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Abstract

This paper describes a C++ toolkit for easily extending
the Unix file system. The toolkit exposes the NFS in-
terface, allowing new file systems to be implemented
portably at user level. A number of programs have im-
plemented portable, user-level file systems. However,
they have been plagued by low-performance, deadlock,
restrictions on file system structure, and the need to re-
boot after software errors. The toolkit makes it easy to
avoid the vast majority of these problems. Moreover, the
toolkit also supports user-level access to existing file sys-
tems through the NFS interface—a heretofore rarely em-
ployed technique. NFS gives software an asynchronous,
low-level interface to the file system that can greatly ben-
efit the performance, security, and scalability of certain
applications. The toolkit uses a new asynchronous I/O
library that makes it tractable to build large, event-driven
programs that never block.

1 Introduction

Many applications could reap a number of benefits from
a richer, more portable file system interface than that of
Unix. This paper describes a toolkit for portably ex-
tending the Unix file system—both facilitating the cre-
ation of new file systems and granting access to existing
ones through a more powerful interface. The toolkit ex-
ploits both the client and server sides of the ubiquitous
Sun Network File System [15]. It lets the file system
developer build a new file system by emulating an NFS
server. It also lets application writers replace file system
calls with networking calls, permitting lower-level ma-
nipulation of files and working around such limitations
as the maximum number of open files and the synchrony
of many operations.

We used the toolkit to build the SFS distributed file
system [13], and thus refer to it as the SFS file system
development toolkit. SFS is relied upon for daily use
by several people, and thus shows by example that one
can build production-quality NFS loopback servers. In
addition, other users have picked up the toolkit and built
functioning Unix file systems in a matter of a week. We

have even used the toolkit for class projects, allowing
students to build real, functioning Unix file systems.

Developing new Unix file systems has long been a dif-
ficult task. The internal kernel API for file systems varies
significantly between versions of the operating system,
making portability nearly impossible. The locking disci-
pline on file system data structures is hair-raising for the
non-expert. Moreover, developing in-kernel file systems
has all the complications of writing kernel code. Bugs
can trigger a lengthy crash and reboot cycle, while ker-
nel debugging facilities are generally less powerful than
those for ordinary user code.

At the same time, many applications could benefit
from an interface to existing file systems other than
POSIX. For example, non-blocking network I/O per-
mits highly efficient software in many situations, but any
synchronous disk I/O blocks such software, reducing its
throughput. Some operating systems offer asynchronous
file I/O through the POSIX aio routines, but aio is only
for reading and writing files—it doesn’t allow files to be
opened and created asynchronously, or directories to be
read.

Another shortcoming of the Unix file system inter-
face is that it foments a class of security holes known
as time of check to time of use, or TOCTTOU, bugs [2].
Many conceptually simple tasks are actually quite diffi-
cult to implement correctly in privileged software—for
instance, removing a file without traversing a symbolic
link, or opening a file on condition that it be accessible
to a less privileged user. As a result, programmers often
leave race conditions that attackers can exploit to gain
greater privilege.

The next section summarizes related work. Section 3
describes the issues involved in building an NFS loop-
back server. Section 4 explains how the SFS toolkit fa-
cilitates the construction of loopback servers. Section 5
discusses loopback clients. Section 6 describes applica-
tions of the toolkit and discusses performance. Finally,
Section 7 concludes.



2 Related work

A number of file system projects have been implemented
as NFS loopback servers. Perhaps the first example is the
Sun automount daemon [5]—a daemon that mounts re-
mote NFS file systems on-demand when their pathnames
are referenced. Neither automount nor a later, more ad-
vanced automounter, amd [14], were able to mount file
systems in place to turn a pathname referenced by a user
into a mount point on-the-fly. Instead, they took the ap-
proach of creating mount points outside of the directory
served by the loopback server, and redirecting file ac-
cesses using symbolic links. Thus, for example, amd
might be a loopback server for directory /home. When it
sees an access to the path /home/am2, it will mount the
corresponding file system somewhere else, say on /a/

amsterdam/u2, then produce a symbolic link, /home/
am2→ /a/amsterdam/u2. This symbolic link scheme
complicates life for users. For this and other reasons,
Solaris and Linux pushed part of the automounter back
into the kernel. The SFS toolkit shows they needn’t have
done so for mounting in place, one can in fact implement
a proper automounter as a loopback server.

Another problem with previous loopback automoun-
ters is that one unavailable server can impede access to
other, functioning servers. In the example from the previ-
ous paragraph, suppose the user accesses /home/am2 but
the corresponding server is unavailable. It may take amd
tens of seconds to realize the server is unavailable. Dur-
ing this time, amd delays responding to an NFS request
for file am2 in /home. While the the lookup is pending,
the kernel’s NFS client will lock the /home directory,
preventing access to all other names in the directory as
well.

Loopback servers have been used for purposes other
than automounting. CFS [3] is a cryptographic file sys-
tem implemented as an NFS loopback server. Unfortu-
nately, CFS suffers from deadlock. It predicates the com-
pletion of loopback NFS write calls on writes through the
file system interface, which, as discussed later, leads to
deadlock. The Alex ftp file system [7] is implemented
using NFS. However Alex is read-only, which avoids
any deadlock problems. Numerous other file systems are
constructed as NFS loopback servers, including the se-
mantic file system [9] and the Byzantine fault-tolerant
file system [6]. The SFS toolkit makes it considerably
easier to build such loopback servers than before. It
also helps avoid many of the problems previous loop-
back servers have had. Finally, it supports NFS loopback
clients, which have advantages discussed later on.

New file systems can also be implemented by replac-
ing system shared libraries or even intercepting all of a
process’s system calls, as the UFO system does [1]. Both

methods are appealing because they can be implemented
by a completely unprivileged user. Unfortunately, it is
hard to implement complete file system semantics us-
ing these methods (for instance, you can’t hand off a
file descriptor using sendmsg()). Both methods also fail
in some cases. Shared libraries don’t work with stat-
ically linked applications, and neither approach works
with setuid utilities such as lpr. Moreover, having dif-
ferent namespaces for different processes can cause con-
fusion, at least on operating systems that don’t normally
support this.

FiST [19] is a language for generating stackable file
systems, in the spirit of Ficus [11]. FiST can output
code for three operating systems—Solaris, Linux, and
FreeBSD—giving the user some amount of portability.
FiST outputs kernel code, giving it the advantages and
disadvantages of being in the operating system. FiST’s
biggest contributions are really the programming lan-
guage and the stackability, which allow simple and el-
egant code to do powerful things. That is somewhat or-
thogonal to the SFS toolkit’s goals of allowing file sys-
tems at user level (though FiST is somewhat tied to the
VFS layer—it couldn’t unfortunately be ported to the
SFS toolkit very easily). Aside from its elegant language,
the big trade-off between FiST and the SFS toolkit is per-
formance vs. portability and ease of debugging. Loop-
back servers will run on virtually any operating system,
while FiST file systems will likely offer better perfor-
mance.

Finally, several kernel device drivers allow user-level
programs to implement file systems using an interface
other than NFS. The now defunct UserFS [8] exports
an interface similar to the kernel’s VFS layer to user-
level programs. UserFS was very general, but only ran
on Linux. Arla [17], an AFS client implementation, con-
tains a device, xfs, that lets user-level programs imple-
ment a file system by sending messages through /dev/

xfs0. Arla’s protocol is well-suited to network file sys-
tems that perform whole file caching, but not as general-
purpose as UserFS. Arla runs on six operating systems,
making xfs-based file systems portable. However, users
must first install xfs. Similarly, the Coda file system [12]
uses a device driver /dev/cfs0.

3 NFS loopback server issues

NFS loopback servers allow one to implement a new file
system portably, at user-level, through the NFS proto-
col rather than some operating-system-specific kernel-
internal API (e.g., the VFS layer). Figure 1 shows the
architecture of an NFS loopback server. An application
accesses files using system calls. The operating system’s
NFS client implements the calls by sending NFS requests
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Figure 1: A user-level NFS loopback server

to the user-level server. The server, though treated by the
kernel’s NFS code as if it were on a separate machine,
actually runs on the same machine as the applications. It
responds to NFS requests and implements a file system
using only standard, portable networking calls.

3.1 Complications of NFS loopback
servers

Making an NFS loopback server perform well poses a
few challenges. First, because it operates at user-level,
a loopback server inevitably imposes additional context
switches on applications. There is no direct remedy for
the situation. Instead, the loopback file system imple-
menter must compensate by designing the rest of the sys-
tem for high performance.

Fortunately for loopback servers, people are willing to
use file systems that do not perform optimally (NFS it-
self being one example). Thus, a file system offering new
functionality can be useful as long as its performance
is not unacceptably slow. Moreover, loopback servers
can exploit ideas from the file system literature. SFS,
for instance, manages to maintain performance compet-
itive with NFS by using leases [10] for more aggressive
attribute and permission caching. An in-kernel imple-
mentation could have delivered far better performance,
but the current SFS is a useful system because of its en-
hanced security.

Another performance challenge is that loopback
servers must handle multiple requests in parallel. Oth-
erwise, if, for instance, a server waits for a request of its
own over the network or waits for a disk read, multiple
requests will not overlap their latencies and the overall
throughput of the system will suffer.

Worse yet, any blocking operation performed by an
NFS loopback server has the potential for deadlock. This
is because of typical kernel buffer allocation strategy. On
many BSD-derived Unixes, when the kernel runs out of
buffers, the buffer allocation function can pick some dirty
buffer to recycle and block until that particular buffer has

been cleaned. If cleaning that buffer requires calling into
the loopback server and the loopback server is waiting
for the blocked kernel thread, then deadlock will ensue.

To avoid deadlock, an NFS loopback server must
never block under any circumstances. Any file I/O within
a loopback server is obviously strictly prohibited. How-
ever, the server must avoid page faults, too. Even on op-
erating systems that rigidly partition file cache and pro-
gram memory, a page fault needs a struct buf to pass
to the disk driver. Allocating the structure may in turn
require that some file buffer be cleaned. In the end, a
mere debugging printf can deadlock a system; it may
fill the queue of a pseudo-terminal handled by a remote
login daemon that has suffered a page fault (an occur-
rence observed by the author). A large piece of soft-
ware that never blocks requires fundamentally different
abstractions from most other software. Simply using an
in-kernel threads package to handle concurrent NFS re-
quests at user level isn’t good enough, as the thread that
blocks may be the one cleaning the buffer everyone is
waiting for.

NFS loopback servers are further complicated by the
kernel NFS client’s internal locking. When an NFS re-
quest takes too long to complete, the client retransmits
it. After some number of retransmissions, the client con-
cludes that the server or network has gone down. To
avoid flooding the server with retransmissions, the client
locks the mount point, blocking any further requests,
and periodically retransmitting only the original, slow re-
quest. This means that a single “slow” file on an NFS
loopback server can block access to other files from the
same server.

Another issue faced by loopback servers is that a lot
of software (e.g., Unix implementations of the ANSI C
getcwd() function) requires every file on a system to have
a unique (st_dev, st_ino) pair. st_dev and st_ino

are fields returned by the POSIX stat() function. Histori-
cally, st_dev was a number designating a device or disk
partition, while st_ino corresponded to a file within that
disk partition. Even though the NFS protocol has a field
equivalent to st_dev, that field is ignored by Unix NFS
clients. Instead, all files under a given NFS mount point
are assigned a single st_dev value, made up by the ker-
nel. Thus, when stitching together files from various
sources, a loopback server must ensure that all st_ino
fields are unique for a given mount point.

A loopback server can avoid some of the problems
of slow files and st_ino uniqueness by using multi-
ple mount points—effectively emulating several NFS
servers. One often would like to create these mount
points on-the-fly—for instance to “automount” remote
servers as the user references them. Doing so is non-
trivial because of vnode locking on file name lookups.
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While the NFS client is looking up a file name, one can-
not in parallel access the same name to create a new
mount point. This drove previous NFS loopback auto-
mounters to create mount points outside of the loopback
file system and serve only symbolic links through the
loopback mount.

As user-level software, NFS loopback servers are eas-
ier to debug than kernel software. However, a buggy
loopback server can still hang a machine and require a
reboot. When a loopback server crashes, any reference to
the loopback file system will block. Hung processes pile
up, keeping the file system in use and on many operating
systems preventing unmounting. Even the unmount com-
mand itself sometimes does things that require an NFS
RPC, making it impossible to clean up the mess without
a reboot. If a loopback file system uses multiple mount
points, the situation is even worse, as there is no way to
traverse higher level directories to unmount the lower-
level mount points.

In summary, while NFS loopback servers offer a
promising approach to portable file system development,
a number of obstacles must be overcome to build them
successfully. The goal of the SFS file system develop-
ment toolkit is to tackle these problems and make it easy
for people to develop new file systems.

4 NFS loopback server toolkit

This section describes how the SFS toolkit supports
building robust user-level loopback servers. The toolkit
has several components, illustrated in Figure 2. nfs-
mounter is a daemon that creates and deletes mount
points. It is the only part of the SFS client that needs
to run as root, and the only part of the system that
must function properly to prevent a machine from get-
ting wedged. The SFS automounter daemon creates
mount points dynamically as users access them. Fi-
nally, a collection of libraries and a novel RPC compiler
simplify the task of implementing entirely non-blocking
NFS loopback servers.

4.1 Basic API

The basic API of the toolkit is effectively the NFS 3
protocol [4]. The server allocates an nfsserv object,
which might, for example, be bound to a UDP socket.
The server hands this object a dispatch function. The ob-
ject then calls the dispatch function with NFS 3 RPCs.
The dispatch function is asynchronous. It receives an ar-
gument of type pointer to nfscall, and it returns noth-
ing. To reply to an NFS RPC, the server calls the reply
method of the nfscall object. This needn’t happen be-
fore the dispatch routine returns, however. The nfscall

can be stored away until some other asynchronous event
completes.

4.2 The nfsmounter daemon

The purpose of nfsmounter is to clean up the mess when
other parts of the system fail. This saves the loopback
file system developer from having to reboot the machine,
even if something goes horribly wrong with his loopback
server. nfsmounter runs as root and calls the mount and
unmount (or umount) system calls at the request of other
processes. However, it aggressively distrusts these pro-
cesses. Its interface is carefully crafted to ensure that nf-
smounter can take over and assume control of a loopback
mount whenever necessary.

nfsmounter communicates with other daemons
through Unix domain sockets. To create a new NFS
mount point, a daemon first creates a UDP socket over
which to speak the NFS protocol. The daemon then
passes this socket and the desired pathname for the
mount point to nfsmounter (using Unix domain socket
facilities for passing file descriptors across processes).
nfsmounter, acting as an NFS client to existing loopback
mounts, then probes the structure of any loopback file
systems traversed down to the requested mount point.
Finally, nfsmounter performs the actual mount system
call and returns the result to the invoking daemon.

After performing a mount, nfsmounter holds onto the
UDP socket of the NFS loopback server. It also remem-
bers enough structure of traversed file systems to recre-
ate any directories used as mount points. If a loopback
server crashes, nfsmounter immediately detects this by
receiving an end-of-file on the Unix domain socket con-
nected to the server. nfsmounter then takes over any UDP
sockets used by the crashed server, and begins serving
the skeletal portions of the file system required to clean
up underlying mount points. Requests to other parts of
the file system return stale file handle errors, helping en-
sure most programs accessing the crashed file system exit
quickly with an error, rather than hanging on a file access
and therefore preventing the file system from being un-
mounted.

nfsmounter was built early in the development of SFS.
After that point, we were able to continue development
of SFS without any dedicated “crash boxes.” No mat-
ter what bugs cropped up in the rest of SFS, we rarely
needed a reboot. This mirrors the experience of students,
who have used the toolkit for class projects without ever
knowing the pain that loopback server development used
to cause.

On occasion, of course, we have turned up bugs in ker-
nel NFS implementations. We have suffered many kernel
panics trying to understand these problems, but, strictly
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Figure 2: Architecture of the user-level file system toolkit

speaking, that part of the work qualifies as kernel devel-
opment, not user-level server development.

4.3 Automounting in place

The SFS automounter shows that loopback automounters
can mount file systems in place, even though no previ-
ous loopback automounter has managed to do so. SFS
consists of a top level directory, /sfs, served by an auto-
mounter process, and a number of subdirectories of /sfs
served by separate loopback servers. Subdirectories of
/sfs are created on-demand when users access the direc-
tory names. Since subdirectories of /sfs are handled by
separate loopback servers, they must be separate mount
points.

The kernel’s vnode locking strategy complicates the
task of creating mount points on-demand. More specif-
ically, when a user references the name of an as-yet-
unknown mount point in /sfs, the kernel generates an
NFS LOOKUP RPC. The automounter cannot immedi-
ately reply to this RPC, because it must first create a
mount point. On the other hand, creating a mount point
requires a mount system call during which the kernel
again looks up the same pathname. The client NFS im-
plementation will already have locked the /sfs directory
during the first LOOKUP RPC. Thus the lookup within the
mount call will hang.

Worse yet, the SFS automounter cannot always im-
mediately create a requested mount point. It must val-
idate the name of the directory, which involves a DNS
lookup and various other network I/O. Validating a di-
rectory name can take a long time, particularly if a DNS
server is down. The time can be sufficient to drive the
NFS client into retransmission and have it lock the mount
point, blocking all requests to /sfs. Thus, the auto-
mounter cannot sit on any LOOKUP request for a name
in /sfs. It must reply immediately.

The SFS automounter employs two tricks to achieve
what previous loopback automounters could not. First,
it tags nfsmounter, the process that actually makes the
mount system calls, with a reserved group ID (an idea

first introduced by HLFSD [18]). By examining the
credentials on NFS RPCs, then, the automounter can
differentiate NFS calls made on behalf of nfsmounter
from those issued for other processes. Second, the au-
tomounter creates a number of special “.mnt” mount
points on directories with names of the form /sfs/

.mnt/0/, /sfs/.mnt/1/, . . . . The automounter never
delays a response to a LOOKUPRPC in the /sfs directory.
Instead, it returns a symbolic link redirecting the user to
another symbolic link in one of the .mnt mount points.
There it delays the result of a READLINK RPC. Because
the delayed readlink takes place under a dedicated mount
point, however, no other file accesses are affected.

Meanwhile, as the user’s process awaits a READLINK

reply under /sfs/.mnt/n, the automounter actually
mounts the remote file system under /sfs. Because nfs-
mounter’s NFS RPCs are tagged with a reserved group
ID, the automounter responds differently to them—
giving nfsmounter a different view of the file system
from the user’s. While users referencing the pathname in
/sfs see a symbolic link to /sfs/.mnt/. . . , nfsmounter
sees an ordinary directory on which it can mount the re-
mote file system. Once the mount succeeds, the auto-
mounter lets the user see the directory, and responds to
the pending READLINK RPC redirecting the user to the
original pathname in /sfs which has now become a di-
rectory.

A final problem faced by automounters is that the
commonly used getcwd() library function performs an
lstat system call on every entry of a directory containing
mount points, such as /sfs. Thus, if any of the loopback
servers mounted on immediate subdirectories of /sfs

become unresponsive, getcwd() might hang, even when
run from within a working file system. Since loopback
servers may depend on networked resources that become
transiently unavailable, a loopback server may well need
to become unavailable. When this happens, the loopback
server notifies the automounter, and the automounter re-
turns temporary errors to any process attempting to ac-
cess the problematic mount point (or rather, to any pro-
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cess except nfsmounter, so that unavailable file systems
can still be unmounted).

4.4 Asynchronous I/O library

Traditional I/O abstractions and interfaces are ill-suited
to completely non-blocking programming of the sort re-
quired for NFS loopback servers. Thus, the SFS file
system development toolkit contains a new C++ non-
blocking I/O library, libasync, to help write programs
that avoid any potentially blocking operations. When a
function cannot complete immediately, it registers a call-
back with libasync, to be invoked when a particular asyn-
chronous event occurs. At its core, libasync supports
callbacks when file descriptors become ready for I/O,
when child processes exit, when a process receives sig-
nals, and when the clock passes a particular time. A cen-
tral dispatch loop polls for such events to occur through
the system call select—the only blocking system call a
loopback server ever makes.

Two complications arise from this style of event-
driven programming in a language like C or C++. First,
in languages that do not support closures, it can be in-
convenient to bundle up the necessary state one must
preserve to finish an operation in a callback. Second,
when an asynchronous library function takes a callback
and buffer as input and allocates memory for its results,
the function’s type signature does not make clear which
code is responsible for freeing what memory when. Both
complications easily lead to programming errors, as we
learned bitterly in the first implementation of SFS which
we entirely scrapped.

libasync makes asynchronous library interfaces less
error-prone through aggressive use of C++ templates. A
heavily overloaded template function, wrap, produces
callback objects through a technique much like func-
tion currying: wrap bundles up a function pointer and
some initial arguments to pass the function, and it re-
turns a function object taking the function’s remaining
arguments. In other words, given a function:

res_t function (a1_t, a2_t, a3_t);

a call to wrap (function, a1, a2) produces a func-
tion object with type signature:

res_t callback (a3_t);

This wrap mechanism permits convenient bundling of
code and data into callback objects in a type-safe way.
Though the example shows the wrapping of a simple
function, wrap can also bundle an object and method
pointer with arguments. wrap handles functions and ar-
guments of any type, with no need to declare the combi-
nation of types ahead of time. The maximum number of

class foo : public bar {

/* ... */

};

void

function ()

{

ref<foo> f = new refcounted<foo>

(/* constructor arguments */);

ptr<bar> b = f;

f = new refcounted<foo>

(/* constructor arguments */);

b = NULL;

}

Figure 3: Example usage of reference-counted pointers

arguments is determined by a parameter in a perl script
that actually generates the code for wrap.

To avoid the programming burden of tracking which of
a caller and callee is responsible for freeing dynamically
allocated memory, libasync also supports reference-
counted garbage collection. Two template types offer
reference-counted pointers to objects of type T—ptr<T>

and ref<T>. ptr and ref behave identically and can
be assigned to each other, except that a ref cannot be
NULL. One can allocate a reference-counted version of
any type with the template type refcounted<T>, which
takes the same constructor arguments as type T. Figure 3
shows an example use of reference-counted garbage col-
lection. Because reference-counted garbage collection
deletes objects as soon as they are no longer needed, one
can also rely on destructors of reference-counted objects
to release resources more precious than memory, such as
open file descriptors.

libasync contains a number of support routines built
on top of the core callbacks. It has asynchronous file
handles for input and formatted output, an asynchronous
DNS resolver, and asynchronous TCP connection es-
tablishment. All were implemented from scratch to
use libasync’s event dispatcher, callbacks, and reference
counting. libasync also supplies helpful building blocks
for objects that accumulate data and must deal with short
writes (when no buffer space is available in the kernel).
Finally, it supports asynchronous logging of messages to
the terminal or system log.

4.5 Asynchronous RPC library and com-
piler

The SFS toolkit also supplies an asynchronous RPC li-
brary, libarpc, built on top of libasync, and a new RPC
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compiler, rpcc. rpcc compiles Sun XDR data structures
into C++ data structures. Rather than directly output
code for serializing the structures, however, rpcc uses
templates and function overloading to produce a generic
way of traversing data structures at compile time. This
allows one to write concise code that actually compiles
to a number of functions, one for each NFS data type.
Serialization of data in RPC calls is but one application
of this traversal mechanism. The ability to traverse NFS
data structures automatically turned out to be useful in a
number of other situations.

As an example, one of the loopback servers constitut-
ing the client side of SFS uses a protocol very similar to
NFS for communicating with remote SFS servers. The
only differences is that the SFS protocol has more ag-
gressive file attribute caching and lets the server call back
to the client to invalidate attributes. Rather than manually
extract attribute information from the return structures of
21 different NFS RPCs, the SFS client uses the RPC li-
brary to traverse the data structures and extract attributes
automatically. While the compiled output consists of nu-
merous functions, most of these are C++ template instan-
tiations automatically generated by the compiler. The
source needs only a few functions to overload the traver-
sal’s behavior on attribute structures. Moreover, any bug
in the source will likely break all 21 NFS functions.

4.6 Stackable NFS manipulators

An SFS support library, libsfsmisc, provides stackable
NFS manipulators. Manipulators take one nfsserv ob-
ject and produce a different one, manipulating any calls
from and replies to the original nfsserv object. A loop-
back NFS server starts with an initial nfsserv object,
generally nfsserv_udp which accepts NFS calls from a
UDP socket. The server can then push a bunch of manip-
ulators onto this nfsserv. For example, over the course
of developing SFS we stumbled across a number of bugs
that caused panics in NFS client implementations. We
developed an NFS manipulator, nfsserv_fixup, that
works around these bugs. SFS’s loopback servers push
nfsserv_fixup onto their NFS manipulator stack, and
then don’t worry about the specifics of any kernel bugs.
If we discover another bug to work around, we need only
put the workaround in a single place to fix all loopback
servers.

Another NFS manipulator is a demultiplexer that
breaks a single stream of NFS requests into multiple
streams. This allows a single UDP socket to be used as
the server side for multiple NFS mount points. The de-
multiplexer works by tagging all NFS file handles with
the number of the mount point they belong to. Though
file handles are scattered throughout the NFS call and re-

turn types, the tagging was simple to implement using
the traversal feature of the RPC compiler.

4.7 Miscellaneous features

The SFS toolkit has several other features. It supplies
a small, user-level module, mallock.o, that loopback
servers must link against to avoid paging. On systems
supporting the mlockall() system call, this is easily ac-
complished. On other systems, mallock.o manually pins
the text and data segments and replaces the malloc() li-
brary function with a routine that always returns pinned
memory.

Finally, the SFS toolkit contains a number of de-
bugging features, including aggressive memory check-
ing, type checking for accesses to RPC union structures,
and easily toggleable tracing and pretty-printing of RPC
traffic. Pretty-printing of RPC traffic in particular has
proven an almost unbeatable debugging tool. Each NFS
RPC typically involves a limited amount of computation.
Moreover, separate RPC calls are relatively independent
of each other, making most problems easily reproducible.
When a bug occurs, we turn on RPC tracing, locate the
RPC on which the server is returning a problematic re-
ply, and set a conditional breakpoint to trigger under the
same conditions. Once in the debugger, it is generally
just a matter of stepping through a few functions to un-
derstand how we arrive from a valid request to an invalid
reply.

Despite the unorthodox structure of non-blocking dae-
mons, the SFS libraries have made SFS’s 60,000+ lines
of code (including the toolkit and all daemons) quite
manageable. The trickiest bugs we have hit were in NFS
implementations. At least the SFS toolkit’s tracing facili-
ties let us quickly verify that SFS was behaving correctly
and pin the blame on the kernel.

4.8 Limitations of NFS loopback servers

Despite the benefits of NFS loopback servers and their
tractability given the SFS toolkit, there are two serious
drawbacks that must be mentioned. First, the NFS 2
and 3 protocols do not convey file closes to the server.
There are many reasons why a file system implementor
might wish to know when files are closed. We have im-
plemented a close simulator as an NFS manipulator, but
it cannot be 100% accurate and is thus not suitable for
all needs. The NFS 4 protocol [16] does have file closes,
which will solve this problem if NFS 4 is deployed.

The other limitation is that, because of the potential
risk of deadlock in loopback servers, one can never pred-
icate the completion of an NFS write on that of a write
issued to local disk. Loopback servers can access the

7



local disk, provided they do so asynchronously. libasync
offers support for doing so using helper processes, or one
can do so as an NFS loopback client. Thus, one can build
a loopback server that talks to a remote server and keeps
a cache on the local disk. However, the loopback server
must return from an NFS write once the corresponding
remote operation has gone through; it cannot wait for the
write to go through in the local cache. Thus, techniques
that rely on stable, crash-recoverable writes to local disk,
such as those for disconnected operation in CODA [12],
cannot easily be implemented in loopback servers; one
would need to use raw disk partitions.

5 NFS loopback clients

In addition to implementing loopback servers, libarpc al-
lows applications to behave as NFS clients, making them
loopback clients. An NFS loopback client accesses the
local hard disk by talking to an in-kernel NFS server,
rather than using the standard POSIX open/close/read/
write system call interface. Loopback clients have none
of the disadvantages of loopback servers. In fact, a loop-
back client can still access the local file system through
system calls. NFS simply offers a lower-level, asyn-
chronous alternative from which some aggressive appli-
cations can benefit.

The SFS server software is actually implemented as
an NFS loopback client using libarpc. It reaps a num-
ber of benefits from this architecture. The first is per-
formance. Using asynchronous socket I/O, the loopback
client can have many parallel disk operations outstanding
simultaneously. This in turn allows the operating sys-
tem to achieve better disk arm scheduling and get higher
throughput from the disk. Though POSIX does offer op-
tional aio system calls for asynchronous file I/O, the aio
routines only operate on open files. Thus, without the
NFS loopback client, directory lookups, directory reads,
and file creation would all still need to be performed syn-
chronously.

The second benefit of the SFS server as a loopback
client is security. The SFS server is of course trusted, as
it may be called upon to serve or modify any file. The
server must therefore be careful not to perform any op-
eration not permitted to the requesting users. Had the
server been implemented on top of the normal file sys-
tem interface, it would also have needed to perform ac-
cess control—deciding on its own, for instance, whether
or not to honor a request to delete a file. Making such de-
cisions correctly without race conditions is actually quite
tricky to do given only the Unix file system interface.1

1In the example of deleting a file, the server would need to change
its working directory to that of the file. Otherwise, between the server’s
access check and its unlink system call, a bad user could replace the di-

As an NFS client, however, it is trivial to do. Each NFS
request explicitly specifies the credentials with which to
execute the request (which will generally be less priv-
ileged than the loopback client itself). Thus, the SFS
server simply tags NFS requests with the appropriate
user credentials, and the kernel’s NFS server makes the
access control decision and performs the operation (if ap-
proved) atomically.

The final benefit of having used a loopback client is
in avoiding limits on the number of open files. The total
number of open files on SFS clients connected to an SFS
server may exceed the maximum number of open files
allowed on the server. As an NFS loopback client, the
SFS server can access a file without needing a dedicated
file descriptor.

A user of the SFS toolkit actually prototyped an SFS
server that used the POSIX interface rather than act as
a loopback client. Even without implementing leases on
attributes, user authentication, or unique st_ino fields,
the code was almost as large as the production SFS server
and considerably more bug-prone. The POSIX server
had to jump through a number of hoops to deal with such
issues as the maximum number of open files.

5.1 Limitations of NFS loopback clients

The only major limitation on NFS loopback clients is that
they must run as root. Unprivileged programs cannot ac-
cess the file system with the NFS interface. A related
concern is that the value of NFS file handles must be
carefully guarded. If even a single file handle of a direc-
tory is disclosed to an untrusted user, the user can access
any part of the file system as any user. Fortunately, the
SFS RPC compiler provides a solution to this problem.
One can easily traverse an arbitrary NFS data structure
and encrypt or decrypt all file handles encountered. The
SFS toolkit contains a support routine for doing so.

A final annoyance of loopback clients is that the file
systems they access must be exported via NFS. The ac-
tual mechanics of exporting a file system vary signifi-
cantly between versions of Unix. The toolkit does not yet
have a way of exporting file systems automatically. Thus,
users must manually edit system configuration files be-
fore the loopback client will run.

rectory with a symbolic link, thus tricking the server into deleting a
file in a different (unchecked) directory. Cross-directory renames are
even worse—they simply cannot be implemented both atomically and
securely. An alternative approach might be for the server to drop priv-
ileges before each file system operation, but then unprivileged users
could send signals to the server and kill it.
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# Lines Function
19 includes and global variables
22 command-line argument parsing

8 locate and spawn nfsmounter
5 get server’s IP address

11 ask server’s portmap for NFS port
14 ask server for NFS file handle
20 call nfsmounter for mount
20 relay NFS calls

119 Total

Figure 4: Lines of code in dumbfs

6 Applications of the toolkit

The SFS toolkit has been used to build a number of sys-
tems. SFS itself is a distributed file system consisting of
two distinct protocols, a read-write and a read-only pro-
tocol. On the client side, each protocol is implemented
by a separate loopback server. On the server side, the
read-write protocol is implemented by a loopback client.
(The read-only server uses the POSIX interface.) A num-
ber of non-SFS file systems have been built, too, in-
cluding a file system interface to CVS, a file system to
FTP/HTTP gateway, and file system interfaces to several
databases.

The toolkit also lets one develop distributed file sys-
tems and fit them into the SFS framework. The SFS
read-write protocol is very similar to NFS 3. With few
modifications, therefore, one can transform a loopback
server into a network server accessible from any SFS
client. SFS’s libraries automatically handle key manage-
ment, encryption and integrity checking of session traf-
fic, user authentication, and mapping of user credentials
between local and remote machines. Thus, a distributed
file system built with the toolkit can without much effort
provide a high level of security against network attacks.

Finally, the asynchronous I/O library from the toolkit
has been used to implement more than just file systems.
People have used it to implement TCP proxies, caching
web proxies, and TCP to UDP proxies for networks with
high loss. Asynchronous I/O is an extremely efficient
tool for implementing network servers. A previous ver-
sion of the SFS toolkit was used to build a high perfor-
mance asynchronous SMTP mail server that survived a
distributed mail-bomb attack. (The “hybris worm” in-
fected thousands of machines and made them all send
mail to our server.)

6.1 dumbfs – A simple loopback server

To give a sense for the complexity of using the SFS
toolkit, we built dumbfs, the simplest possible loopback

file system. dumbfs takes as arguments a server name, a
pathname, and a mount point. It creates a loopback NFS
mount on the mount point, and relays NFS calls to a re-
mote NFS server. Though this functionality may sound
worthless, such a utility does actually have a use. Be-
cause the SFS RPC libraries will trace and pretty-print
RPC traffic, dumbfs can be used to analyze exactly how
an NFS client and server are behaving.

The implementation of dumbfs required 119 lines of
code (including blank lines for readability), as shown in
Figure 4. Notably missing from the breakdown is any
clean-up code. dumbfs does not need to catch any sig-
nals. If it dies for any reason, nfsmounter will clean up
the mount point.

Figure 5 shows the implementation of the NFS call re-
laying code. Function dispatch is called for each NFS
RPC. The first two lines manipulate the “auth unix pa-
rameters” of the NFS call—RPC terminology for user
and group IDs. To reuse the same credentials in an out-
going RPC, they must be converted to an AUTH * type.
The AUTH * type is defined by the RPC library in the op-
erating system’s C library, but the authopaque routines
are part of the SFS toolkit.

The third line of dispatch makes an outgoing NFS
RPC. nfsc is an RPC handle for the remote NFS server.
nc->getvoidarg returns a pointer to the RPC argu-
ment structure, cast to void *. nc->getvoidres sim-
ilarly returns a pointer to the appropriate result type,
also cast to void *. Because the RPC library is asyn-
chronous, nfsc->call will return before the RPC com-
pletes. dispatch must therefore create a callback, using
wrap to bundle together the function reply with the ar-
gument nc.

When the RPC finishes, the library makes the call-
back, passing an additional argument of type clnt stat

to indicate any RPC-level errors (such as a timeouts). If
such an error occurs, it is logged and propagated back
as the generic RPC failure code SYSTEM ERR. warn is
the toolkit’s asynchronous logging facility. The syntax
is similar to C++’s cout, but warn additionally converts
RPC and NFS enum error codes to descriptive strings.
If there is no error, reply simply returns the result data
structure just filled in by the outgoing NFS RPC.

6.1.1 dumbfs performance

To analyze the inherent overhead of a loopback server,
we measured the performance of dumbfs. We ran ex-
periments between two 800 MHz Pentium III machines,
each with 256 MBytes of PC133 RAM and a Seagate
ST318451LW disk. The two machines were connected
with 100 Mbit/sec switched Ethernet. The client ran
FreeBSD 4.2, and the server OpenBSD 2.8.
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void

dispatch (nfscall *nc)

{

static AUTH *ao = authopaque_create ();

authopaque_set (ao, nc->getaup ());

nfsc->call (nc->proc (), nc->getvoidarg (), nc->getvoidres (),

wrap (reply, nc), ao);

}

static void

reply (nfscall *nc, enum clnt_stat stat)

{

if (stat) {

warn << "NFS server: " << stat << "\n";

nc->reject (SYSTEM_ERR);

}

else

nc->reply (nc->getvoidres ());

}

Figure 5: dumbfs dispatch routine

To isolate the loopback server’s worst characteristic,
namely its latency, we measured the time to perform an
operation that requires almost no work from the server—
an unauthorized fchown system call. NFS required an
average of 186 µsec, dumbfs 320 µsec. Fortunately, raw
RPC latency is a minor component of the performance of
most real applications. In particular, the time to process
any RPC that requires a disk seek will dwarf dumbfs’s
latency. As shown in Figure 7, the time to compile
emacs 20.7 is only 4% slower on dumbfs than NFS. Fur-
thermore, NFS version 4 has been specifically designed
to tolerate high latency, using such features as batching
of RPCs. In the future, latency should present even less
of a problem for NFS 4 loopback servers

To evaluate the impact of dumbfs on data movement,
we measured the performance of sequentially reading a
100 MByte sparse file that was not in the client’s buffer
cache. Reads from a sparse file cause an NFS server to
send blocks of zeros over the network, but do not re-
quire the server to access the disk. This represents the
worst case scenario for dumbfs, because the cost of ac-
cessing the disk is the same for both file systems and
would only serve to diminish the relative difference be-
tween NFS 3 and dumbfs. NFS 3 achieved a through-
put of 11.2 MBytes per second (essentially saturating the
network), while dumbfs achieved 10.3. To get a rough
idea of CPU utilization, we used top command to exam-
ine system activity while streaming data from a 50 GByte
sparse file through dumbfs. The idle time stayed between
30–35%.

6.2 cryptfs – An encrypting file system

As a more useful example, we built an encrypting file
system in the spirit of CFS [3]. Starting from dumbfs, it
took two evenings and an additional 600 lines of C++ to
build cryptfs—a cryptographic file system with a very
crude interface. cryptfs takes the same arguments as
dumbfs, prompts for a password on startup, then encrypts
all file names and data.

cryptfs was inconvenient to use because it could only
be run as root and unmounting a file system required
killing the daemon. However, it worked so well that we
spent an additional week building cryptfsd—a daemon
that allows multiple encrypted directories to be mounted
at the request of non-root users. cryptfsd uses almost the
same encrypting NFS translator as cryptfs, but is addi-
tionally secure for use on machines with untrusted non-
root users, provides a convenient interface, and works
with SFS as well as NFS,

6.2.1 Implementation

The final system is 1,920 lines of code, including
cryptfsd itself, a utility cmount to mount encrypted di-
rectories, and a small helper program pathinfo invoked
by cryptfsd. Figure 6.2 shows a breakdown of the lines of
code. By comparison, CFS is over 6,000 lines (though of
course it has different features from cryptfs). CFS’s NFS
request handing code (its analogue of nfs.C) is 2,400
lines.

cryptfsd encrypts file names and contents using Rijn-
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# Lines File Function
223 cryptfs.h Structure definitions, inline & template functions, global declarations

90 cryptfsd.C main function, parse options, launch nfsmounter
343 findfs.C Translate user-supplied pathname to NFS/SFS server address and file handle
641 nfs.C NFS dispatch routine, encrypt/decrypt file names & contents
185 afs.C NFS server for /cfs, under which encrypted directories are mounted
215 adm.C cryptfsadm dispatch routine—receive user mount requests

26 cryptfsadm.x cryptfsadm RPC protocol for requesting mounts from cryptfsd
63 cmount.C Utility to mount an encrypted directory

134 pathinfo.c Helper program—run from findfs.C to handle untrusted requests securely

1,920 Total

Figure 6: Lines of code in cryptfsd. The last two source files are for stand-alone utilities.

dael, the AES encryption algorithm. File names are en-
crypted in CBC mode, first forwards then backwards to
ensure that every byte of the encrypted name depends
on every byte of the original name. Symbolic links are
treated similarly, but have a 48-bit random prefix added
so that two links to the same file will have different en-
cryptions.

The encryption of file data does not depend on other
parts of the file. To encrypt a 16-byte block of plaintext
file data, cryptfsd first encrypts the block’s byte offset in
the file and a per-file “initialization vector,” producing
16 bytes of random-looking data. It exclusive-ors this
data with the plaintext block and encrypts again. Thus,
any data blocks repeated within or across files will have
different encryptions.

cryptfsd could have used a file’s inode number or a
hash of its NFS file handle as the initialization vector.
Unfortunately, such vectors would not survive a tradi-
tional backup and restore. Instead, cryptfsd stores the
initialization vector at the beginning of the file. All file
contents is then shifted forward 512 bytes. We used 512
bytes though 8 would have sufficed because applications
may depend on the fact that modern disks write aligned
512-byte sectors atomically.

Many NFS servers use 8 KByte aligned buffers. Shift-
ing a file’s contents can therefore hurt the performance
of random, aligned 8 KByte writes to a large file; the
server may end up issuing disk reads to produce com-
plete 8 KByte buffers. Fortunately, reads are not nec-
essary in the common case of appending to files. Of
course, cryptfs could have stored the initialization vector
elsewhere. CFS, for instance, stores initialization vec-
tors outside of files in symbolic links. This technique
incurs more synchronous disk writes for many metadata
operations, however. It also weakens the semantics of
the atomic rename operation. We particularly wished to
avoid deviating from traditional crash-recovery seman-
tics for operations like rename.

Like CFS, cryptfs does not handle sparse files prop-
erly. When a file’s size is increased with the truncate
system call or with a write call beyond the file’s end, any
unwritten portions of the file will contain garbage rather
than 0-valued bytes.

The SFS toolkit simplified cryptfs’s implementation
in several ways. Most importantly, every NFS 3 RPC
(except for NULL) can optionally return file attributes
containing file size information. Some operations addi-
tionally return a file’s old size before the RPC executed.
cryptfs must adjust these sizes to hide the fact that it shifts
file contents forward. (Also, because Rijndael encrypts
blocks of 16 bytes, cryptfs adds 16 bytes of padding to
files whose length is not a multiple of 16.)

Manually writing code to adjust file sizes wherever
they appear in the return types of 21 different RPC calls
would have been a daunting and error-prone task. How-
ever, the SFS toolkit uses the RPC compiler’s data struc-
ture traversal functionality to extract all attributes from
any RPC data structure. Thus, cryptfs only needs a total
of 15 lines of code to adjust file sizes in all RPC replies.

cryptfs’s implementation more generally benefited
from the SFS toolkit’s single dispatch routine architec-
ture. Traditional RPC libraries call a different service
function for every RPC procedure defined in a proto-
col. The SFS toolkit, however, does not demultiplex
RPC procedures. It passes them to a single function like
dispatch in Figure 5. When calls do not need to be
demultiplexed (as was the case with dumbfs), this vastly
simplifies the implementation.

File name encryption in particular was simplified by
the single dispatch routine architecture. A total of 9
NFS 3 RPCs contain file names in their argument types.
However, for 7 of these RPCs, the file name and directory
file handle are the first thing in the argument structure.
These calls can be handled identically. cryptfs therefore
implements file name encryption in a switch statement
with 7 cascaded “case” statements and two special cases.
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(Had the file names been less uniformly located in argu-
ment structures, of course, we could have used the RPC
traversal mechanism to extract pointers to them.)

Grouping code by functionality rather than RPC pro-
cedure also results in a functioning file system at many
more stages of development. That in turn facilitates in-
cremental testing. To develop cryptfs, we started from
dumbfs and first just fixed the file sizes and offsets. Then
we special-cased read and write RPCs to encrypt and de-
crypt file contents. Once that worked, we added file name
encryption. At each stage we had a working file system
to test.

A function to “encrypt file names whatever the RPC
procedure” is easy to test and debug when the rest of
the file system works. With a traditional demultiplexing
RPC library, however, the same functionality would have
been broken across 9 functions. The natural approach in
that case would have been to implement one NFS RPC
at a time, rather than one feature at a time, thus arriving
at a fully working system only at the end.

6.2.2 cryptfs performance

To evaluate cryptfs’s performance, we measured the time
to untar the emacs 20.7 software distribution, configure
the software, compile it, and then delete the build tree.
Figure 7 shows the results. The white bars indicate the
performance on FreeBSD’s local FFS file system. The
solid gray bars show NFS 3 over UDP. The solid black
bars show the performance of cryptfs. The leftward slant-
ing black bars give the performance of dumbfs for com-
parison.

The untar phase stresses data movement and latency.
The delete and configure phases mostly stress latency.
The compile phase additionally requires CPU time—it
consumes approximately 57 seconds of user-level CPU
time as reported by the time command. In all phases,
cryptfs is no more than 10% slower then NSF3. Interest-
ingly enough, cryptfs actually outperforms NFS 3 in the
delete phase. This does not mean that cryptfs is faster at
deleting the same files. When we used NFS 3 to delete
an emacs build tree produced by cryptfs, we observed the
same performance as when deleting it with cryptfs. Some
artifact of cryptfs’s file system usage—perhaps the fact
that almost all file names are the same length—results in
directory trees that are faster to delete.

For comparison, we also ran the benchmark on CFS
using the Blowfish cipher.2 The black diagonal stripes

2Actually, CFS did not execute the full benchmark properly—some
directories could not be removed, putting rm into an infinite loop. Thus,
for CFS only, we took out the benchmark’s rm -rf command, instead
deleting as much of the build tree as possible with find/xargs and then
renaming the emacs-20.7 directory to a garbage name.

labeled “CFS-async” show its performance. CFS out-
performs even straight NFS 3 on the untar phase. It
does so by performing asynchronous file writes when
it should perform synchronous ones. In particular, the
fsync system call does nothing on CFS. This is extremely
dangerous—particularly since CFS runs a small risk of
deadlocking the machine and requiring a reboot. Users
can loose the contents of files they edit.

We fixed CFS’s dangerous asynchronous writes by
changing it to open all files with the O FSYNC flag. The
change did not affect the number system calls made, but
ensured that writes were synchronous, as required by the
NFS 2 protocol CFS implements. The results are shown
with gray diagonal stipes, labeled “CFS-sync.” CFS-
sync performs worse than cryptfs on all phases. For com-
pleteness, we also verified that cryptfs can beat NFS 3’s
performance by changing all writes to unstable and giv-
ing fake replies to COMMIT RPCs—effectively what
CFS does.

Because of the many architectural differences between
cryptfs and CFS, the performance measurements should
not be taken as a head-to-head comparison of SFS’s
asynchronous RPC library with the standard libc RPC
facilities that CFS uses. However, CFS is a useful pack-
age with performance many that people find acceptable
given its functionality. These experiments show that,
armed with the SFS toolkit, the author could put together
a roughly equivalent file system in just a week and a half.

Building cryptfsd was a pleasant experience, because
every little piece of functionality added could immedi-
ately be tested. The code that actually manipulates NFS
RPCs is less than 700 lines. It is structured as a bunch of
small manipulations to NFS data structures being passed
between and NFS client and server. There is a mostly
one-to-one mapping from RPCs received to those made.
Thus, it is easy for cryptfs to provide traditional crash-
recovery semantics.

7 Summary

User-level software stands to gain much by using NFS
over the loopback interface. By emulating NFS servers,
portable user-level programs can implement new file sys-
tems. Such loopback servers must navigate several tricky
issues, including deadlock, vnode and mount point lock-
ing, and the fact that a loopback server crash can wedge
a machine and require a reboot. The SFS file system
development toolkit makes it relatively easy to avoid
these problems and build production-quality loopback
NFS servers.

The SFS toolkit also includes an asynchronous RPC
library that lets applications access the local file system
using NFS. For aggressive applications, NFS can actu-
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Figure 7: Execution time of emacs untar, configure, compile, and delete.

ally be a better interface than the traditional open/close/
read/write. NFS allows asynchronous access to the file
system, even for operations such as file creation that are
not asynchronously possible through system calls. More-
over, NFS provides a lower-level interface that can help
avoid certain race conditions in privileged software.
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Availability

The SFS file system development toolkit is free software,
released under version 2 of the GNU General Public Li-
cense. The toolkit comes bundled with SFS, available
from http://www.fs.net/.
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