
Panaché: A Scalable Distributed Index for Keyword Search
Tim Lu, Shan Sinha, Ajay Sudan
{timlu, ssinha, ajaytoo} @mit.edu

Abstract
The primary challenge in developing a peer-to-peer

file sharing system is implementing an efficient
keyword search mechanism. This paper presents
Panaché, a distributed inverted index that scales well
with the number of nodes in the network. Panaché
addresses three critical needs for searching peer-to-
peer file sharing systems—efficient use of bandwidth,
relevant search results and accommodation for
graceful node transience. To achieve these needs,
Panaché aggregates popularity information and builds
upon other peer-to-peer systems that distribute index
information by keyword. Relying on a combination of
Bloom filtering, query ordering, and truncated results
based on popularity data, Panaché can be shown to use
significantly less bandwidth than Gnutella using real-
world estimates of network parameters, while retaining
high quality search results. Simulation experiments
demonstrate that Panaché may be viable for Internet
deployment, although more comprehensive testing is
needed. Panaché provides an exciting starting point for
future development and optimization.

1. Introduction
As hard disks have become inexpensive and

broadband Internet has become more widely available,
Gnutella has quickly become one of the most popular
peer-to-peer (P2P) file sharing overlay networks on the
Internet. The most significant challenge to designing a
P2P file sharing system (FSS) is providing a keyword-
search mechanism that allows users to efficiently
locate relevant documents. In this paper, we present
Panaché, a distributed inverted index that utilizes
popularity information to provide efficient keyword
search capabilities for P2P file sharing systems.

Panaché is intended to be used for the storing and
searching of text descriptions of documents by P2P
FSS users. The actual mechanism by which documents
are transferred between peers is left to be solved by an
external system. Panaché remains independent of the
actual file sharing mechanism. Thus, Panaché makes
no claims regarding the integrity of retrieved files.

The assumptions about the network made by
Panaché’s design are consistent with those of systems
like Gnutella and Napster. Documents, primarily
multimedia files that do not contain hyperlinks
between them, are scattered across the network on
individual users’ machines. Panaché does not have

control of the files that are indexed but maintains
pointers to locations of files in the network. In order to
participate in the index, we expect users to download
and install the Panaché client on their machines.
Panaché’s index is generated by users that explicitly
publish their documents using the Panaché client.

Whereas Napster used a central index, we perform
indexing using a decentralized model. Gnutella, on the
other hand, does not maintain an index; it provides a
search mechanism that consists of broadcasting
queries, resulting in a breadth-first walk through the
network of participating hosts [8]. Napster’s approach
is efficient but is vulnerable to legal and political
scrutiny. Gnutella’s keyword search model is
distributed, but inefficient as the number of nodes
grows, since the entire network must be searched to
find all documents matching a given query.

The goal of Panaché is to provide an efficient
distributed index for an Internet P2P FSS that scales
well in the number of nodes. We claim that Panaché
scales better than Gnutella.

Panaché distributes its index by partitioning along
keywords as suggested by Reynolds and Vahdat [13].
The unique capability that Panaché provides beyond
typical keyword partitioning is the use of popularity
information. We define popularity in the context of an
Internet P2P FSS as the number of hits generated by
users that retrieve documents from the search results
returned by Panaché. We define relevance by the
assumption that documents that were chosen
frequently by other users are more relevant. Inspired
by Google, maintaining popularity information
facilitates the generation of highly relevant search
results [2]. In addition to increasing the relevance of
search results, popularity information allows Panaché
to introduce several possible optimizations to improve
index efficiency beyond typical partitioning schemes.

Panaché’s primary focus is on providing efficient
use of bandwidth while maintaining reasonable query
response times. There are four mechanisms that
Panaché utilizes to perform efficient searches:

• Query ordering
• Bloom filtering of results
• Popularity information
• Truncated results

Panaché is optimized for indexing documents using
a small set of unique keywords and is well suited for
indexing files using descriptive words chosen by the

 2

publisher or selected from document titles. We do not
expect Panaché to perform well when indexing a set of
documents based on all words in the text of the
documents, as Google does [2].

A P2P distributed index must successfully handle
users leaving and entering the network. In Gnutella,
users typically remain on the network for
approximately one hour [15]. User transience requires
that index information be maintained as the network
changes. Panaché implements a simple model for
transience that reconfigures the index when nodes
gracefully enter or exit the network. More
sophisticated implementations are left for future work.

The rest of the paper is organized as follows.
Section 2 examines other P2P implementations and
distributed indexes. Sections 3 and 4 provide a
description of our design and implementation. Section
5 describes our experimental tests and simulations. We
outline future enhancements in Section 6 and
summarize in Section 7.

2. Relevant Work
Our work builds on several sources of prior

research. The underlying lookup mechanism of
Panaché needs to locate the machine responsible for a
certain keyword in sub-linear time. Several systems,
such as Chord [16] and Pastry [14], provide a scalable
distributed lookup mechanism. For n connected nodes,
both Chord and Pastry require O(log n) routing hops
and O(log n) routing table entries to deliver messages
between nodes in steady state operation. As nodes join
and leave the network in Chord, routing state is
maintained with O(log2 n) messages with high
probability [16]. Panaché uses Chord to map keywords
to servers, but other distributed lookup mechanisms,
such as Pastry [14], Kademlia [11], and Tapestry [18],
could have been used as well.

Several existing P2P networks have adopted
differing architectures to service search requests.
Gnutella [8] broadcasts queries to locate files that
match particular keywords, with each node contacting
all of its neighbors. The aggregate bandwidth required
to support a query is costly. To limit message
propagation, a time-to-live (TTL) is assigned to each
query. However, TTLs may result in suboptimal
responses, since a document may reside on a node that
is never contacted. Yang and Garcia-Molina [17]
propose several methods for minimizing the bandwidth
consumed during search in Gnutella-like systems, such
as iterative deepening, directed breadth-first search,
and local indexes, where nodes store local information
about files on neighboring nodes. KaZaa [9] promotes
machines with wider bandwidth to Supernodes and
makes Supernodes responsible for indexing files stored
by nodes around them. Freenet [5] has no explicit

keyword search mechanism for files. Napster [12]
relied on centralized servers to answer search queries.

Panaché builds upon a research system proposed
by Reynolds and Vahdat [13] by maintaining statistics
about popular documents and hosts. Their system uses
Bloom filters to compactly represent set membership
and joins the indexes matching the query keywords.
KSS [7] assumes that network bandwidth is more
precious than storage space in P2P networks. Rather
than indexing single keywords, KSS builds a
distributed inverted index keyed on combinations of
multiple keywords. Thus, KSS avoids the overhead of
computing joins but requires an insertion time that
grows exponentially with the set size of the keyword
combinations used to build the inverted index [7]. A
novel approach by DINX [6] spreads popular
documents over more nodes in a Chord ring and
queries random nodes to find documents. DINX
performs well for locating popular documents, but
requires O(n) time to find unpopular niche documents
since all machines in the system must be contacted.

The aggregation of popularity data in our system is
inspired by the ranking system used by Google [2]. In
Google, a quality ranking for web documents is
calculated based on the number of other pages that link
to the given page and several other metrics.

3. Design Overview
Panaché is layered on top of Chord, which is an

efficient distributed lookup protocol for a given key.
Chord contains a set of nodes, each with a unique
identifier, a ChordID. It provides a single function,
successor(key), which returns the successor node of
key. The successor is defined as the first node whose
ChordID is equal to or follows key in the identifier
space, illustrated in Figure 1 [16]. The index is
partitioned by routing queries for a given keyword to a
Chord node. Keywords are mapped to the ChordID
space by using their 160-bit SHA-1 hash.

Panaché’s keyword partition scheme is based on
Reynolds and Vahdat [13]. Chord is a natural choice
for the lookup mechanism since it provides a simple
interface that scales logarithmically in the number of
nodes, which meets our goal of scalability.

Each Chord node in Panaché must run the Panaché
client, containing two components, an index server and
a query agent. Index servers are responsible for
maintaining their indexes and satisfying requests from
query agents. Panaché utilizes the libasync library that
comes with the SFS software package developed by
PDOS at MIT. The query agent is responsible for
making requests to index servers. The index server and
query agent primarily utilize libasync’s RPC package
for asynchronous communication. Since the RPC
package uses UDP, messages that require the transfer

 3

of large blocks of data occur over an auxiliary TCP
port available on all Panaché clients. Using TCP for
large messages avoids the retransmission penalty for
lost packets that contain large amounts of data.

Figure 1. Chord identifies the responsible node for a
keyword using the successor function. The keyword
for which hash(keyword) = 6 maps to the node with
ChordID 8, since successor(6) = 8. Successor(2)
returns the node with ChordID 2 in the network.
4. Implementation
4.1 Data Structures

Each index server stores two basic data structures,
Documents and Hosts. Documents contain a name, a
counter indicating the hit count, and a hash of the
document’s content (to identify identical documents).
Hosts contain a document name, a location (URL), and
a counter indicating the number of times the file has
been downloaded from this location.

Panaché maintains two hashtables, one mapping
keywords to documents, used for query processing,
and the other mapping documents to hosts, used for
document retrieval. The first table, called the
DocTable, maintains popularity information for
documents, independent of their locations in the
network. Since multiple keywords may hash to the
same bucket, each bucket contains a reference to a
series of linked keywordLists. The keywordList
contains a binary search tree (BST), docBST, of all
documents with the specified keyword, as shown in
Figure 2. Documents are inserted into the BST based
on their popularity as determined by their hit count.

Figure 2. The DocTable hashtable used in Panaché
contains keywordLists that include docBSTs of all
documents corresponding to a specific keyword.

The second hashtable, the HostTable, maps
documents to hosts. It may maintain quality rank
information on publishers, although this was not
implemented. The second table also allows the
downstream FSS to distribute the load of document

retrieval among multiple locations, which allows the
possibility of doing parallel retrieval. The HostTable
implementation is identical to the DocTable, except
that it contains document/host pairs, which are keyed
on the document name.

Hashtable put and get operations run in O(1) time.
BST insertion and accesses take O(lg n) time on
average. Document selection on docBSTs is done
using select(k), which returns the document with the k-
th highest popularity. Selection uses a dynamic order
statistics algorithm (OS-SELECT) described in CLRS
with an expected O(lg n) running time [4]. This can be
improved to a worst-case running time of O(lg n) by
using Red-Black Trees.

4.2 Document Publishing
Documents are explicitly published by users in

Panaché. Since Panaché was initially built to index
multimedia files, a crawler was not considered as part
of the design. Multimedia files typically do not contain
hyperlinks that can be crawled. However, Panaché
features a command interface for which a crawler
interface could be built.

The first time a user enters Panaché, a bulk insert
must be performed on all documents the user wishes to
publish. To index a document, non-common words are
extracted from the title. These words and optionally
other user-specified words are the document keywords
used to identify the index servers responsible for the
document. The query agent sends an add document
RPC request for each document to the appropriate
servers, inserting the document and host information
into its index. Each request contains the name and hash
of the document. Currently, only the owner of the
document is enabled to publish, since the IP address of
the message sender is used as the URL. A future
extension to Panaché may include submitting a generic
URL or a URI in the document data.

An initial bulk insert may require several thousands
of RPC messages. However, in Section 5.1, we
demonstrate this may be acceptably fast.

4.3 Querying
Multiple keyword searches are conducted by

performing a database join on the indexes of the
servers responsible for each keyword in the query.
This is done by forwarding the query through a chain
of servers that hold the index for each keyword. Each
server successively intersects its index with the
previous results and passes along the Bloom filter of
its results, as described in Section 4.3.2 and illustrated
in Figure 3. The process continues until the last server
constructs the final answer and returns the resulting
data set to the user. Empty intersections are reported
back to the user immediately.

1

2

3

4 5

6

7

8
9 6

succ(2) = 2
2

succ (6) = 8

 4

Figure 3. Query processing chain demonstrating the
forwarding of Bloom filters B(·) to other servers and
returning the final result to the client.

While large joins may be inefficient since large
data sets are transported between servers, typical
queries only contain 2-4 keywords [13]. Thus, the
bandwidth needed during the search process is limited.

4.3.1 Ordering of Queries
To minimize the amount of data that must be

transmitted between servers, the query agent sorts the
keywords composing its initial query in ascending
order of each keyword’s index size. The final result
can be no larger than the smallest index for a keyword
in the query. The query agent obtains the data needed
to order the results by contacting all of the relevant
servers in parallel.

4.3.2 Bloom Filters
Bloom filters reduce the amount of forwarded data

by a constant factor. Bloom filters compactly represent
set membership in an approach outlined by Reynolds
and Vahdat [13].

A Bloom filter of a set S = {x1,x2,…, xn} is
implemented as a bit array of size m with all bits
initially set to 0 [3]. Each element xi is hashed by hash
functions h1,h2,…,hk, each of which map into the range
{0,…,m-1}. Each bit corresponding to location hi(xi) is
set to 1. To test membership of an element y in a
Bloom filter, all hi(y) hashes are calculated and the
corresponding bits examined. If any one of the bits is
0, then the element y is not in the set. If all of the bits
are 1, then the element y either belongs to the set S or
not; the latter case is a false positive. False positives
emerge since many elements may hash to the same k
bits. The process is shown in Figure 4.

To avoid computing k hashes per element, Panaché
generates a SHA-1 hash of each document name. Each
log2 m bits of the hash indexes into the Bloom filter.

In order to minimize the number of false positives,
the optimal number of hash functions k should be set
to be k = ln 2 * (m/n), where m is the size of the
Bloom filter and n is the number of documents in the
set to be represented [13]. This value of k yields a false
positive rate of (0.6185)m/n [3]. The size of the Bloom
filter can be optimized at each step in a query-chain;

higher values yield lower false positive rates but also
less compression. In this implementation, the ratio m/n
was set to 15 to give a false positive rate < 0.01% and
a compression ratio of > 16:1, given that each
document record may be thirty bytes or longer.

0100010010 0100010010

h 1 (x 1) h 2 (x 1) … h k(x 1)

0100010010 0100010010

h 1 (y 1) h 2 (y 1) … h k(y 1)

h 1 (y 2) h 2 (y 2) … h k(y 2)
Figure 4. x1 is inserted into the Bloom filter by setting
all hi(x1) bits to 1. Since h2(y1) is 0, y1 is not in the set.
All of y2’s bits match, so it may be in the set.

Thus, servers transmit Bloom filters of results that
represent document records. Upon receiving a Bloom
filter, a server intersects it with the appropriate
keyword index and constructs a new Bloom filter to be
transmitted. The final results returned to the user are
the actual documents. The query process may contain
false positives. We do not believe that this is
detrimental to user experience. First, the rate of false
positives can be adjusted according to user preference.
Second, users can filter out the small number of false
positives manually. Finally, keyword search for a P2P
FSS typically does not require perfect accuracy.

Reynolds and Vahdat [13] propose removing false
positives by returning the final data set through the
chain of servers again. Panaché could be modified to
include this protocol as a user-selectable option, at the
expense of additional latency and bandwidth.

4.3.3 Popularity
Popularity data helps to determine the most

relevant results and enables optimizations for popular
documents and queries. Popularity information is
collected by counting the number of hits (hit count)
that a given document or host has received. The user’s
query agent must notify the responsible servers when a
document is selected by a user. Only the index servers
that provided the results to a user’s request are
updated, meaning that other servers containing the
same document may not receive the new information.
The hit count measures a document’s popularity for a
given keyword. The same document accessed often by
one keyword but not another should have a high hit
count for the former keyword and not the latter when
determining the relevant results to a given query. Thus,
a global popularity ranking is probably unnecessary.

Results are returned based on their popularity
ranking using the dynamic order statistics described in

 5

Section 4.1. Section 4.3.4 describes how truncated
queries use popularity to determine what documents to
return to the query agent first.

One difficulty with using popularity data is how to
determine popularity order when hit counts are
initially low and no clear ranking exists. Since users
are likely to select the first few results they receive, the
first documents or hosts returned could become
popular by default, despite their actual quality. As a
potential solution, servers may periodically randomize
all documents that have a hit count below a given
threshold. When select() is called for documents with a
hit count that is below this threshold, the results
returned would be randomized. Thus, documents that
have adequate popularity data above the threshold will
be returned in order but those below will be
randomized to avoid popularity inflation.

4.3.4 Truncated Queries
Though Bloom filters provide compression of data

sets, query time scales with the number of keywords in
a query and the number of matching documents to the
query, as described in Section 4.6. Since users
typically only view a limited number of results at a
time, we provide the ability to obtain a constant
number of matches at a time. Using popularity
information, Panaché ranks the results during query
processing to return the most relevant documents.

The first truncated query for t documents returns
the top t results. If unsatisfied, a user can request the
next page of t documents and so on, similar to the next
capability on web search engines.

The query-chain is extended to support truncated
results as follows. The first server forwards a Bloom
filter for 2t documents that match the first keyword.
The next servers check their indexes for matches and
forward new Bloom filters along. If any server in the
query-chain finds that less than t documents match,
that server notifies the first server. The first server then
restarts by sending a Bloom filter for twice as many
documents as the prior iteration. Currently, Panaché
does not save the current results for the restart; this
will be fixed in the future to further reduce bandwidth
overhead. If faster convergence is desired, instead of
sending twice as many documents when restarting, a
larger factor could be used so more documents are
sent.

Breaking the query-chain process into chunks
generates worst-case performance when the t
documents to be returned are the lowest ranked ones
on the first server. In this case, Panaché must transmit
c times the number of documents in the first index to
find those t documents, where c is the number of
keywords in the query. On average, though, only O(c)
data needs to be transferred.

Truncated queries are similar to the incremental
results described in [13]. They are somewhat similar to
the TTL setting for Gnutella queries and iterative
deepening in [17]. However, Panaché is more useful
since it generates relevant documents in order instead
of just returning the first set of documents found.

4.4 Transience
A distributed index for a P2P FSS must

accommodate nodes that enter and exit the network.
We implemented a simple transience model, primarily
due to time constraints, that handles the graceful entry
and exit of hosts. Handling node transience consists of
transferring indexes between index servers.

An exiting host serializes its entire DocTable and
HostTable and transmits this via TCP to its successor.
After successful transmission, the host leaves. The
receiving host deserializes the incoming data and
inserts the keyword/document and document/host pairs
into its own DocTable and HostTable, respectively.

To enter the Chord network, a node must, through
an external mechanism, obtain the address of another
node in the network. An entering host must then
inherit a portion of the index from its successor. The
new node notifies its successor to identify all
keywords for which the successor is no longer
responsible. The corresponding indices are transferred
to the new node. Since Chord utilizes a ring structure
for its key space, determining the keywords to transfer
is simply a matter of hashing each keyword held by the
successor and comparing it to the ChordIDs of the new
node and its successor. The relevant entries from the
DocTable and HostTable are serialized and sent to the
new host via TCP. After successful transmission, the
entries are deleted from the new host’s successor.

Index transfers in our implementation present
several challenges. For instance, after a new node
enters the system and acquires its part of the index, it
is unclear whether the transferred portion of the index
can be deactivated from the original source, since there
is latency in the settling time associated with Chord
[16]. Settling time permits a situation in which two
nodes simultaneously enter the network and
temporarily resolve to the same successor. In our naïve
implementation, once Chord settles, queries will
continue to be resolved correctly, but this leads to
unused, replicated data across several nodes.

Moreover, there are different policies associated
with deactivating index entries. Suppose a node enters
and inserts a new set of documents. If the node leaves
and never returns, then the documents indexed should
be expired by some mechanism.

Another challenge to index transfers is that they
may be lengthy transactions, since a large number of
index entries may have to be transmitted. For users

 6

with modems, this may be a non-trivial wait time.
Compression may help, but certainly there is an
opportunity to develop a more sophisticated system.

We estimate that servers will index less than
10,000 documents in total [15], corresponding to
approximately 400Kb. For a user connected by
modem, the transfer may be long. However, the
majority of indexes should be much smaller [15].

The current implementation of Panaché addresses
none of the described challenges. Handling transience
in a distributed index is closely tied to the issue of
index reliability. We plan to address transience and
reliability more completely in a future version.

4.5 Expected Performance
Panaché is expected to perform well for single

keyword queries since identifying the correct index
server requires O(log n) messages by Chord’s lookup
service. For multiple keyword queries, servers must
perform joins of their respective data sets, yielding
O(k*m) performance, where k is the number of
keywords and m is the number of matches. For queries
with few keywords or a low number of matching
documents, query ordering and Bloom filters should
yield good performance. For larger numbers of
matching documents, truncated results can reduce the
amount of data that needs to be transmitted over the
network. Popularity information is used to ensure that
the most relevant documents are returned.
Nonetheless, Panaché may not perform optimally for
queries composed of many keywords or for many
matching documents since even with truncated results,
a large number of documents must be ranked to return
relevant responses.

According to Reynolds and Vahdat [13], about
28.5% of queries to popular search services were for a
single keyword while 67.1% were for 2 to 5 keywords.
Under the assumption that there are several tens of
thousands of unique keywords [13] and a few million
documents stored in a system like Gnutella [1], we
expect that most keyword indexes will contain at most
a few hundred entries. Thus, Panaché should yield
satisfactory performance for the majority of queries.
We acknowledge that documents are likely to follow a
Zipf distribution [13], leaving some indexes
particularly large. Several potential optimizations
described in Section 6 address this problem.

4.6 Comparison with Gnutella
We claim that Panaché will outperform Gnutella in

bandwidth utilization. Gnutella uses bandwidth
inefficiently due to its broadcasting of queries. Every
node must be searched to find all matching documents.
Panaché utilizes a query routing protocol, along with
some overhead to maintain index information, to

eliminate the cost of searching the entire network.
Thus, searches can be exhaustive without incurring the
same penalties as Gnutella. However, Panaché requires
overhead to maintain indices when nodes enter and
exit, whereas Gnutella nodes may enter and exit freely.

We present a mathematical model based on real
data from Gnutella to validate our claims of efficient
bandwidth use. Let us assume the following
parameters:
Time online 60 mins
of keywords/query k
Bytes per keyword b
Queries per 60 minutes Q
of matching docs/query m
Size of index entry in bytes s
of entries/host D
of nodes in the system N
Gnutella query size in bytes R
Average Bloom filter reduction B
Table 1. Assumptions about the P2P environment.

Based on statistics from [8], [13] and [15], the
following values seem appropriate : k = 3, b = 5
bytes, N ~ 30000 nodes, R = 23 bytes +
k * b, s = 100, and B = 0.1. To compare
the efficiency of the two networks, we will analyze the
cost of carrying a node. We will focus on a time
window of 60 minutes [15].

The cost of carrying a Gnutella node for one hour
may be given by the following equation:

)*()()()1(mQCQCnC gG +=

where Cg(Q) is the cost of Gnutella queries from node
n and C(Q*m) is the cost of returned results. Thus,

QmsQNRnCG +=)()2(
Gnutella employs a TTL, which limits this value.

However, we ignore the TTL since using the TTL
results in the loss of complete network coverage.
Furthermore, Gnutella carries a relatively high
percentage of users that do not share any files, called
freeloaders [1]. Freeloaders are essentially query
forwarders and will exaggerate the loss of network
coverage using TTLs.

The cost of carrying a node in Panaché may be
given as follows, ignoring Chord RPCs since they are
minimal compared to Panaché’s traffic:

)*()()()()3(mQCQCnCnC pTP ++=

where CT(n) is the transience cost, Cp(Q) is the cost of
Panaché queries, and C(Q*m) is the cost of returned
results. Equation (2) becomes:

QmsQkmsBDsnC p ++= 2)()4(

Thus, CP(n) << Cg(n) if the following is true:

N
R

Bsmk
RQ

sD
<<+

*

**2)5(

 7

Using reasonable values, s = 100 and Q = 5:
NmD <<+ *789.0*05.1)6(

The most popular P2P FSS, KaZaa, maintains
approximately 700 million documents for 3.78 million
users [9]. Thus, a rough estimate for D is 185. Even in
the context of the Gnutella network, where N = 30,000
and approximately 3 million documents are shared, D
= 1000 [1]. Therefore, we expect that Panaché will not
approach the bandwidth required by Gnutella’s queries
until m begins to exceed 30,000. As shown by
Equation (5), Panaché’s performance is expected to
degrade with increasing k, the number of keywords
per query. Although our system is best for indexing
documents with a few keywords, research indicates
that most queries are less than 5 keywords [13].

The optimizations introduced in Panaché explicitly
address the issue of limiting the number of matching
documents, m, by truncating results. Using popularity
scoring, we are able to do so without significantly
sacrificing search quality.

5. Experimental Results
Our experimentation involved simulating

performance using the three 6.824 lab machines. As a
result, our results were subject to noise. Due to
resource constraints, we were unable to develop a
heterogeneous environment for performance
evaluations. In this section, we describe the data we
collected as indicators of Panaché’s performance.

5.1 Indexing
The time required for indexing documents over

eight servers is shown in Table 2. We estimate that it
should take 10 to 15 seconds to insert 1000 documents
into the system with a 56Kbps modem connection.
10 Docs 100 Docs 1000 Docs 10k Docs

0.11 sec 0.12 sec 1.478 sec 20.32 sec
Table 2. Time needed for indexing new documents.
5.2 Querying
5.2.1 False Positives from Bloom Filters

We tested the false positive rate generated by
Bloom filters using two keywords to populate the
system with 100 matching documents. For the second
keyword, we added a varying number of documents
that would not match a query on the two keywords.
Since our implementation requires Bloom filter sizes,
m, to be powers of 2, m was 2048. With n equal to
100, this yields an m/n ratio of 20.48 and an optimal
false positive rate of (0.6185)20.48 = 0.0053% [3].

As shown in Table 3, the average false positive rate
was 0.013%. The actual rate was greater than expected
since the number of hashes used was restricted to

integer values in our implementation and could not be
exactly optimal. We believe that the observed false
positive rate is acceptable in a P2P search system.
Non-Matching
Documents

Ave # False
Positives

False Positive
Rate

10000 1.6 0.016%
20000 2.4 0.012%
30000 3.6 0.012%
Table 3. Average number of false positives and false
positive rates for 10000, 20000, and 30000 non-
matching documents for two keyword queries.
5.2.2 Query Time vs. System Documents

To determine the affect of the number of indexed
system documents per server on query time, we
populated 3 and 10 servers with varying numbers of
total system documents and 100 matching documents
and performed single and two keyword queries.
System documents refer to non-matching documents
for the test query. As shown in Figure 5, query times
for a given number of total documents per server is
roughly constant at several tens of milliseconds.

101 102 103 104 10510

20

30

40

50

60

70

80
Query Time for Varying Documents Per Server

Documents Per Server

Q
ue

ry
 T

im
e

(m
se

c)
3 Servers,1 Keyword
3 Servers,2 Keywords
10 Servers,1 Keyword
10 Servers,2 Keyword

Figure 5. Query time for varying total system
documents per server. Data was taken for 3 servers
and 10 servers with single and two keyword queries
and 100 matching documents.

Although query times degrade with higher index
entries per server probably due to resource competition
with non-matching documents, they typically remain
under 100 ms for below 105 entries. Since most clients
are expected to index less than 10,000 documents [15],
the majority of index servers in Panaché will operate
under 10,000 documents and will exhibit good
performance. The minority that has more documents
will still respond to queries with acceptable latencies.

5.2.3 Query Time vs. # of Query Keywords
As mentioned in Section 4.3.4, query time should

scale with the number of query keywords. We
measured a linear dependence of query time on the
number of keywords. For 100 matching documents
and 10 servers, single keyword queries took about 20
ms while 4 keyword queries took about 115 ms. Thus,
performance will degrade for queries with many
keywords, but queries typically contain less than five

 8

keywords [13]. The graph showing this trend is
omitted due to space constraints.

5.2.4 Truncated Queries
The benefits of truncated queries were measured by

inserting increasing numbers of matching documents
over 10 index servers and performing truncation
queries with varying sizes. Panaché yields up to 200
results in less than 800 ms, for two keyword queries
and 30,000 matching documents. As the number of
matching documents grows, the truncated query time
increases since more documents must be ranked and
more passes through the query-chain must occur. The
slight increase in query time is shown in Figure 6 for
the two keyword case. Alternatively, each index could
be periodically sorted by hit count so document ranks
would not have to be calculated on the fly.

0 50 100 150 200
0

100

200

300

400

500

600

700
Truncated 2 Keyword Query Time for Varying Matching Docs

Truncated Query Size (# Documents)

Tr
un

ca
te

d
Q

ue
ry

 T
im

e
(m

se
c)

500 Matching Docs
5000 Matching Docs
15000 Matching Docs
30000 Matching Docs

Figure 6. Truncated query time for varying numbers
of matching documents and varying truncated query
result sizes.
5.2.5 Query Time vs. # of Index Servers

Query time should increase with more index
servers because more Chord messages have to be sent
to locate responsible servers. Figure 7 shows that an
order of magnitude increase in the number of index
servers resulted in a minimal increase in query time.

Based on the trends shown here and Chord’s
fundamental sub-linear lookup operation [1], we
believe that query times will not degrade drastically
with many index servers.

0 10 20 30 40 50 60
20

30

40

50

60

70

80

90

100

110
Query Time for Varying Index-Servers

Number of Index-Servers

Q
ue

ry
 T

im
e

(m
se

c)

1 Keyword
2 Keywords

Figure 7. Query time for varying number of index
servers in the system for 100 matching documents and
single and two keyword queries.

5.2.6 Index Server Performance
Raw index server performance was determined by

the number of queries per minute that could be
satisfied within a reasonable amount of time. Three
trials were conducted for varying index sizes.

We populated the server with a random test data
set. A random number of keywords were generated,
each with a maximum of 100 random documents out
of a 1 million document set. Therefore, a random
number of documents matched multiple keywords. We
measured the response time for each query in a stream
of queries. Each query was randomly made to be one
to four keywords long. The keywords were selected
from those used to populate the system, under the
assumption that users typically know which keywords
should be used in the search. Response times were
averaged after streaming queries for 2 minutes.

Figure 8 demonstrates that the server successfully
processed nearly 400 queries/min with a 50,000
document index. We believe these results are
underestimates. First, activity from other users may
have affected performance. Second, our
implementation prevented us from writing a
standalone client. Thus, our client ran on the same
machine as the server, leading to resource contention.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

1000
Average Response Time vs Query Rate

Queries per Minute

Av
er

ag
e

R
es

po
ns

e
Ti

m
e(

m
s)

5K Documents
25K Documents
50K Documents

Figure 8. Raw index server performance measured
against an input stream of random queries against a
random distribution of documents.

Gnutella nodes must process approximately 45
queries per sec [10]. However, this is an inaccurate
expectation for Panaché. First, Panaché queries are not
as lightweight as Gnutella queries, since they may
contain results that are to be intersected. Second,
Gnutella broadcasts its queries, whereas queries in
Panaché are routed. Routing reduces the number of
queries that a particular node should process.

5.2.7 Bandwidth vs. Matched Documents
Bandwidth was measured by recording the total

number of bytes that were sent between machines
while processing a query. The protocol was modified
to carry a cumulative byte count in each forwarded
query. Figure 9 illustrates the amount of bandwidth

 9

utilized during query processing. As expected, a linear
growth in the number of documents is observed.
Nonetheless, the crucial point of Figure 9 is that the
bandwidth required for 32 index servers has barely
increased beyond that needed for eight index servers.

0 200 400 600 800 10000

0.5

1

1.5

2

2.5

3 x 10
4

Matching Documents

Av
er

ag
e

B
an

dw
id

th
 (b

yt
es

)

Bandwidth vs Matches

2 Keywords, 8 Servers
4 Keywords, 8 Servers
2 Keywords, 32 Servers
4 Keywords, 32 Servers

Figure 9. Bandwidth used during query processing.
Systems with 8 and 32 index servers were measured.
5.3 Transience

To gauge the effects of transience, we were
interested in the amount of bandwidth consumed and
the time needed for host entry and exit.

Since the number of documents transmitted is
fairly identical on an entry or an exit, we measured the
number of bytes needed for an exit. The measurements
do not include the underlying Chord messages used to
lookup successors. The amount of data generated
during an exit is plotted in Figure 10. On average, each
document that must be transferred generated 38.8
bytes of data. Transmitting the index information for
nearly 7000 documents resulted in 270Kb of data
being transferred and took less than one second.

0 2000 4000 6000 8000 10000 12000 140000

1

2

3

4

5

6 x 105 Bytes Sent Upon Exit

Number of Documents on Exiting Server

By
te

s
Se

nt

Figure 10. Bytes sent on exit versus the number of
documents on the exiting server.

The transfer time needed during a transient event
was measured as well. We populated one host with a
variable number of documents. 20% of these
documents were transferred to an entering host. The
mean time for transmitting one document’s indexing
information was 8.5 µs. Transmitting 2000 documents
took 170 ms; 5000 documents took 429.5 ms.

As described in Section 4.5, each host should index
a few hundred documents on average. Even with a

56Kbps connection, transmitting index information for
100 documents takes just a few seconds.

6. Future Enhancements
There are several optimizations and enhancements

that can be made to Panaché.
Query joins could be short-circuited. Each

document entry could contain a list of all the keywords
used to index the document. The first server to receive
a query could filter the resulting set and return only the
documents that contain all the keywords.

To further minimize network bandwidth consumed,
compressed Bloom filters could be used [3].

Our current transience model does not handle
staleness when a host leaves the network. A host’s
departure results in the loss of an index server and
removes all the documents it is sharing. To prevent
staleness, the host's departure would need to be
broadcast to all hosts so that they can update their
indexes and remove references to the departing server.
This is inefficient as a significant fraction of hosts in
the network may have references to the departing host.
We realize this is a limitation of Panaché and propose
two solutions to address the invalidation problem.

The first solution is to assign an expiration date to
all documents when they are indexed. The date is
delayed every time the file is accessed. In the absence
of any notification from the document owner or in the
absence of any accesses, the document is invalidated
and removed from the index. The second solution is to
have the client notify all index servers which
processed the query that a result they returned is stale
and should be removed. The two solutions could be
combined to minimize staleness even further.

Currently, Panaché only supports the graceful exit
of hosts. By replicating data on multiple hosts,
Panaché could support network failures and
unexpected disconnections from the network.
Replicated data could restore the indexes on the
remaining servers. Large or popular indices could be
replicated more often to provide load balancing.

The result set produced for a query is currently
returned to the client via an RPC call over UDP. Since
the result set may be quite large, UDP is not well-
suited to this task. Instead, the result set should be sent
via TCP to be more robust to network errors.

Based on Panaché’s popularity metric, an
optimization based on KSS [7] could be implemented.
If a particular two keyword query was detected to be
extremely popular, the servers responsible for the
keywords could insert a new index into the system
corresponding to the popular query. The old servers
could notify query agents for query ordering purposes.

To improve the response of Panaché to repeated
queries, caching can be implemented on index servers.

 10

Since query ordering is performed, the last server in
the query-chain that responded to the same query
previously can directly return the answer to the agent.
This can also mitigate the cost of querying against
extremely large indices.

To handle the varying amount of resources
available to nodes in a heterogeneous P2P system such
as Panaché, virtual nodes may be implemented.
Physical nodes with greater system resources could be
responsible for more ChordIDs and thus, documents.

Since we implemented our keyword search system
separately from any particular P2P storage system, it is
possible that Panaché could be used to do keyword
search for Gnutella. This would require Gnutella to
make a few modifications to insert documents in the
index and to update the index based on popularity.

Our system design does not preclude the use of
crawlers to build and update our index. This may be
desirable for index construction and for certain
applications that require data freshness.

Currently, Panaché is vulnerable to attacks by
nodes that may flood the network with invalid
documents. An expiration date for index entries
partially addresses the issue. Malicious index servers
could also generate false information. Replication of
index data and checking the accuracy of queries with
multiple servers could mitigate this problem at the
expense of greater bandwidth consumption.

7. Conclusions
All peer-to-peer file sharing systems require

efficient keyword search capabilities. Panaché
provides a scalable solution to this problem by using
optimizations such as Bloom filters and query
ordering. Panaché provides scalability that is O(c*m)
in each query for m matching documents and a small
number of keywords, c. Using truncated queries,
Panaché will use O(c) bandwidth, without sacrificing
search quality or the ability to completely search the
index. Thus, we expect that Panaché will significantly
outperform Gnutella.

Panaché needs more comprehensive testing.
However, based on our simulated experiments, we
believe that Panaché could provide valuable search
capabilities for peer-to-peer systems. We are excited
about the future work to be done.

Acknowledgements
We are grateful for the guidance of Prof. Robert

Morris and Thomer Gil as well as the PDOS group.

References
[1] Adar, E., Huberman B., Free Riding on Gnutella.

First Monday, Peer Reviewed Journal on the
Internet. Volume 5. Number 10. October 2, 2000.

[2] Brin, S., Page, L. The anatomy of a large scale
hypertextual web search engine. In 7th
International WWW Conference, 1998.

[3] Broder, A., Mitzenmacher, M. Network
Applications of Bloom Filters: A Survey. To
appear in Allerton 2002.

[4] Cormen, T., Leiserson, C., Rivest, R., Stein, C.
Introduction to Algorithms. 2nd Edition. MIT
Press. 2001.

[5] Clarke, I., Sandberg, O., Wiley, B., Hong, T.
Freenet: A distributed anonymous information
storage and retrieval system. In Proc. of the ICSI
Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, CA, Jun. 2000.

[6] Gassend, B., Gil, T., Song, B. DINX: A
Decentralized Search Engine. 6.824 project, MIT,
2001.

[7] Gnawali, O. A Keyword-Set Search System for
Peer-to-Peer Networks. M.Eng thesis, MIT, 2002.

[8] Gnutella. http://gnutella.wego.com.
[9] KaZaa. http://www.kazaa.com.
[10] Markatos, E. P., Tracing a large-scale Peer to

Peer System: an hour in the life of Gnutella.
Technical Report 298. ICS-FORTH. In the
second IEEE International Symposium on Cluster
Computing and the Grid.

[11] Maymounkov, P., Mazières, D., Kademilia: A
Peer-to-peer Information System Based on the
XOR Metric. In Proc. IPTPS’02, Cambridge,
MA, Mar. 2002.

[12] Napster. http://www.napster.com.
[13] Reynolds, P., Vahdat, A. Efficient peer-to-peer

keyword searching. Technical Report 2002, Duke
University, CS Department, Feb. 2002.

[14] Rowstron, A., Druschel, P. Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems. In Proc. IFIP/ACM
Middleware, Heidelberg, Germany, Nov. 2001.

[15] Saroiu, S., Gummadi, P. K., Gribble, S. D., A
Measurement Study of Peer-to-Peer File Sharing
Systems. In Proc. Multimedia Computing and
Networking 2002 (MMCN'02), Jan. 2002.

[16] Stoica, I., Morris, R., Karger, D., Kaashoek,
M.F., Balakrishnan, H. Chord: A scalable peer-
to-peer lookup service for Internet applications.
In Proc. ACM SIGCOMM’01, San Diego, CA,
Aug. 2001.

[17] Yang, B., Garcia-Molina, H. Efficient search in
peer-to-peer networks. Technical Report 2001-47,
Stanford University, Oct. 2001.

[18] Zhao, Y.B., Kubiatowicz, J.D., Joseph, A.D.
Tapestry: An infrastructure for fault resilient
wide-area location and routing. Technical Report
UCB//CSD-01-1141, U. C. Berkeley, Apr. 2001.

