
ABSTRACT
Analyzing intrusions today is an arduous, largely manual task
because system administrators lack the information and tools
needed to understand easily the sequence of steps that occurred in
an attack. The goal of BackTracker is to identify automatically
potential sequences of steps that occurred in an intrusion. Starting
with a single detection point (e.g., a suspicious file), BackTracker
identifies files and processes that could have affected that detection
point and displays chains of events in a dependency graph. We use
BackTracker to analyze several real attacks against computers that
we set up as honeypots. In each case, BackTracker is able to high-
light effectively the entry point used to gain access to the system
and the sequence of steps from that entry point to the point at
which we noticed the intrusion. The logging required to support
BackTracker added 9% overhead in running time and generated
1.2 GB per day of log data for an operating-system intensive work-
load.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection–
information flow controls, invasive software (e.g., viruses,
worms, Trojan horses); K.6.4 [Management of Computing and
Information Systems]: System Management–management
audit; K.6.5 [Management of Computing and Information
Systems]: Security and Protection–invasive software,
unauthorized access (e.g., hacking, phreaking).

General Terms
Management, Security.

Keywords
Computer forensics, intrusion analysis, information flow.

1. INTRODUCTION
The frequency of computer intrusions has been increasing rapidly
for several years [4]. It seems likely that, for the foreseeable future,
even the most diligent system administrators will continue to cope
routinely with computer break-ins. After discovering an intrusion,

a diligent system administrator should do several things to recover
from the intrusion. First, the administrator should understand how
the intruder gained access to the system. Second, the administrator
should identify the damage inflicted on the system (e.g., modified
files, leaked secrets, installed backdoors). Third, the administrator
should fix the vulnerability that allowed the intrusion and try to
undo the damage wrought by the intruder. This paper addresses the
methods and tools an administrator uses to understand how an
intruder gained access to the system.

Before an administrator can start to understand an intrusion, she
must first detect that an intrusion has occurred [2]. There are
numerous ways to detect a compromise. A tool such as TripWire
[20] can detect a modified system file; a network or host firewall
can notice a process conducting a port scan or launching a
denial-of-service attack; a sandboxing tool can notice a program
making disallowed or unusual patterns of system calls [18, 16] or
executing foreign code [22]. We use the term detection point to
refer to the state on the local computer system that alerts the
administrator to the intrusion. For example, a detection point could
be a deleted, modified, or additional file, or it could be a process
that is behaving in an unusual or suspicious manner.

Once an administrator is aware that a computer is compromised,
the next step is to investigate how the compromise took place [1].
Administrators typically use two main sources of information to
find clues about an intrusion: system/network logs and disk state
[15]. An administrator might find log entries that show unexpected
output from vulnerable applications, deleted or forgotten attack
toolkits on disk, or file modification dates which hint at the
sequence of events during the intrusion. Many tools exist that
make this job easier. For example, Snort can log network traffic;
Ethereal can present application-level views of that network traffic;
and The Coroner’s Toolkit can recover deleted files [14] or sum-
marize the times at which files were last modified, accessed, or
created [13] (similar tools are Guidance Software’s EnCase,
Access Data’s Forensic Toolkit, Internal Revenue Services’ ILook,
and ASR Data’s SMART).

Unfortunately, current sources of information suffer from one or
more limitations. Host logs typically show only partial, applica-
tion-specific information about what happened, such as HTTP con-
nections or login attempts, and they often show little about what
occurred on the system after the initial compromise. Network logs
may contain encrypted data, and the administrator may not be able
to recover the decryption key. The attacker may also use an obfus-
cated custom command set to communicate with a backdoor, and
the administrator may not be able to recover the backdoor program
to help understand the commands. Disk images may contain useful
information about the final state, but they do not provide a com-
plete history of what transpired during the attack. A general limita-
tion of most tools and sources of information is that they
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intermingle the actions of the intruder (or the state caused by those
actions) with the actions/state of legitimate users. Even in cases
where the logs and disk state contain enough information to under-
stand an attack, identifying the sequence of events from the initial
compromise to the point of detection point is still largely a manual
process.

This paper describes a tool called BackTracker that attempts to
address the shortcomings in current tools and sources of informa-
tion and thereby help an administrator more easily understand
what took place during an attack. Working backward from a detec-
tion point, BackTracker identifies chains of events that could have
led to the modification that was detected. An administrator can
then focus her detective work on those chains of events, leading to
a quicker and easier identification of the vulnerability. In order to
identify these chains of events, BackTracker logs the system calls
that induce most directly dependencies between operating system
objects (e.g., creating a process, reading and writing files). Back-
Tracker’s goal is to provide helpful information for most attacks; it
does not provide complete information for every possible attack.

We have implemented BackTracker for Linux in two components:
an on-line component that logs events and an off-line component
that graphs events related to the attack. BackTracker currently
tracks many (but not all) relevant OS events. We found that these
events can be logged and analyzed with moderate time and space
overhead and that the output generated by BackTracker was help-
ful in understanding several real attacks against computers we set
up as honeypots.

2. DESIGN OF BACKTRACKER
BackTracker’s goal is to reconstruct a time-line of events that
occur in an attack. Figure 1 illustrates this with BackTracker’s
results for an intrusion on our honeypot machine that occurred on
March 12, 2003. The graph shows that the attacker caused the
Apache web server (httpd) to create a command shell (bash),
downloaded and unpacked an executable (/tmp/xploit/ptrace), then
ran the executable using a different group identity (we believe the
executable was seeking to exploit a race condition in the Linux
ptrace code to gain root access). We detected the intrusion by see-
ing the ptrace process in the process listing.

There are many levels at which events and objects can be observed.
Application-level logs such as Apache’s log of HTTP requests are
semantically rich. However, they provide no information about the
attacker’s own programs, and they can be disabled by an attacker
who gains privileged access. Network-level logs provide more
information for remote attacks, but they can be rendered useless by
encryption or obfuscation. Logging low-level events such as
machine instructions can provide complete information about the
computer’s execution [12], but these can be difficult for adminis-
trators to understand quickly.

BackTracker works by observing OS-level objects (e.g., files, file-
names, processes) and events (e.g., system calls). This level is a
compromise between the application level (semantically rich but
easily disabled) and the machine level (difficult to disable but
semantically poor). Unlike application-level logging, OS-level log-
ging cannot separate objects within an application (e.g., user-level
threads), but rather considers the application as a whole. While
OS-level semantics can be disrupted by attacking the kernel, gain-
ing kernel-mode control can be made considerably more difficult
than gaining privileged user-mode control [19]. Unlike net-
work-level logging, OS-level events can be interpreted even if the
attacker encrypts or obfuscates his network communication.

This section’s description of BackTracker is divided into three
parts (increasing in degree of aggregation): objects, events that
cause dependencies between objects, and dependency graphs. The
description and implementation of BackTracker is given for
Unix-like operating systems.

2.1 Objects
Three types of OS-level objects are relevant to BackTracker’s anal-
ysis: processes, files, and filenames.

A process is identified uniquely by a process ID and a version
number. BackTracker keeps track of a process from the time it is
created by a fork or clone system call to the point where it exits.
The one process that is not created by fork or clone is the first pro-
cess (swapper); BackTracker starts keeping track of swapper when
it makes its first system call.

A file object includes any data or metadata that is specific to that
file, such as its contents, owner, or modification time. A file is
identified uniquely by a device, an inode number, and a version
number. Because files are identified by inode number rather than
by name, BackTracker tracks a file across rename operations.
BackTracker treats pipes and named pipes as normal files. Objects
associated with System V IPC (messages, shared memory, sema-

Figure 1: Filtered dependency graph for ptrace attack.
Processes are shown as boxes (labeled by program names called
by execve during that process’s lifetime); files are shown as ovals;
sockets are shown as diamonds. BackTracker can also show
process IDs, file inode numbers, and socket ports. The detection
point is shaded.
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phores) can also be treated as files, though the current BackTracker
implementation does not yet handle these.

A filename object refers to the directory data that maps a name to a
file object. A filename object is identified uniquely by a canonical
name, which is an absolute pathname with all ./ and ../ links
resolved. Note the difference between file and filename objects. In
Unix, a single file can appear in multiple places in the filesystem
directory structure, so writing a file via one name will affect the
data returned when reading the file via the different name. File
objects are affected by system calls such as write, whereas file-
name objects are affected by system calls such as rename, create,
and unlink.

It is possible to keep track of objects at a different granularity than
processes, files, and filenames. One could keep track of
finer-grained objects, such as file blocks, or coarser-grained
objects, such as all files within a directory. Keeping track of
objects on a finer granularity reduces false dependencies (similar
to false sharing in distributed shared memory systems), but is
harder and may induce higher overhead.

2.2 Potential Dependency-Causing Events
BackTracker logs events at runtime that induce dependency rela-
tionships between objects, i.e. events in which one object affects
the state of another object. These events are the links that allow
BackTracker to deduce timelines of events leading to a detection
point. A dependency relationship is specified by three parts: a
source object, a sink object, and a time interval. For example, the
reading of a file by a process causes that process (the sink object)
to depend on that file (the source object). We denote a dependency
from a source object to a sink object as source->sink.

We use time intervals to reduce false dependencies. For example, a
process that reads a file at time 10 does not depend on writes to the
file that occur after time 10. Time is measured in terms of an
increasing event counter. Unless otherwise stated, the interval for
an event starts when the system call is invoked and ends when the
system call returns. A few types of events (such as shared memory
accesses) are aggregated into a single event over a longer interval
because it is difficult to identify the times of individual events.

There are numerous events which cause objects to affect each
other. This section describes potential events that BackTracker
could track. Section 2.3 describes how BackTracker uses depen-
dency-causing events. Section 2.4 then describes why some events
are more important to track than others and identifies the subset of
these dependencies logged by the current BackTracker prototype.
We classify dependency-causing events based on the source and
sink objects for the dependency they induce: process/process, pro-
cess/file, and process/filename.

2.2.1  Process/Process Dependencies
The first category of events are those for which one process
directly affects the execution of another process. One process can
affect another directly by creating it, sharing memory with it, or
signaling it. For example, an intruder may login to the system
through sshd, then fork a shell process, then fork a process that
performs a denial-of-service attack. Processes can also affect each
other indirectly (e.g., by writing and reading files), and we
describe these types of dependencies in the next two sections.

If a process creates another process, there is a parent->child depen-
dency because the parent initiated the existence of the child and
because the child’s address space is initialized with data from the
parent’s address space.

Besides the traditional fork system call, Linux supports the clone
system call, which creates a child process that shares the parent’s
address space (these are essentially kernel threads). Children that
are created via clone have an additional bi-directional par-
ent<->child dependency with their parent due to their shared
address space. In addition, clone creates a bi-directional depen-
dency between the child and other processes that are currently
sharing the parent’s address space. Because it is difficult to track
individual loads and stores to shared memory locations, we group
all loads and stores to shared memory into a single event that
causes the two processes to depend on each other over a longer
time interval. We do this grouping by assuming conservatively that
the time interval of the shared-memory dependency lasts from the
time the child is created to the time either process exits or replaces
its address space through the execve system call.

2.2.2  Process/File Dependencies
The second category of events are those for which a process affects
or is affected by data or attributes associated with a file. For exam-
ple, an intruder can edit the password file (process->file depen-
dency), then log in using the new password file (file->process
dependency). Receiving data from a network socket can also be
treated as reading a file, although the sending and receiving com-
puters would need to cooperate to link the receive event with the
corresponding send event.

System calls like write and writev cause a process->file depen-
dency. System calls like read, readv, and execve cause a file->pro-
cess dependency.

Files can also be mapped into a process’s address space through
mmap, then accessed via load/store instructions. As with shared
memory between processes, we aggregate mapped-file accesses
into a single event, lasting from the time the file is mmap’ed to the
time the process exits. This conservative time interval allows
BackTracker to not track individual memory operations or the
un-mapping or re-mapping of files. The direction of the depen-
dency for mapped files depends on the access permissions used
when opening the file: mapping a file read-only causes a file->pro-
cess dependency; mapping a file write-only causes a process->file
dependency; mapping a file read/write causes a bi-directional pro-
cess<->file dependency. When a process is created, it inherits a
dependency with each file mapped into its parent’s address space.

A process can also affect or be affected by a file’s attributes, such
as the file’s owner, permissions, and modification time. System
calls that modify a file’s attributes (e.g., chown, chmod, utime)
cause a process->file dependency. System calls that read file
attributes (e.g., fstat) cause a file->process dependency. In fact, any
system call that specifies a file (e.g., open, chdir, unlink, execve)
causes a file->process dependency if the filename specified in the
call exists, because the return value of that system call depends on
the file’s owner and permissions.

2.2.3  Process/Filename Dependencies
The third category of events are those that cause a process to affect
or be affected by a filename object. For example, an intruder can
delete a configuration file and cause an application to use an inse-
cure default configuration. Or an intruder can swap the names of
current and backup password files to cause the system to use
out-of-date passwords.

Any system call that includes a filename argument (e.g., open,
creat, link, unlink, mkdir, rename, rmdir, stat, chmod) causes a file-
name->process dependency, because the return value of the system
call depends on the existence of that filename in the file system
directory tree. In addition, the process is affected by all parent



directories of the filename (e.g., opening the file /a/b/c depends on
the existence of /a and /a/b). A system call that reads a directory
causes a filename->process dependency for all filenames in that
directory.

System calls that modify a filename argument cause a pro-
cess->filename dependency if they succeed. Examples are creat,
link, unlink, rename, mkdir, rmdir, and mount.

2.3 Dependency Graphs
By logging objects and dependency-causing events during run-
time, BackTracker saves enough information to build a graph that
depicts the dependency relationships between all objects seen over
that execution. Rather than presenting the complete dependency
graph, however, we would like to make understanding an attack as
easy as possible by presenting only the relevant portion of the
graph. This section describes how to select the objects and events
in the graph that relate to the attack.

We assume that the administrator has noticed the compromised
system and can identify at least one detection point, such as a mod-
ified, extra, or deleted file, or a suspicious or missing process.
Starting from that detection point, our goal is to build a depen-
dency graph of all objects and events that causally affect the state
of the detection point [23]. The part of the BackTracker system
that builds this dependency graph is called GraphGen. GraphGen
is run off-line, i.e. after the attack.

To construct the dependency graph, GraphGen reads the log of
events, starting from the last event and reading toward the begin-
ning of the log (Figure 2). For each event, GraphGen evaluates
whether that event can affect any object that is currently in the
dependency graph. Each object in the evolving graph has a time
threshold associated with it, which is the maximum time that an
event can occur and be considered relevant for that object. Graph-
Gen is initialized with the object associated with the detection
point, and the time threshold associated with this object is the ear-
liest time at which the administrator knows the object’s state is
compromised. Because the log is processed in reverse time order,
all events encountered in the log after the detection point will
occur before the time threshold of all objects currently in the
graph.

Consider how this algorithm works for the set of events shown in
Figure 3a (Figure 3b pictures the log of events as a complete
dependency graph):

• GraphGen is initialized with the detection point, which is file
X at time 10. That is, the administrator knows that file X has
the wrong contents by time 10.

• GraphGen considers the event at time 8. This event does not
affect any object in the current graph (i.e. file X), so we ignore
it.

• GraphGen considers the event at time 7. This event also does
not affect any object in the current graph.

• GraphGen considers the event at time 6. This event affects file
X in time to affect its contents at the detection point, so Graph-
Gen adds process C to the dependency graph with an edge
from process C to file X. GraphGen associates time 6 to pro-
cess C, because only events that occur before time 6 can affect
C in time to affect the detection point.

• GraphGen considers the event at time 5. This event affects an
object in the dependency graph (process C) in time, so Graph-
Gen adds file 1 to the graph with an edge to process C (at time
5).

• GraphGen considers the event at time 4. This event affects an
object in the dependency graph (process C) in time, so Graph-
Gen adds process A to the dependency graph with an edge to
process C (at time 4).

• GraphGen considers the event at time 3. This event affects pro-
cess A in time, so we add file 0 to the graph with an edge to
process A (at time 3).

• GraphGen considers the event at time 2. This event does not
affect any object in the current graph.

• GraphGen considers the event at time 1. This event affects file
1 in time, so we add process B to the graph with an edge to file
1 (at time 1).

• GraphGen considers the event at time 0. This event affects pro-
cess B in time, so we add an edge from process A to process B
(process A is already in the graph).

The resulting dependency graph (Figure 3c) is a subset of the
graph in Figure 3b. We believe this type of graph to be a useful pic-
ture of the events that lead to the detection point, especially if it
can reduce dramatically the number of objects and events an
administrator must examine to understand an attack.

The full algorithm is a bit more complicated because it must han-
dle events that span an interval of time, rather than events with dis-
crete times. Consider a scenario where the dependency graph
currently has an object O with time threshold t. If an event P->O
occurs during time interval [x-y], then we should add P to the
dependency graph iff x < t, i.e. this event started to affect O by O’s
time threshold. If P is added to the dependency graph, the time
threshold associated with P would be minimum(t,y), because the
event would have no relevant effect on O after time t, and the event
itself stopped after time y.

Events with intervals are added to the log in order of the later time
in their interval. This order guarantees that GraphGen sees the
event and can add the source object for that event as soon as possi-
ble (so that the added source object can in turn be affected by
events processed subsequently by GraphGen).

For example, consider how GraphGen would handle an event pro-
cess B->file 1 in Figure 3b with a time interval of 1-7. GraphGen
would encounter this event at a log time 7 because events are
ordered by the later time in their interval. At this time, file 1 is not
yet in the dependency graph. GraphGen remembers this event and
continually re-evaluates whether it affects new objects as they are
added to the dependency graph. When file 1 is added to the graph
(log time 5), GraphGen sees that the event process B->file 1 affects
file 1 and adds process B to the graph. The time threshold for pro-
cess B would be time 5 (the lesser of time 5 and time 7).

foreach event E in log { /* read events from latest to earliest */
foreach object O in graph {

if (E affects O by the time threshold for object O) {
if (E’s source object not already in graph) {

add E’s source object to graph
set time threshold for E’s source object to time of E

}
add edge from E’s source object to E’s sink object

}
}

}

Figure 2: Constructing a dependency graph. This code shows
the basic algorithm used to construct a dependency graph from a
log of dependency-causing events with discrete times.



GraphGen maintains several data structures to accelerate its pro-
cessing of events. Its main data structure is a hash table of all
objects currently in the dependency graph, called GraphObjects.
GraphGen uses GraphObjects to determine quickly if the event
under consideration affects an object that is already in the graph.
GraphGen also remembers those events with time intervals that
include the current time being processed in the log. GraphGen
stores these events in an ObjectsIntervals hash table, hashed on the
sink object for that event. When GraphGen adds an object to
GraphObjects, it checks if any events in the ObjectsIntervals hash
table affect the new object before the time threshold for the new
object. Finally, GraphGen maintains a priority queue of events
with intervals that include the current time (prioritized by the start-
ing time of the event). The priority queue allows GraphGen to find
and discard events quickly whose intervals no longer include the
current time.

2.4 Dependencies Tracked By Current
Prototype
Section 2.2 lists numerous ways in which one object can poten-
tially affect another. It is important to note, however, that affecting
an object is not the same as controlling an object. Depen-
dency-causing events vary widely in terms of how much the source
object can control the sink object. Our current implementation of
BackTracker focuses on tracking the events we consider easiest for
an attacker to use to accomplish a task; we call these events
high-control events.

Some examples of high-control events are changing the contents of
a file or creating a child process. It is relatively easy for an intruder
to perform a task by using high-control events. For example, an
intruder can install a backdoor easily by modifying an executable
file, then creating a process that executes it.

Some examples of low-control events are changing a file’s access
time or creating a filename in a directory. Although these events
can affect the execution of other processes, they tend to generate a
high degree of noise in the dependency graph. For example, if
BackTracker tracks the dependency caused by reading a directory,
then a process that lists the files in /tmp would depend on all pro-
cesses that have ever created, renamed, or deleted filenames in

/tmp. Timing channels [24] are an example of an extremely
low-control event; e.g., an attacker may be able to trigger a race
condition by executing a CPU-intensive program.

Fortunately, BackTracker is able to provide useful analysis without
tracking low-control events, even if low-control events are used in
the attack. This is because it is difficult for an intruder to perform a
task solely by using low-control events. Consider an intruder who
wants to use low-control events to accomplish an arbitrary task; for
example, he may try to cause a program to install a backdoor when
it sees a new filename appear in /tmp.

Using an existing program to carry out this task is difficult because
existing programs do not generally perform arbitrary tasks when
they see incidental changes such as a new filename in /tmp. If an
attacker can cause an existing program to perform an arbitrary task
by making such an incidental change, it generally means that the
program has a bug (e.g., buffer overflow or race condition). Even if
BackTracker does not track this event, it will still be able to high-
light the buggy existing program by tracking the chain of events
from the detection point back to that program.

Using a new, custom program to carry out an arbitrary task is easy.
However, it will not evade BackTracker’s analysis because the
events of writing and executing such a custom program are
high-control events and BackTracker will link the backdoor to the
intruder’s earlier actions through those high-control events. To
illustrate this, consider in Figure 3b if the event “file 1->process C”
was a low-control event, and process C was created by process B
(rather than by process A as shown). Even if BackTracker did not
track the event “file 1->process C”, it would still link process B to
the detection point via the event “process B->process C”.

BackTracker currently logs and analyzes the following high-con-
trol events: process creation through fork or clone; load and store
to shared memory; read and write of files and pipes; receiving data
from a socket; execve of files; load and store to mmap’ed files; and
opening a file. We have implemented partially the logging and
tracking of file attributes and filename create, delete, and rename
(these events are not reflected in Section 5’s results). We plan to
implement logging and tracking for System V IPC (messages,
shared memory, semaphores) and signals.

(b) dependency graph (c) dependency graph

Figure 3: Dependency graph for an example set of events with discrete times. The label on each edge shows the time of the event. The
detection point is file X at time 10. By processing the event log, GraphGen prunes away events and objects that do not affect file X by time
10.
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3. IMPLEMENTATION STRUCTURE FOR
LOGGING EVENTS AND OBJECTS
While the computer is executing, BackTracker must log informa-
tion about objects and dependency-causing events to enable the
dependency-graph analysis described in Section 2. The part of
BackTracker that logs this information is called EventLogger.
After the intrusion, an administrator can run GraphGen off-line on
a log (or concatenation of logs spanning several reboots) generated
by EventLogger. GraphGen produces a graph in a format suitable
for input to the dot program (part of AT&T’s Graph Visualization
Project), which generates the human-readable graphs used in this
paper.

There are several ways to implement EventLogger. The strategy
for our current BackTracker prototype is to run the target operating
system (Linux 2.4.18) and applications inside a virtual machine
and to have the virtual-machine monitor call a kernel procedure
(EventLogger) at appropriate times (Figure 4). The operating sys-
tem running inside the virtual machine is called the guest operat-
ing system to distinguish it from the operating system that the
virtual machine is running on, which is called the host operating
system. Guest processes run on the guest operating system inside
the virtual machines; host processes run on the host operating sys-
tem. The entire virtual machine is encapsulated in a host process.
The log written by EventLogger is stored as a host file (com-
pressed with gzip). The virtual-machine monitor prevents intruders
in the guest from interfering with EventLogger or its log file.

EventLogger gleans information about events and objects inside
the target system by examining the state of the virtual machine.
The virtual-machine monitor notifies EventLogger whenever a
guest application invokes or returns from a system call or when a
guest application process exits. EventLogger learns about the event
from data passed by the virtual-machine monitor and from the vir-
tual machine’s physical memory (which is a host file). EventLog-
ger is compiled with headers from the guest kernel and reads guest
kernel data structures from the guest’s physical memory to deter-
mine event information (e.g., system call parameters), object iden-
tities (e.g., file inode numbers, filenames, process identifiers) and
dependency information (e.g., it reads the address map of a guest
process to learn what mmap’ed files it inherited from its parent).
The code for EventLogger is approximately 1300 lines, and we
added 40 lines of code to the virtual-machine monitor to support
EventLogger. We made no changes to the guest operating system.

Another possible strategy is to add EventLogger to the target oper-
ating system and not use a virtual machine. To protect EventLog-

ger’s log from the intruder, one could store the log on a remote
computer or in a protected file on the local computer.

The results of BackTracker’s analysis are independent of where
EventLogger is implemented. We have ported EventLogger to a
standalone operating system (Linux 2.4.18) to give our local sys-
tem administrators the option of using BackTracker without using
a virtual machine. To port EventLogger to the target operating sys-
tem, we modified the code that gleans information about events
and objects; this porting took one day.

The main reason we use a virtual-machine-based structure is to
leverage ReVirt, which enables one to replay the complete, instruc-
tion-by-instruction execution of a virtual machine [12]. This abil-
ity to replay executions at arbitrarily fine detail allows us to
capture complete information about workloads (e.g., real intru-
sions) while still making changes to EventLogger. Without the
ability to replay a workload repeatably, we would only be able to
analyze information captured by the version of EventLogger that
was running at the time of that workload. This ability is especially
important for analyzing real attacks, since real attackers do not
re-issue their workload upon request. EventLogger can log events
and objects during the original run or during a replaying run.

One of the standard reasons for using a virtual machine—not trust-
ing the target operating system—does not hold for BackTracker. If
an attacker gains control of the guest operating system, she can
carry out arbitrary tasks inside the guest without being tracked by
BackTracker (in contrast, ReVirt works even if the attacker gains
control of the guest operating system).

We use a version of the UMLinux virtual machine [8] that uses a
host kernel (based on Linux 2.4.18) that is optimized to support
virtual machines [21]. The virtualization overhead of the opti-
mized UMLinux is comparable to that of VMWare Workstation
3.1. CPU-intensive applications experience almost no overhead,
and kernel-intensive applications such as SPECweb99 and compil-
ing the Linux kernel experience 14-35% overhead [21].

4. PRIORITIZING PARTS OF A
DEPENDENCY GRAPH
Dependency graphs for a busy system may be too large to scruti-
nize each object and event. Fortunately, not all objects and events
warrant the same amount of scrutiny when a system administrator
analyzes an intrusion. This section describes several ways to prior-
itize or filter a dependency graph in order to highlight those parts
that are mostly likely to be helpful in understanding an intrusion.
Of course, there is a tradeoff inherent to any filtering. Even objects
or events that are unlikely to be important in understanding an
intrusion may nevertheless be relevant, and filtering these out may
accidentally hide important sequences of events.

One way to prioritize important parts of a graph is to ignore certain
objects. For example, the login program reads and writes the file
/var/run/utmp. These events cause a new login session to depend
on all prior login sessions. Another example is the file /etc/mtab.
This file is written by mount and umount and is read by bash at
startup, causing all events to depend on mount and umount. A final
example is that the bash shell commonly writes to a file named
.bash_history when it exits. Shell invocations start by reading
.bash_history, so all actions by all shells depend on all prior execu-
tions of bash. While these are true dependencies, it is easier to start
analyzing the intrusion without these objects cluttering the graph,
then to add these objects if needed.

A second way to prioritize important parts of a graph is to filter out
certain types of events. For example, one could filter out some
low-control events.

VMM kernel module

guest operating system

guest
application

host operating system

guest
application

Figure 4: Implementation structure. Our current prototype runs
the target operating system (Linux 2.4.18) and applications in a
virtual machine contained within a host process. The
virtual-machine monitor (VMM) kernel module calls a kernel
procedure (EventLogger) when a guest application invokes or
returns from a system call or when a guest application process
exits. EventLogger then reads information about the event from
the virtual machine’s physical memory.

EventLogger



These first two types of filtering (objects and events) may filter out
a vital link in the intrusion and thereby disconnect the detection
point from the source of the intrusion. Hence they should be used
only for cases where they reduce noise drastically with only a
small risk of filtering out vital links. The remainder of the filtering
rules do not run the risk of breaking a vital link in the middle of an
attack sequence.

A third way to simplify the graph is to hide files that have been
read but not written in the time period being analyzed (read-only
files). For example, in Figure 3c, file 0 is read by process A but is
not written during the period being analyzed. These files are often
default configuration or header files. Not showing these files in the
graph does not generally hinder one’s ability to understand an
attack because the attacker did not modify these files in the time
period being considered and because the processes that read the
files are still included in the dependency graph. If the initial analy-
sis does not reveal enough about the attack, an administrator may
need to extend the analysis further back in the log to include events
that modified files which were previously considered read-only.
Filtering out read-only files cannot break a link in any attack
sequence contained in the log being analyzed, because there are no
events in that log that affect these files.

A fourth way to prioritize important parts of a graph is to filter out
helper processes that take input from one process, perform a sim-
ple function on that input, then return data to the main process. For
example, the system-wide bash startup script (/etc/bashrc) causes
bash to invoke the id program to learn the name and group of the
user, and the system startup scripts on Linux invoke the program
consoletype to learn the type of the console that is being used.
These usage patterns are recognized easily in a graph: they form a
cycle in the graph (usually connected by a pipe) and take input
only from the parent process and from read-only files. As with the
prior filtering rule, this rule cannot disconnect a detection point
from an intrusion source that precedes the cycle, because these
cycles take input only from the main process, and the main process
is left in the dependency graph.

A fifth way to prioritize important parts of a graph is to choose sev-
eral detection points, then take the intersection of the dependency
graphs formed from those dependency points. The intersection of
the graphs is likely to highlight the earlier portion of an attack
(which affect all detection points), and these portions are important
to understanding how the attacker initially gained control in the
system.

We implement these filtering rules as options in GraphGen. Graph-
Gen includes a set of default rules which work well for all attacks
we have experienced. A user can add to a configuration file regular
expressions that specify additional objects and events to filter. We
considered filtering the graph after GraphGen produced it, but this
would leave in objects that should have been pruned (such as an
object that was connected only via an object that was filtered out).

Other graph visualization techniques can help an administrator
understand large dependency graphs. For example, a post-process-
ing tool can aggregate related objects in the graph, such as all files
in a directory, or show how the graph grows as the run progresses.

We expect an administrator to run GraphGen several times with
different filtering rules and log periods. She might first analyze a
short log that she hopes includes the entire attack. She might also
filter out many objects and events to try to highlight the most
important parts of an intrusion without much noise from irrelevant
events. If this initial analysis does not reveal enough about the
attack, she can extend the analysis period further back in the log
and use fewer filtering rules.

5. EVALUATION
This section evaluates how well BackTracker works on three real
attacks and one simulated attack (Table 1).

To experience and analyze real attacks, we set up a honeypot
machine [9, 25] and installed the default configuration of RedHat
7.0. This configuration is vulnerable to several remote and local
attacks, although the virtual machine disrupts some attacks by
shrinking the virtual address space of guest applications. Our hon-
eypot configuration is vulnerable to (at least) two attacks. A
remote user can exploit the OpenSSL library used in the Apache
web server (httpd) to attain a non-root shell [5], and a local user
can exploit sendmail to attain a root shell [3]. After an attacker
compromises the system, they have more-or-less free reign on the
honeypot—they can read files, download, compile, and execute
programs, scan other machines, etc.

We ran a variety of tools to detect intruders. We used a
home-grown imitation of TripWire [20] to detect changes to
important system files. We used Ethereal and Snort to detect suspi-
cious amounts of incoming or outgoing network traffic. We also
perused the system manually to look for any unexpected files or
processes.

Table 1: Statistics for BackTracker’s analysis of attacks. This table shows results for three real attacks and one simulated attack. Event
counts include only the first event from a source object to a sink object. GraphGen and the filtering rules drastically reduce the amount of
information that an administrator must peruse to understand an attack. Results related to EventLogger’s log are combined for the bind and
ptrace attacks because these attacks are intermingled in one log. Object and events counts for the self attack are given for two different
levels of filtering.

bind (Fig 5-6) ptrace (Fig 1) openssl-too (Fig 7) self (Fig 8)

time period being analyzed 24 hours 61 hours 24 hours

# of objects and events in log
155,344 objects
1,204,166 events

77,334 objects
382,955 events

2,187,963 objects
55,894,869 events

# of objects and events in
unfiltered dependency graph

5,281 objects
9,825 events

552 objects
2,635 events

495 objects
2,414 events

717 objects
3,387 events

# of objects and events in
filtered dependency graph

24 objects
28 events

20 objects
25 events

28 objects
41 events

56 (36) objects
81 (49) events

growth rate of EventLogger’s log 0.017 GB/day 0.002 GB/day 1.2 GB/day

time overhead of EventLogger 0% 0% 9%
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Figure 5: Mostly-unfiltered dependency graph generated by GraphGen for bind attack. The only
filtering used was to not show files that were read but not written. The circled areas and labels identify the
major portions of the graph. Of particular interest are the files we filter out in later dependency graphs:
/var/run/utmp, /etc/mtab, /var/log/lastlog, /root/.bash_history. We will also filter out helper processes that
take input from one process (usually via a pipe), perform a simple function on that input, then return data to
the main process. Most objects associated with S85httpd are helper processes spawned by find when
S85httpd starts.



We first evaluate how necessary it is to use the filtering rules
described in Section 4. Consider an attack we experienced on
March 12, 2003 that we named the bind attack. The machine on
this day was quite busy: we were the target of two separate attacks
(the bind attack and the ptrace attack), and one of the authors
logged in several times to use the machine (mostly to look for
signs of intruders, e.g., by running netstat, ps, ls, pstree). We
detected the attack by noticing a modified system binary
(/bin/login). EventLogger’s log for this analysis period covered 24
hours and contained 155,344 objects and 1,204,166 events (all
event counts in this paper count only the first event from a specific
source object to a specific sink object).

Without any filtering, the dependency graph generated by Graph-
Gen for this attack contains 5,281 objects and 9,825 events. While
this is two orders of magnitude smaller than the complete log, it is
still far too many events and objects for an administrator to analyze
easily. We therefore consider what filtering rules we can use to
reduce the amount of information presented to the administrator,
while minimizing the risk of hiding important steps in the attack.

Figure 5 shows the dependency graph generated by GraphGen for
this attack after filtering out files that were read but not written.
The resulting graph contains 575 objects and 1,014 events. Impor-
tant parts of the graph are circled or labeled to point out the filter-
ing rules we discuss next.

Significant noise comes from several root login sessions by one of
the authors during the attack. The author’s actions are linked to the
attacker’s actions through /root/.bash_history, /var/log/lastlog, and
/var/run/utmp. /etc/mtab also generates a lot of noise, as it is writ-
ten after most system startup scripts and read by each bash shell.
Finally, a lot of noise is generated by helper processes that take
input only from their parent process, perform a simple function on
that input, then return data to the parent (usually through a pipe).
Most processes associated with S85httpd on the graph are helper
processes spawned by find when S85httpd starts.

Figure 6 shows the dependency graph for the bind attack after
GraphGen applies the following filtering rules: ignore files that
were read but not written; ignore files /root/.bash_history,
/var/run/lastlog, /var/run/utmp, /etc/mtab; ignore helper processes
that take input only from their parent process and return a result
through a pipe. We use these same filtering rules to generate
dependency graphs for all attacks.

These filtering rules reduce the size of the graph to 24 objects and
28 events, and make the bind attack fairly easy to analyze. The
attacker gained access through httpd, downloaded a rootkit using
wget, then wrote the rootkit to the file “/tmp/ /bind”. Sometime
later, one of the authors logged in to the machine, noticed the sus-
picious file, and decided to execute it out of curiosity (don’t try this
at home!). The resulting process installed a number of modified
system binaries, including /bin/login. This graph shows that Back-
Tracker can track across several login sessions. If the attacker had
installed /bin/login without being noticed, then logged in later, we
would be able to backtrack from a detection point in her second
session to the first session by her use of the modified /bin/login.

Figure 1 shows the filtered dependency graph for a second attack
that occurred in the same March 12, 2003 log, which we named the
ptrace attack. The intruder gained access through httpd, down-
loaded a tar archive using wget, then unpacked the archive via tar
and gzip. The intruder then executed the ptrace program using a
different group identity. We later detected the intrusion by seeing
the ptrace process in the process listing. We believe the ptrace pro-
cess was seeking to exploit a race condition in the Linux ptrace
code to gain root access. Figures 1 and 6 demonstrate Back-

Tracker’s ability to separate two intermingled attacks from a single
log. Changing detection points from /bin/login to ptrace is suffi-
cient to generate distinct dependency graphs for each attack.

Figure 7 shows the filtered dependency graph for an attack on
March 2, 2003 which we named the openssl-too attack. The
machine was used lightly by one of the authors (to check for intru-
sions) during the March 1-3 period covered by this log. The
attacker gained access through httpd, downloaded a tar archive
using wget, then installed a set of files using tar and gzip. The
attacker then ran the program openssl-too, which read the configu-
ration files that were unpacked. We detected the intrusion when the
openssl-too process began scanning other machines on our net-
work for vulnerable ports.

Another intrusion occurred on our machine on March 13, 2003.
The filtered dependency graph for this attack is almost identical to
the ptrace attack.

Figure 8a shows the default filtered dependency graph for an attack
we conducted against our own system (self attack). self attack is
more complicated than the real attacks we have been subjected to.
We gain unprivileged access via httpd, then download and compile
a program (sxp) that takes advantage of a local exploit against
sendmail. When sxp runs, it uses objdump to find important
addresses in the sendmail binary, then executes sendmail through
execve to overflow an argument buffer and provide a root shell. We
use this root shell to add a privileged user to the password files.
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Figure 6: Filtered dependency graph for bind attack.



Later, we log into the machine using this new user and modify
/etc/xinetd.conf. The detection point for this attack is the modified
/etc/xinetd.conf.

One goal for this attack is to load the machine heavily to see if
BackTracker can separate the attack events from normal events.
Over the duration of the workload, we continually ran the
SPECweb99 benchmark to model the workload of a web server. To
further stress the machine, we downloaded, unpacked, and contin-
ually compiled the Linux kernel. We also logged in several times
as root and read /etc/xinetd.conf. The dependency graph shows
that BackTracker separates this legitimate activity from the attack.

We anticipate that administrators will run GraphGen multiple
times with different filtering rules to analyze an attack. An admin-
istrator can filter out new objects and events easily by editing the
configuration file from which GraphGen reads its filter rules. Fig-
ure 8b shows the dependency graph generated with an additional
rule that filters out all pipes. While this rule may filter out some
portions of the attack, it will not usually disconnect the detection
point from the from an intrusion source, because pipes are inher-
ited from a process’s ancestor, and BackTracker will track back to
the ancestor through process creation events. In Figure 8, filtering
out pipes eliminates objdump, which is related to the attack but not
critical to understanding the attack.

Next we measure the space and time overhead of EventLogger
(Table 1). It is non-trivial to compare running times with and with-
out EventLogger, because real attackers do not re-issue their work-
load upon request. Instead we use ReVirt to replay the run with and
without EventLogger and measure the difference in time. The
replay system executes busy parts of the run at the same speed as
the original run (within a few percent). The replay system elimi-
nates idle periods, however, so the percentage overhead is given as
a fraction of the wall-clock time of the original run (which was run
without EventLogger).

For the real attacks, the system is idle for long periods of time. The
average time and space overhead for EventLogger is very low for
these runs because EventLogger only incurs overhead when appli-
cations are actively using the system.

The results for self attack represent what the time and space over-
heads would be like for a system that is extremely busy. In particu-
lar, serving web pages and compiling the Linux kernel each invoke
a huge number of relevant system calls. For this run, EventLogger
slows the system by 9%, and its compressed log grows at a rate of
1.2 GB/day. While this is a substantial amount of data, a modern
hard disk is large enough to store this volume of log traffic for sev-
eral months.

GraphGen is run after the attack (off-line), so its performance is
not as critical as that of EventLogger. On a 2.8 GHz Pentium 4
with 1 GB of memory, GraphGen took less than 20 seconds to pro-
cess the logs for each of the real attacks. GraphGen took just under
3 hours to process the log for the intensive self attack. We believe
GraphGen’s running time could be reduced severalfold (without
affecting the performance of EventLogger) by making small
changes to the format of the log written by EventLogger and by
combining several of the processing stages that make up Graph-
Gen.

6. ATTACKS AGAINST BACKTRACKER
In the prior section, we showed that BackTracker helped analyze
several real attacks. In this section, we consider what an intruder
can do to hide his actions from BackTracker. An intruder may
attack the layers upon which BackTracker is built, use events that

Figure 7: Filtered dependency graph for openssl-too attack.
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Figure 8: Filtered dependency graph for self attack. Figure 8a shows the dependency produced by GraphGen with the same filtering
rules used to generate Figures 1, 6, and 7. Figure 8b shows the dependency graph produced by GraphGen after adding a rule that filters out
pipes. Figure 8b is a subgraph of Figure 8a.
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BackTracker does not monitor, or hide his actions within large
dependency graphs.

An intruder can try to foil BackTracker by attacking the layers
upon which BackTracker’s analysis or logging depend. One such
layer is the guest operating system. BackTracker’s analysis is accu-
rate only if the events and data it sees have their conventional
meaning. If an intruder can change the guest kernel (e.g., to cause
a random system call to create processes or change files), then he
can accomplish arbitrary tasks inside the guest machine without
being tracked by BackTracker. Many operating systems provide
interfaces that make it easy to compromise the kernel or to work
around its abstractions. Loadable kernel modules and direct access
to kernel memory (/dev/kmem) make it trivial to change the kernel.
Direct access to physical memory (/dev/mem) and I/O devices
make it easy to control applications and files without using the
higher-level abstractions that BackTracker tracks. Our guest oper-
ating system disables these interfaces [19]. The guest operating
system may also contain bugs that allow an intruder to compro-
mise it without using standard interfaces [7]. Researchers are
investigating ways to use virtual machines to make it more difficult
for intruders to compromise the guest operating system, e.g., by
protecting the guest kernel’s code and sensitive data structures
[17].

Another layer upon which the current implementation of Back-
Tracker depends is the virtual-machine monitor and host operating
system. Attacking these layers is considerably more difficult than
attacking the guest kernel, since the virtual-machine monitor
makes the trusted computing base for the host operating system
much smaller than the guest kernel.

If an intruder cannot compromise a layer below BackTracker, he
can still seek to stop BackTracker from analyzing the complete
chain of events from the detection point to the source of the attack.
The intruder can break the chain of events tracked if he can carry
out one step in his sequence using only low-control events that
BackTracker does not yet track. Section 2.4 explains why this is
relatively difficult.

An intruder can also use a hidden channel to break the chain of
events that BackTracker tracks. For example, an intruder can use
the initial part of his attack to steal a password, send it to himself
over the network, then log in later via that password. BackTracker
can track from a detection point during the second login session up
to the point where the intruder logged in, but it cannot link the use
of the password automatically to the initial theft of the password.
BackTracker depends on knowing and tracking the sequence of
state changes on the system, and the intruder’s memory of the sto-
len password is not subject to this tracking. However, BackTracker
will track the attack back to the beginning of the second login ses-
sion, and this will alert the administrator to a stolen password. If
the administrator can identify a detection point in the first part of
the attack, he can track from there to the source of the intrusion.

An intruder can also try to hide his actions by hiding them in a
huge dependency graph. This is futile if the events in the depen-
dency graph are the intruder’s actions because the initial break-in
phase of the attack is not obfuscated by a huge graph after the ini-
tial phase. In addition, an intruder who executes a large number of
events is more likely to be caught.

An intruder can also hide his actions by intermingling them with
innocent events. GraphGen includes only those events that poten-
tially affect the detection point, so an intruder would have to make
it look as though innocent events have affected the detection point.
For example, an intruder can implicate an innocent process by
reading a file the innocent process has written. In the worst case,

the attacker would read all recently written files before changing
the detection point and thereby implicate all processes that wrote
those files. As usual, security is a race between attackers and
defenders. GraphGen could address this attack by filtering out file
reads if they are too numerous and following the chain of events up
from the process that read the files. The attacker could then impli-
cate innocent processes in more subtle ways, etc.

Finally, an attacker can make the analysis of an intrusion more dif-
ficult by carrying out the desired sequence of steps over a long
period of time. The longer the period of attack, the more log
records that EventLogger and GraphGen have to store and analyze.

In conclusion, there are several ways that an intruder can seek to
hide his actions from BackTracker. Our goal is to analyze a sub-
stantial fraction of current attacks and to make it more difficult to
launch attacks that cannot be tracked.

7. RELATED WORK
BackTracker tracks the flow of information [11] across operating
system objects and events. The most closely related work is the
Repairable File Service [29], which also tracks the flow of infor-
mation through processes and files by logging similar events. The
Repairable File Service assumes an administrator has already iden-
tified the process that started the intrusion; it then uses the log to
identify files that potentially have been contaminated by that pro-
cess. In contrast, BackTracker begins with a process, file, or file-
name that has been affected by the intrusion, then uses the log to
track back to the source of the intrusion. The two techniques are
complementary: one could use backtracking to identify the source
of the intrusion, then use the Repairable File Service’s forward
tracking to identify the files that potentially have been contami-
nated by the intrusion. However, we believe that an intruder can
hide her actions much more easily from the forward tracking
phase, e.g., by simply touching all files in the system. Even with-
out deliberately trying to hide, we believe an intruder’s changes to
system files will quickly cause all files and processes to be labeled
as potentially contaminated. For example, if an intruder changes
the password file, all users who subsequently log into the system
will read this file, and all files they modify will be labeled as poten-
tially contaminated.

In addition to the direction of tracking, BackTracker differs from
the Repairable File Service in the following ways: (1) BackTracker
tracks additional dependency-causing events (e.g., shared memory,
mmap’ed files, pipes and named pipes; (2) BackTracker labels and
analyzes time intervals for events, which are needed to handle
aggregated events such as loads/store to mmap’ed files; and (3)
BackTracker uses filter rules to highlight the most important
dependencies. Perhaps most importantly, we use BackTracker to
analyze real intrusions and evaluate the quality of the dependency
graphs it produces for those attacks. The evaluation for the Repair-
able File Service has so far focused on time and space overhead—
to our knowledge, the spread of contamination has been evaluated
only in terms of number of processes, files, and blocks contami-
nated and has been performed only on a single benchmark (SPEC
SDET) with a randomly chosen initial process.

Work by Ammann, Jajodia, and Liu tracks the flow of contami-
nated transactions through a database and rolls data back if it has
been affected directly or indirectly by contaminated transactions
[6]. The Perl programming language also tracks the flow of tainted
information across perl program statements [28]. Like the Repair-
able File Service, both these tools track the forward flow of con-
taminated information rather than backtracking from a detection
point to the source of the intrusion.



Program slicing is a programming language technique that identi-
fies the statements in a program that potentially affect the values at
a point of interest [26]. Dynamic slicers compute the slice based on
a specific set of inputs. BackTracker could be viewed as a dynamic
program slicer on a self-modifying program, where variables are
operating system objects, and program statements are depen-
dency-causing operating system events.

Several other projects assist administrators in understanding intru-
sions. CERT’s Incident Detection, Analysis, and Response Project
(IDAR) seeks to develop a structured knowledge base of expert
knowledge about attacks and to look through the post-intrusion
system for signs that match an entry in the existing knowledge
base [10]. Similarly, SRI’s DERBI project looks through system
logs and file system state after the intrusion for clues about the
intrusion [27]. These tools automate common investigations after
an attack, such as looking for suspicious filenames, comparing file
access times with login session times, and looking for suspicious
entries in the password files. However, like investigations that are
carried out manually, these tools are limited by the information
logged by current systems. Without detailed event logs, they are
unable to describe the sequence of an attack from the initial com-
promise to the detection point.

8. CONCLUSIONS AND FUTURE WORK
We have described a tool called BackTracker that helps system
administrators analyze intrusions on their system. Starting from a
detection point, such as a suspicious file or process, BackTracker
identifies the events and objects that could have affected that detec-
tion point. The dependency graphs generated by BackTracker help
an administrator find and focus on a few important objects and
events to understand the intrusion. BackTracker can use several
types of rules to filter out parts of the dependency graph that are
unlikely to be related to the intrusion.

We used BackTracker to analyze several real attacks against com-
puters we set up as honeypots. In each case, BackTracker was able
to highlight effectively the entry point used to gain access to the
system and the sequence of steps from the entry point to the point
at which we noticed the intrusion.

In the future, we plan to track more dependency-causing events,
such as System V IPC, signals, and dependencies caused by file
attributes. We have also implemented a tool to track dependencies
forward. The combination of this tool and BackTracker will allow
us to start from a single detection point, backtrack to allow an
administrator to identify the source of the intrusion, then forward
track to identify other objects that have been affected by the intru-
sion. Significant research will be needed to filter out false depen-
dencies when tracking forward because, unlike for backward
tracking, an intruder can easily cause an explosion of the depen-
dency graph to include all files and processes.
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