quite
easily, yielding a grass-rootsreplication service.

In the case of massive replication, namely when it
would be absurd or inappropriate to return to the client
all of the locations of all replicas, we expect that the SFR
infrastructure would direct clients to external services,
such as a replication server that would direct requests
to the appropriate replica using information from the
requester’s IP address and other hints. We discuss
alternatives to this decision in Section 7.1.

Reliable pointer services. Because SFR permits any-
one to insert o-records into the infrastructure, third par-
ties can become known as good indirectors—they can cre-
ate and expose SFRTags that always resolve to particu-
lar sites or objects, and it would be their responsibility
to track the object’s movements. Referring Web pages
could embed the SFRTags established by the indirectors,
and then these providers of reliable pointers might have
an incentive to make the location service work. For ex-
ample, a service might provide a pointer to “This year’s
tax forms”; no matter what year it is, you can access the
necessary tax forms by following the SFRTag.

4.2 Human-Usability Challenges

The challenges that arise under the SFR framework but
which are not explicitly solved by the infrastructure are
related to user-level names, our term for the ways that
humans identify content, such as search queries, typed-in
URLs, AOL keywords, hyperlinks in documents, saved
bookmarks, and URLs sent in e-mail. DNS-based Web
URLs conflate the reference, a low-level tag resolved by
the RRS, and the user-level name, which allows people to
find what they are looking for. SFR, in contrast, separates
the two functions, focusing on reference resolution
and exposing an interface that permits many user-level
naming solutions to co-exist.

Canonical names. A natural question is how humans
will retrieve content if references are human-unfriendly.
The answer is, first, that humans mostly do not depend on
typed-in URLs today. All other current user-level nam-
ing methods work perfectly under SFR: search queries,
for example, return candidate SFR URLs instead of DNS-
based URLs. Individuals could also e-mail SFR URLs
to each other. (Users are already used to dealing with
human-unfriendly URLs this way: links sent in e-mail
from amazon.com, for example, are essentially a domain
name plus a semantic-free string.)

Second, when users do type URLs, they use DNS as
a canonicalization service: a well-known mapping from
human-readable names to Web objects. To permit equiva-
lent functionality under SFR, DNS need not be the canon-
icalization source. Moreover, it might be desirable if sev-
eral mapping services existed. We believe that if SFR
becomes popular then Web service providers with appro-
priate expertise would compete to provide such services.
Two obvious models already exist—AOL keywords and
the paper yellow pages—and we can imagine a wide spec-
trum of services that map user-level names to a particular
SFRTag or set of SFRTags.

We observe that to the extent DNS provides canonical
handles today, it does so mainly for Web sitesand sel-
dom for individual Web objects. Since references in SFR
can be as coarse as per-site or as granular as per-object,
any canonicalization service for SFR would naturally be
able to name entire sites and individual objects, ultimately
yielding a more complete canonicalization function than
DNS.

Of course, under SFR, the problem of bootstrapping
exists, namely how users get pointers to directory
services. A number of possibilities exist, including
pointers shipped with browsers, links sent in e-mail from
friends, applications on the local host that populate a
local database of useful sites, and network administra-
tors or ISPs dynamically providing pointers to useful
canonicalization services with DHCP. DNS names
themselves could provide one canonicalization service,
e.g., www.foo.com would map to an SFRTag for the home
page for Foo, Inc. This is similar to the scheme presented
by Ballintijn et al. [2]. Using DNS in this way is not a
contradiction: we are not using DNS for referencingbut
rather as a user-level naming service that competes with
any number of other such services.

Confidence. Although human users of the Web usu-
ally have confidence in Web content because of the asso-
ciated DNS name, we note that this level of confidence
is actually quite weak. It depends entirely on whether
the “correct” company owns a given domain name, and
it is easy to create spoof sites that give users misplaced
confidence in content. Nevertheless, domain names con-



vey meaning and help users validate URLs before visiting
them (e.g., when selecting among search results). Hence,
we anticipate that search engines (and others) would hide
SFR URLs and give humans confidence in new ways.

Rather than give lengthy detail on ways humans can
have well-placed confidence in content under SFR, we
outline just one (though imagining others is not hard): hy-
perlinks on Web pages optionally embed a taginfo ob-
ject alongside the SFRTag. This object contains crypto-
graphic statements of the form “Entity E says that this tag
is CNN”, where E is a Web service provider that users
trust. Users’ browsers would inform them about who is
certifying the link. We note that this scheme is imple-
mented entirely above the SFR layer and that it is an ap-
plication function, leaving SFR performing only reference
resolution. With such a scheme, content authentication
could be granular—it could occur at the level of individ-
ual objects, rather than at the level of administrative do-
mains (as certificates issued by certificate authorities do
today, for example).

Rather than “hard-coding” one approach to canonical-
ization and confidence, we believe the infrastructure itself
should permit multiple schemes to co-exist. Separating
the functions of user-level naming and reference resolu-
tion will certainly not solve the intractable problem of hu-
mans fighting over names. But it will move these tus-
sles [3] to an arena in which multiple services can com-
pete but in which none of these competing services is part
of the core reference resolution infrastructure.

4.3 Pragmatics

So far we have focused on the fundamental problems
faced by SFR. However, there are more pragmatic con-
cerns that would have to be addressed before the Web-
over-SFR could be viable. We don’t believe they repre-
sent insurmountable difficulties, but they will require new
tools. We now mention a few of these issues.

Local references. Currently, with DNS-based
URLs, if a hyperlink in a Web page points to an-
other page in the same administrative domain, there
are two possibilities: either the hyperlink will be
local (e.g., <A HREF=/imgs/dog.gif>) or the hy-
perlink will reference the current domain (e.g., <A
HREF=http://mysite.org/imgs/dog.gif>). The first
case does not involve any lookups, so it would continue
to work in an SFR-based Web (although, because refer-
ences can abstract any portion of the path component,
only absolute links will work, not relative ones). In the
second case, under DNS, the client need not do another
lookup because it would have the address information for
mysite.org cached.

Under SFR, however, if the content provider used
another SFRTag to refer somewhere on the same site
(e.g., <A HREF=sfr://ab12126/dog.gif>), the client
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Figure 4: SFR implementation.

would have to do a separate SFR lookup, incurring addi-
tional latency. Our (currently unimplemented) solution is
to allow the content provider to insert hints next to local
URLs. These hints would indicate that the reference is
local and would also contain a pathname.

Optimizations. As described earlier, o-records’
location fields may contain DNS names, possibly in-
troducing extra latency (since clients would have to do
two sets of lookups, one for SFR and one for DNS). If re-
ducing latency were paramount for the o-record owner,
however, the owner might avoid this layer of indirection
and instead rely on an external system that directly up-
dates the IP addresses in batches of o-records.

Tools. We believe that any realistic deployment of SFR
would necessarily be accompanied by new editing tools
for content providers that either hide the actual references
or else make them easier to work with. Although ques-
tions about how to build these tools are worthwhile, they
are outside the scope of this paper.

5 Implementation

5.1 SFR Implementation

SFR portal nodes run a slightly modified version of
MIT’s DHash/Chord [8, 31] along with a separate SFR
server module that uses DHash’s API to store and retrieve
o-records in response to client requests. Client appli-
cations interact with SFR by linking to the SFR client
library, which communicates with a nearby SFR portal
via a simple request/response protocol, as pictured in Fig-
ure 4. We have not yet implemented the SFR relay. The
SFR client library exposes put() and get() methods to
applications for storing and retrieving o-records. Both
the SFR server and SFR client cache o-records accord-
ing to the TTL field.



The SFR server has several purposes: it abstracts the
underlying DHT for applications that use SFR; it exposes
a narrow interface (so that SFR clients need not conform
to the wider interfaces that DHTs sometimes require); and
it serves as a marshal for client requests, allowing SFR to
control its clients’ interaction with the DHT and allow-
ing administrators to extend the SFR server to implement
other security and access control functions.

To achieve reference integrity through randomness, we
modified DHash to enforce the relationship described in
Section 3.3 between the reference, a salt and a public key.
Like DHash, the SFR server and SFR client are written in
C++, use the SFS toolkit [17] for asynchronous program-
ming and cryptographic operations, and run on FreeBSD
and Linux. Because of the simple network protocol be-
tween the SFR client and server, we anticipate that writ-
ing SFR clients in other languages and on other platforms
will not be difficult.

The protocol has four messages: GetRequest,
GetResponse, PutRequest, and PutResponse. The
messages’ contents (including items like the salt, the
o-record, and the public key) are sent using type-length-
value (TLV) encoding; both the client and server sign their
messages. Applications must supply the public key of
the SFR portal to the SFR client library (the converse is
not necessary because the SFR portal does not need to
identify its clients, except by the public key, which the
client supplies). The implementation currently assumes
a stream-oriented connection (which is certainly not opti-
mal for performance), but it would not require much effort
to move to an unreliable service like UDP.

5.2 Web-over-SFR Implementation

SFR clients are not yet embedded in Web browsers and
so to prototype the Web-over-SFR, we use a Web proxy
that simulates how a Web browser would interact with
SFR if SFR were ubiquitous. The proxy is written in
C++ and uses the SFS toolkit and SFR client library. The
proxy’s basic operation is translating URLs submitted by
clients into SFR URLs. The proxy serves several func-
tions: (1) it allows end-users to experience the latency
associated with SFR as compared to DNS; (2) it allows
us to dynamically populate SFR with the o-records that
would exist if the whole Web used SFR; and (3) it allows
us to test the usability of semantic-free URLs.

In its usual mode, the proxy addresses (1) and (2).
When a client browser requests a traditional URL, the
proxy translates it into an SFR lookup by first hashing the
URL and using that hash as the salt, and then hashing this
salt together with the proxy’s public key, thereby creating
an SFRTag (as described in Section 3.3). The proxy then
uses the SFR client to retrieve meta-data for this SFRTag.
If the lookup is successful, the proxy uses the IP, port,
and pathname information in the returned o-record to

contact the actual Web server and then begins returning
content to the client, thereby incurring the latency associ-
ated with an SFR lookup. If the lookup is unsuccessful,
the proxy, besides returning content to the client, popu-
lates the SFR infrastructure on demand by constructing
an appropriate o-record (based on a DNS lookup) and
inserting it into the infrastructure.

This o-record contains a list of (IP address, port)
pairs as well as a corresponding list of paths, a timestamp,
and the TTL from DNS (different from the o-record’s
TTL field, discussed in Section 3.1). The proxy stores
these latter two items to obey DNS’s semantics: if the
proxy does an SFR lookup and the TTL has expired, the
proxy executes another DNS request and inserts the up-
dated o-record into the infrastructure.

The SFR Web proxy also directly accepts URLs of the
form http://0123aa.../optional path and treats the
0123aa portion as an SFRTag (as we described in Sec-
tion 4). Given Web pages with this type of SFR URL, we
can test SFR’s usability. In the future, we plan to have the
proxy also rewrite traditional URLs in the Web pages that
it returns to clients to make these URLs semantic-free,
thereby permitting convenient usability tests.

6 Evaluation

We analyze SFR’s performance using a combination of
real-world data and simulation.

6.1 Latency Data

We deployed SFR nodes running DHash/Chord and the
SFR portal software on the PlanetLab testbed [26]. The
Chord ring uses approximately 130 physical hosts and
390 virtual nodes [31]. We also deployed our Web proxy
at three different PlanetLab locations, and seven people
(including the authors) used this proxy for days at a time
over a one month period. When the proxy receives a URL,
it creates two SFRTags—one corresponding to the host-
name portion of the URL and the other corresponding to
the entire URL—and then submits both to the embedded
SFR client (which in turn contacts the SFR portal run-
ning on the local host). In order to permit a fair experi-
ential comparison with DNS, the proxy returns content to
the user as soon as the SFR client returns the o-record
corresponding to the hostname digest. The SFR client
cache (which obeys DNS TTLs in our implementation) is
then equivalent to a DNS cache. If SFR were actually de-
ployed, the number of SFRTags would be in between the
number of hostnames and the number of distinct URLs on
the Web: many SFRTags will certainly refer to directories
under Web sites but not to individual Web pages.

Figure 5 compares the CDF of SFR’s latency (as mea-
sured by the SFR portals) to a dataset for DNS that depicts
a CDF of latency, as measured by a resolver at MIT. Only
the SFR lookups that resulted in a Chord lookup are rep-
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Figure 5: CDFs of SFR latency and DNS dataset

resented; the rest are satisfied via the SFR client’s or the
SFR portal’s o-record cache. We use lookups from an
eight-day period in September 2003; the depicted period
occurred during the one month period mentioned above
and after a bug fix that slightly improved latency. Be-
cause of the limited size of the PlanetLab Chord ring,
aggressive caching of other virtual nodes’ locations, and
sharing of these caches among virtual nodes, 98% of the
almost 15,000 lookups resolved in two Chord hops (the
usual minimum); the rest required three hops. We show
in simulation below that even in a large Chord ring, ag-
gressive location caching results in two or three hops per
lookup.

The DNS data comes from the work by Jung et al. [16]
and depicts the end-to-end latency experienced by a re-
solver at MIT when NS record cache misses occurred. We
do not incorporate A-record cache misses because doing
so would unfairly count the many small requests for low-
TTL A-records that are directed to CDNs, which move
the name servers for popular content close to the client
in many cases. We anticipate that if SFR were widely
deployed, CDNs running over it would be able to imple-
ment similar optimizations. The DNS data is three years
old and was collected at a single institution; hence, this
comparison is meant to be suggestive, only, and not con-
clusive.

The feedback from our users is that perceived latency
was generally indistinguishable from DNS, and Figure 5
supports this claim, suggesting that SFR’s latency in the
common case (two hops) is reasonably close to DNS’s.

6.2 Simulation

We have just seen that on a testbed shared by hundreds
of researchers, two and even three hop Chord lookups
yield reasonable latencies. We now wish to confirm with
simulations that—despite the O(log n) theoretical bound
for number of lookups—two and three hop lookups will,
in fact, be the norm when the hosts implementing the
DHT do aggressive location caching.

We used a modified version of the Chord simulator
described by Stoica et al. [31] to gather trace-driven re-
sults. In the simulator, nodes add any node with which
they communicate to the location cache. Eviction pro-
ceeds LRU, though a node’s fingers will never be ejected.
Because of Chord’s routing, aggressive location caching
causes nodes to accumulate relatively more information
about nodes nearby in ID space.

To drive our simulations, we used two days of NLANR
cache trace data [14], aggregating the separate caches’
logs. Each URL in the aggregated trace causes a sim-
ulated SFR lookup of the URL’s hash. (Hashing host-
names produced slightly better results, so we conserva-
tively present the former.) To “warm up” the location
cache, we ran the simulator on a day’s worth of NLANR
requests and then tabulated hop counts for the next 10 6

requests.
Figure 6(a) presents the results of this experiment for

various location cache sizes and a 1,000 node Chord ring.
Location caching reduces the number of hops to two or
three because “being close counts”: if the originating
node, O, has not cached the target of a lookup, T , O is
nonetheless likely to know about a node P near T , and P
is likely to know about T . We believe that caching con-
stant fractions of the Chord ring is reasonable because the
number of nodes in a deployed SFR infrastructure would
be bounded.

We must be careful, however. If the DHT’s mem-
bership often changes, larger location caches could have
more stale state and thus be detrimental. We expect,
though, that as long as the membership changes relatively
infrequently compared to the rate of requests, then fail-
ures will not much alter hop counts or even latencies. To
see why, note that if a DHT node O attempts to commu-
nicate with a failed node, F , O will wait for a set length
of time (500 ms in the simulation) before concluding that
F is inaccessible. After this interval, O evicts F ’s entry
from its cache and then tries to contact a different node.
This permits lookups to make progress, even if the lookup
path reaches a failed node [31]. If requests arrive fre-
quently, then stale state will be corrected frequently and
the number of timeouts will be relatively small; on aver-
age, therefore, the churn does not increase latency much.
(This “cleaning-on-demand” is in addition to Chord’s sta-
bilization procedure, which also helps clear old state in
the location cache.)

To examine failures experimentally, we first used the
NLANR trace to warm up the cache with a million re-
quests. (Although this warm-up period differs from the
previous one, the effect is negligible in practice.) We
then used interleaved Poisson processes: node deaths and
births each occur on average once every 10 seconds, and,
concurrently, 10,000 document lookups occur at an aver-
age rate of 20 per second, the approximate lookup rate in
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Figure 6: Simulated effect of location caching on hop count (a) without failures and (b) with node failures. 1000 nodes.

the NLANR trace. We believe that a failure in the infras-
tructure every 10 seconds is a significant over-estimate.
Figure 6(b) shows the results: failures do not affect av-
erage hop counts and only slightly affect the 99th and
1st percentiles. Timeouts vary slightly with the location
cache size but are never more frequent than an average of
.04 timeouts per lookup, with a 99th percentile of two.

We conclude this section by noting that DNS’s fail-
ure resilience depends on proper manual configuration of
name servers and on zone transfers between primary and
secondary servers. We do not envision the same degree of
manual involvement in SFR’s operation.

7 Alternatives and Related Work

In this section, we consider alternative designs and re-
lated work, first focusing on design decisions we made in
the context of SFR and then discussing other proposals
with similar goals.

7.1 SFR with More or Less

SFR−−. We considered a more minimal design, called
SFR−−, that associates every SFRTag to an authoritative
domain that hosts the actual o-record. In this model,
looking up an SFRTag in the global SFR infrastructure re-
turns only a pointer to an organization’s resolver, and then
this organization-specific resolver maps the SFRTag to the
object’s actual meta-data. This approach unfortunately re-
quires each organization to host its own SFR service and
each client to do an extra lookup (if caching fails), namely
the one inside the organization.

However, there are several advantages to this approach,
and they are instructive. First, SFR−− is analogous
to the way DNS’s top-level domain servers point to NS
records, so SFR−− inherits the usual benefits of hierar-
chy (e.g., fate sharing), but it does so without any structure
built into the references themselves. Second, SFR−−’s

global records point only to individual organizations and
so would rarely change, and third, because SFR−− of-
floads many of the reference resolution problems to the
individual organizations, it explicitly allows each organi-
zation to implement its own solutions to problems like ob-
ject migration and replication.

SFR++. SFR can’t directly handle massive replication
because sending all locations to the client is unwieldy,
and SFR itself doesn’t have any application-independent
way of selecting which locations are best for the client.
A modified design, SFR++, would allow SFR to dis-
ambiguate between multiple locations based on selector
fields. That is, content providers could associate several
logical o-records to the same SFRTag; when a client
does a lookup on a given SFRTag, the infrastructure could
use a client attribute, such as IP address, as a selection
mechanism for choosing from a set of o-records the one
that corresponds to a location near the client.

The ability to disambiguate based on selector fields
would also allow SFR to deal more gracefully with ob-
ject transformation, when the object referred to by a
given SFRTag splits into several component objects. Cur-
rently SFR uses redirection (see Section 4.1), which is
not ideal; with SFR-embedded disambiguation, however,
clients could submit, on a lookup, the optional path
component of an SFR URL in addition to the SFRTag.
The responsible SFR node could then do longest prefix
matches to track transformed objects, according to a ta-
ble set by the content provider and stored alongside the
o-record.

7.2 RRS: Other Approaches

The Globe literature [2, 32, 33] articulates the case for
a single, general-purpose infrastructure for mapping per-
sistent object identifiers to current locations. While they
do not state that references should be inherently human-



unfriendly, they do observe (1) that persistence implies
that references cannot encode information about how they
are resolved and (2) that human-level names should be
strictly separated from identifiers. Globe’s choice of a re-
solving substrate, however, differs from ours; in particu-
lar, the Globe location service relies on distributed trees
overlaid on a static hierarchy of nodes (though, as in SFR,
the identifiers themselves are not hierarchical nor is there
any a priori difference among the hosts comprising the
tree). SFR’s approach to reference integrity, fate sharing,
and latency differ from Globe’s as well.

The URN community [2, 5, 9, 19, 28, 29] makes a
case nearly identical to Globe’s for persistent identifiers
that identify individual objects; they propose a framework
in which each application would have its own resolving
infrastructure and its own namespace. In addition, the
URN standards specify that references are to be human-
unfriendly [29], but they neither specifically advocate that
the infrastructure enforce randomness in the references
nor do they propose a way to resolve these references.

O’Donnell articulates the need for a human-unfriendly
namespace with persistent identifiers, and his vision is
similar to ours [23, 24]. However, his numeric Open
Network Handles would each exist in their own DNS
domain underneath particular altruistic providers (e.g.,
h1282132.nicesponsor.org); this approach contrasts
with our claim that full location independence means not
encoding any identifying information—not even about the
provider responsible for the meta-data—into the reference
itself.

If Open Network Handles were enhanced so the altruis-
tic provider were removed from the URL, then all of these
handles would exist in the same domain, and the challenge
of routing in an unpartitioned namespace would arise,
along with the other challenges we mention. This scheme
would thus be functionally equivalent to SFR. (This as-
sumes DNS were augmented with a record type that ab-
stracted individual objects, otherwise these Handles could
not provide location-independent, per-object references.)

As a final alternative, the Secure File System (SFS) [18]
is an example of an existing system that relies on human-
unfriendly identifiers with cryptographic guarantees. Al-
though SFS references consist of a hostname, a hash of
a public key, and a pathname, and are thereby tied to ad-
ministrative domains, one could extend SFS to provide
machine independent references by, for example, remov-
ing the hostname component and mapping the hash of the
public key to a machine via a level of indirection like our
o-record. At that point, SFS would either face simi-
lar challenges to the ones we have identified, or it would
make use of SFR (though it would additionally have all
of SFS’s security benefits). However, this scheme could
not provide any kind of object migration without redirects
(implemented via symbolic links in SFS space), and the

SFS literature has never articulated the need for persis-
tent, location-independent identifiers.

7.3 Other Related Work

Frankston notes DNS’s conflation of user-level names
and references and also proposes a set of semantic-free
references for the Web, though he does not detail a de-
sign [10]. The PURL project provides a layer of indirec-
tion via HTTP redirects to give location-independent, per-
sistent URLs that may or may not contain semantics [27].
Phelps and Wilensky suggest a scheme for robust hyper-
links in which every document would have a unique sig-
nature, consisting of several words, and every referring
hyperlink would embed the signature so that if a link
were broken, a search engine could then find the docu-
ment [25]. These schemes make use of, and are therefore
constrained by, the existing Web infrastructure.

Digital Object Identifiers (DOIs) [13] are a URN imple-
mentation with persistent object identifiers in a managed
but human-unfriendly namespace. DOIs are in use (in-
cluding by ACM) and rely on the Handle System [6], an
RRS that maps persistent identifiers to object meta-data
using two levels of hierarchy.

The i3 infrastructure envisions a widely deployed sub-
strate for a general form of indirection [30]. This ser-
vice indirects routingwhereas SFR is an application-level
layer of indirection for naming. Cox et al.describe an im-
plementation of DNS in which they use Chord as a lookup
mechanism for DNS A-records, thereby eliminating many
administrative problems that result from the hierarchy in
DNS [7]. They hash domain names into a flat names-
pace and use the original names both as identifiers and
as a way of creating a public key hierarchy to authenti-
cate a given A-record. They do not assume widespread
caching of either the data being delivered (o-records in
our case, RRsets in theirs) or of the other nodes in the
Chord ring. Based on pessimistic assumptions about the
infrastructure (ones we do not share because we think our
system will be a managed service in which locations are
cached), they conclude that the performance of DNS over
Chord is unacceptable. They make no arguments in fa-
vor of an application-independent, semantic-free, general
purpose referencing infrastructure and envision using cur-
rent DNS names as references.

8 Conclusion

The goal of SFR is not to provide equivalent functional-
ity to DNS, which ought to continue with its original pur-
pose of hostname translation, but rather to provide a more
attractive alternative for the subclass of applications, like
referencing Web objects, that require an RRS.

In this paper, we have knowingly adopted an extreme
view, namely that references should encode neither hu-
man readable semantics nor any other information about



the referenced object. It is entirely possible, however,
that the referencing system of the future will be some-
where in between DNS and SFR, either because human
readability turns out to be critical or because a hierar-
chical resolving scheme that ties references to particu-
lar providers turns out to be the right economic model.
For now, we simply observe that from a usability perspec-
tive, today’s DNS and SFR each offer something the other
does not. DNS makes composing and publicizing content
easy while SFR attempts to achieve the full potential of
the Web as a medium in which anyone can publish (even
without controlling a domain), in which objects can freely
migrate, and for which the infrastructure is simple, robust,
and accessible.
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