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Abstract 
The primary challenge in developing a peer-to-peer 

file sharing system is implementing an efficient 
keyword search mechanism. This paper presents 
Panaché, a distributed inverted index that scales well 
with the number of nodes in the network. Panaché 
addresses three critical needs for searching peer-to-
peer file sharing systems—efficient use of bandwidth, 
relevant search results and accommodation for 
graceful node transience. To achieve these needs, 
Panaché aggregates popularity information and builds 
upon other peer-to-peer systems that distribute index 
information by keyword. Relying on a combination of 
Bloom filtering, query ordering, and truncated results 
based on popularity data, Panaché can be shown to use 
significantly less bandwidth than Gnutella using real-
world estimates of network parameters, while retaining 
high quality search results. Simulation experiments 
demonstrate that Panaché may be viable for Internet 
deployment, although more comprehensive testing is 
needed. Panaché provides an exciting starting point for 
future development and optimization. 

1. Introduction 
As hard disks have become inexpensive and 

broadband Internet has become more widely available, 
Gnutella has quickly become one of the most popular 
peer-to-peer (P2P) file sharing overlay networks on the 
Internet. The most significant challenge to designing a 
P2P file sharing system (FSS) is providing a keyword-
search mechanism that allows users to efficiently 
locate relevant documents. In this paper, we present 
Panaché, a distributed inverted index that utilizes 
popularity information to provide efficient keyword 
search capabilities for P2P file sharing systems. 

Panaché is intended to be used for the storing and 
searching of text descriptions of documents by P2P 
FSS users. The actual mechanism by which documents 
are transferred between peers is left to be solved by an 
external system. Panaché remains independent of the 
actual file sharing mechanism. Thus, Panaché makes 
no claims regarding the integrity of retrieved files. 

The assumptions about the network made by 
Panaché’s design are consistent with those of systems 
like Gnutella and Napster. Documents, primarily 
multimedia files that do not contain hyperlinks 
between them, are scattered across the network on 
individual users’ machines. Panaché does not have 

control of the files that are indexed but maintains 
pointers to locations of files in the network. In order to 
participate in the index, we expect users to download 
and install the Panaché client on their machines. 
Panaché’s index is generated by users that explicitly 
publish their documents using the Panaché client. 

Whereas Napster used a central index, we perform 
indexing using a decentralized model. Gnutella, on the 
other hand, does not maintain an index; it provides a 
search mechanism that consists of broadcasting 
queries, resulting in a breadth-first walk through the 
network of participating hosts [8]. Napster’s approach 
is efficient but is vulnerable to legal and political 
scrutiny. Gnutella’s keyword search model is 
distributed, but inefficient as the number of nodes 
grows, since the entire network must be searched to 
find all documents matching a given query. 

The goal of Panaché is to provide an efficient 
distributed index for an Internet P2P FSS that scales 
well in the number of nodes. We claim that Panaché 
scales better than Gnutella.  

Panaché distributes its index by partitioning along 
keywords as suggested by Reynolds and Vahdat [13]. 
The unique capability that Panaché provides beyond 
typical keyword partitioning is the use of popularity 
information. We define popularity in the context of an 
Internet P2P FSS as the number of hits generated by 
users that retrieve documents from the search results 
returned by Panaché. We define relevance by the 
assumption that documents that were chosen 
frequently by other users are more relevant. Inspired 
by Google, maintaining popularity information 
facilitates the generation of highly relevant search 
results [2]. In addition to increasing the relevance of 
search results, popularity information allows Panaché 
to introduce several possible optimizations to improve 
index efficiency beyond typical partitioning schemes.  

Panaché’s primary focus is on providing efficient 
use of bandwidth while maintaining reasonable query 
response times. There are four mechanisms that 
Panaché utilizes to perform efficient searches: 

• Query ordering 
• Bloom filtering of results 
• Popularity information 
• Truncated results 

Panaché is optimized for indexing documents using 
a small set of unique keywords and is well suited for 
indexing files using descriptive words chosen by the 



 2

publisher or selected from document titles. We do not 
expect Panaché to perform well when indexing a set of 
documents based on all words in the text of the 
documents, as Google does [2]. 

A P2P distributed index must successfully handle 
users leaving and entering the network. In Gnutella, 
users typically remain on the network for 
approximately one hour [15]. User transience requires 
that index information be maintained as the network 
changes. Panaché implements a simple model for 
transience that reconfigures the index when nodes 
gracefully enter or exit the network. More 
sophisticated implementations are left for future work. 

The rest of the paper is organized as follows. 
Section 2 examines other P2P implementations and 
distributed indexes. Sections 3 and 4 provide a 
description of our design and implementation. Section 
5 describes our experimental tests and simulations. We 
outline future enhancements in Section 6 and 
summarize in Section 7. 

2. Relevant Work 
Our work builds on several sources of prior 

research. The underlying lookup mechanism of 
Panaché needs to locate the machine responsible for a 
certain keyword in sub-linear time. Several systems, 
such as Chord [16] and Pastry [14], provide a scalable 
distributed lookup mechanism. For n connected nodes, 
both Chord and Pastry require O(log n) routing hops 
and O(log n) routing table entries to deliver messages 
between nodes in steady state operation. As nodes join 
and leave the network in Chord, routing state is 
maintained with O(log2 n) messages with high 
probability [16]. Panaché uses Chord to map keywords 
to servers, but other distributed lookup mechanisms, 
such as Pastry [14], Kademlia [11], and Tapestry [18], 
could have been used as well. 

Several existing P2P networks have adopted 
differing architectures to service search requests. 
Gnutella [8] broadcasts queries to locate files that 
match particular keywords, with each node contacting 
all of its neighbors. The aggregate bandwidth required 
to support a query is costly. To limit message 
propagation, a time-to-live (TTL) is assigned to each 
query. However, TTLs may result in suboptimal 
responses, since a document may reside on a node that 
is never contacted. Yang and Garcia-Molina [17] 
propose several methods for minimizing the bandwidth 
consumed during search in Gnutella-like systems, such 
as iterative deepening, directed breadth-first search, 
and local indexes, where nodes store local information 
about files on neighboring nodes. KaZaa [9] promotes 
machines with wider bandwidth to Supernodes and 
makes Supernodes responsible for indexing files stored 
by nodes around them. Freenet [5] has no explicit 

keyword search mechanism for files. Napster [12] 
relied on centralized servers to answer search queries. 

Panaché builds upon a research system proposed 
by Reynolds and Vahdat [13] by maintaining statistics 
about popular documents and hosts. Their system uses 
Bloom filters to compactly represent set membership 
and joins the indexes matching the query keywords. 
KSS [7] assumes that network bandwidth is more 
precious than storage space in P2P networks. Rather 
than indexing single keywords, KSS builds a 
distributed inverted index keyed on combinations of 
multiple keywords. Thus, KSS avoids the overhead of 
computing joins but requires an insertion time that 
grows exponentially with the set size of the keyword 
combinations used to build the inverted index [7]. A 
novel approach by DINX [6] spreads popular 
documents over more nodes in a Chord ring and 
queries random nodes to find documents. DINX 
performs well for locating popular documents, but 
requires O(n) time to find unpopular niche documents 
since all machines in the system must be contacted. 

The aggregation of popularity data in our system is 
inspired by the ranking system used by Google [2]. In 
Google, a quality ranking for web documents is 
calculated based on the number of other pages that link 
to the given page and several other metrics. 

3. Design Overview 
Panaché is layered on top of Chord, which is an 

efficient distributed lookup protocol for a given key. 
Chord contains a set of nodes, each with a unique 
identifier, a ChordID. It provides a single function, 
successor(key), which returns the successor node of 
key. The successor is defined as the first node whose 
ChordID is equal to or follows key in the identifier 
space, illustrated in Figure 1 [16]. The index is 
partitioned by routing queries for a given keyword to a 
Chord node. Keywords are mapped to the ChordID 
space by using their 160-bit SHA-1 hash. 

Panaché’s keyword partition scheme is based on 
Reynolds and Vahdat [13]. Chord is a natural choice 
for the lookup mechanism since it provides a simple 
interface that scales logarithmically in the number of 
nodes, which meets our goal of scalability.  

Each Chord node in Panaché must run the Panaché 
client, containing two components, an index server and 
a query agent. Index servers are responsible for 
maintaining their indexes and satisfying requests from 
query agents. Panaché utilizes the libasync library that 
comes with the SFS software package developed by 
PDOS at MIT. The query agent is responsible for 
making requests to index servers. The index server and 
query agent primarily utilize libasync’s RPC package 
for asynchronous communication. Since the RPC 
package uses UDP, messages that require the transfer 
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of large blocks of data occur over an auxiliary TCP 
port available on all Panaché clients. Using TCP for 
large messages avoids the retransmission penalty for 
lost packets that contain large amounts of data. 

 
Figure 1. Chord identifies the responsible node for a 
keyword using the successor function. The keyword 
for which hash(keyword) = 6 maps to the node with 
ChordID 8, since successor(6) = 8. Successor(2) 
returns the node with ChordID 2 in the network. 
4. Implementation 
4.1 Data Structures 

Each index server stores two basic data structures, 
Documents and Hosts. Documents contain a name, a 
counter indicating the hit count, and a hash of the 
document’s content (to identify identical documents). 
Hosts contain a document name, a location (URL), and 
a counter indicating the number of times the file has 
been downloaded from this location. 

Panaché maintains two hashtables, one mapping 
keywords to documents, used for query processing, 
and the other mapping documents to hosts, used for 
document retrieval. The first table, called the 
DocTable, maintains popularity information for 
documents, independent of their locations in the 
network. Since multiple keywords may hash to the 
same bucket, each bucket contains a reference to a 
series of linked keywordLists. The keywordList 
contains a binary search tree (BST), docBST, of all 
documents with the specified keyword, as shown in 
Figure 2. Documents are inserted into the BST based 
on their popularity as determined by their hit count. 

 

 
Figure 2. The DocTable hashtable used in Panaché 
contains keywordLists that include docBSTs of all 
documents corresponding to a specific keyword. 

The second hashtable, the HostTable, maps 
documents to hosts. It may maintain quality rank 
information on publishers, although this was not 
implemented. The second table also allows the 
downstream FSS to distribute the load of document 

retrieval among multiple locations, which allows the 
possibility of doing parallel retrieval. The HostTable 
implementation is identical to the DocTable, except 
that it contains document/host pairs, which are keyed 
on the document name. 

Hashtable put and get operations run in O(1) time. 
BST insertion and accesses take O(lg n) time on 
average. Document selection on docBSTs is done 
using select(k), which returns the document with the k-
th highest popularity. Selection uses a dynamic order 
statistics algorithm (OS-SELECT) described in CLRS 
with an expected O(lg n) running time [4]. This can be 
improved to a worst-case running time of O(lg n) by 
using Red-Black Trees. 

4.2 Document Publishing 
Documents are explicitly published by users in 

Panaché. Since Panaché was initially built to index 
multimedia files, a crawler was not considered as part 
of the design. Multimedia files typically do not contain 
hyperlinks that can be crawled. However, Panaché 
features a command interface for which a crawler 
interface could be built. 

The first time a user enters Panaché, a bulk insert 
must be performed on all documents the user wishes to 
publish. To index a document, non-common words are 
extracted from the title. These words and optionally 
other user-specified words are the document keywords 
used to identify the index servers responsible for the 
document. The query agent sends an add document 
RPC request for each document to the appropriate 
servers, inserting the document and host information 
into its index. Each request contains the name and hash 
of the document. Currently, only the owner of the 
document is enabled to publish, since the IP address of 
the message sender is used as the URL. A future 
extension to Panaché may include submitting a generic 
URL or a URI in the document data. 

An initial bulk insert may require several thousands 
of RPC messages. However, in Section 5.1, we 
demonstrate this may be acceptably fast.  

4.3 Querying 
Multiple keyword searches are conducted by 

performing a database join on the indexes of the 
servers responsible for each keyword in the query. 
This is done by forwarding the query through a chain 
of servers that hold the index for each keyword. Each 
server successively intersects its index with the 
previous results and passes along the Bloom filter of 
its results, as described in Section 4.3.2 and illustrated 
in Figure 3. The process continues until the last server 
constructs the final answer and returns the resulting 
data set to the user. Empty intersections are reported 
back to the user immediately. 
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Figure 3. Query processing chain demonstrating the 
forwarding of Bloom filters B(·) to other servers and 
returning the final result to the client. 

While large joins may be inefficient since large 
data sets are transported between servers, typical 
queries only contain 2-4 keywords [13]. Thus, the 
bandwidth needed during the search process is limited.  

4.3.1 Ordering of Queries 
To minimize the amount of data that must be 

transmitted between servers, the query agent sorts the 
keywords composing its initial query in ascending 
order of each keyword’s index size. The final result 
can be no larger than the smallest index for a keyword 
in the query. The query agent obtains the data needed 
to order the results by contacting all of the relevant 
servers in parallel. 

4.3.2 Bloom Filters 
Bloom filters reduce the amount of forwarded data 

by a constant factor. Bloom filters compactly represent 
set membership in an approach outlined by Reynolds 
and Vahdat [13]. 

A Bloom filter of a set S = {x1,x2,…, xn} is 
implemented as a bit array of size m with all bits 
initially set to 0 [3]. Each element xi is hashed by hash 
functions h1,h2,…,hk, each of which map into the range 
{0,…,m-1}. Each bit corresponding to location hi(xi) is 
set to 1. To test membership of an element y in a 
Bloom filter, all hi(y) hashes are calculated and the 
corresponding bits examined. If any one of the bits is 
0, then the element y is not in the set. If all of the bits 
are 1, then the element y either belongs to the set S or 
not; the latter case is a false positive. False positives 
emerge since many elements may hash to the same k 
bits. The process is shown in Figure 4. 

To avoid computing k hashes per element, Panaché 
generates a SHA-1 hash of each document name. Each 
log2 m bits of the hash indexes into the Bloom filter. 

In order to minimize the number of false positives, 
the optimal number of hash functions k should be set 
to be k = ln 2 * (m/n), where m is the size of the 
Bloom filter and n is the number of documents in the 
set to be represented [13]. This value of k yields a false 
positive rate of (0.6185)m/n [3]. The size of the Bloom 
filter can be optimized at each step in a query-chain; 

higher values yield lower false positive rates but also 
less compression. In this implementation, the ratio m/n 
was set to 15 to give a false positive rate < 0.01% and 
a compression ratio of > 16:1, given that each 
document record may be thirty bytes or longer. 

 

0100010010 0100010010

h 1 (x 1 )  h 2 (x 1 ) …  h k(x 1 )  

0100010010 0100010010

h 1 (y 1 )  h 2 (y 1 ) …  h k(y 1 )  

h 1 (y 2 )  h 2 (y 2 ) …  h k(y 2 )   
Figure 4. x1 is inserted into the Bloom filter by setting 
all hi(x1) bits to 1. Since h2(y1) is 0, y1 is not in the set. 
All of y2’s bits match, so it may be in the set. 

Thus, servers transmit Bloom filters of results that 
represent document records. Upon receiving a Bloom 
filter, a server intersects it with the appropriate 
keyword index and constructs a new Bloom filter to be 
transmitted. The final results returned to the user are 
the actual documents. The query process may contain 
false positives. We do not believe that this is 
detrimental to user experience. First, the rate of false 
positives can be adjusted according to user preference. 
Second, users can filter out the small number of false 
positives manually. Finally, keyword search for a P2P 
FSS typically does not require perfect accuracy. 

Reynolds and Vahdat [13] propose removing false 
positives by returning the final data set through the 
chain of servers again. Panaché could be modified to 
include this protocol as a user-selectable option, at the 
expense of additional latency and bandwidth. 

4.3.3 Popularity 
Popularity data helps to determine the most 

relevant results and enables optimizations for popular 
documents and queries. Popularity information is 
collected by counting the number of hits (hit count) 
that a given document or host has received. The user’s 
query agent must notify the responsible servers when a 
document is selected by a user. Only the index servers 
that provided the results to a user’s request are 
updated, meaning that other servers containing the 
same document may not receive the new information. 
The hit count measures a document’s popularity for a 
given keyword. The same document accessed often by 
one keyword but not another should have a high hit 
count for the former keyword and not the latter when 
determining the relevant results to a given query. Thus, 
a global popularity ranking is probably unnecessary. 

Results are returned based on their popularity 
ranking using the dynamic order statistics described in 
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Section 4.1. Section 4.3.4 describes how truncated 
queries use popularity to determine what documents to 
return to the query agent first. 

One difficulty with using popularity data is how to 
determine popularity order when hit counts are 
initially low and no clear ranking exists. Since users 
are likely to select the first few results they receive, the 
first documents or hosts returned could become 
popular by default, despite their actual quality. As a 
potential solution, servers may periodically randomize 
all documents that have a hit count below a given 
threshold. When select() is called for documents with a 
hit count that is below this threshold, the results 
returned would be randomized. Thus, documents that 
have adequate popularity data above the threshold will 
be returned in order but those below will be 
randomized to avoid popularity inflation. 

4.3.4 Truncated Queries 
Though Bloom filters provide compression of data 

sets, query time scales with the number of keywords in 
a query and the number of matching documents to the 
query, as described in Section 4.6. Since users 
typically only view a limited number of results at a 
time, we provide the ability to obtain a constant 
number of matches at a time. Using popularity 
information, Panaché ranks the results during query 
processing to return the most relevant documents. 

The first truncated query for t documents returns 
the top t results. If unsatisfied, a user can request the 
next page of t documents and so on, similar to the next 
capability on web search engines.  

The query-chain is extended to support truncated 
results as follows. The first server forwards a Bloom 
filter for 2t documents that match the first keyword. 
The next servers check their indexes for matches and 
forward new Bloom filters along. If any server in the 
query-chain finds that less than t documents match, 
that server notifies the first server. The first server then 
restarts by sending a Bloom filter for twice as many 
documents as the prior iteration. Currently, Panaché 
does not save the current results for the restart; this 
will be fixed in the future to further reduce bandwidth 
overhead. If faster convergence is desired, instead of 
sending twice as many documents when restarting, a 
larger factor could be used so more documents are 
sent.  

Breaking the query-chain process into chunks 
generates worst-case performance when the t 
documents to be returned are the lowest ranked ones 
on the first server. In this case, Panaché must transmit 
c times the number of documents in the first index to 
find those t documents, where c is the number of 
keywords in the query. On average, though, only O(c) 
data needs to be transferred.  

Truncated queries are similar to the incremental 
results described in [13]. They are somewhat similar to 
the TTL setting for Gnutella queries and iterative 
deepening in [17]. However, Panaché is more useful 
since it generates relevant documents in order instead 
of just returning the first set of documents found. 

4.4 Transience 
A distributed index for a P2P FSS must 

accommodate nodes that enter and exit the network. 
We implemented a simple transience model, primarily 
due to time constraints, that handles the graceful entry 
and exit of hosts. Handling node transience consists of 
transferring indexes between index servers. 

An exiting host serializes its entire DocTable and 
HostTable and transmits this via TCP to its successor. 
After successful transmission, the host leaves. The 
receiving host deserializes the incoming data and 
inserts the keyword/document and document/host pairs 
into its own DocTable and HostTable, respectively.  

To enter the Chord network, a node must, through 
an external mechanism, obtain the address of another 
node in the network. An entering host must then 
inherit a portion of the index from its successor. The 
new node notifies its successor to identify all 
keywords for which the successor is no longer 
responsible. The corresponding indices are transferred 
to the new node. Since Chord utilizes a ring structure 
for its key space, determining the keywords to transfer 
is simply a matter of hashing each keyword held by the 
successor and comparing it to the ChordIDs of the new 
node and its successor. The relevant entries from the 
DocTable and HostTable are serialized and sent to the 
new host via TCP. After successful transmission, the 
entries are deleted from the new host’s successor. 

Index transfers in our implementation present 
several challenges. For instance, after a new node 
enters the system and acquires its part of the index, it 
is unclear whether the transferred portion of the index 
can be deactivated from the original source, since there 
is latency in the settling time associated with Chord 
[16]. Settling time permits a situation in which two 
nodes simultaneously enter the network and 
temporarily resolve to the same successor. In our naïve 
implementation, once Chord settles, queries will 
continue to be resolved correctly, but this leads to 
unused, replicated data across several nodes. 

Moreover, there are different policies associated 
with deactivating index entries. Suppose a node enters 
and inserts a new set of documents. If the node leaves 
and never returns, then the documents indexed should 
be expired by some mechanism. 

Another challenge to index transfers is that they 
may be lengthy transactions, since a large number of 
index entries may have to be transmitted. For users 
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with modems, this may be a non-trivial wait time. 
Compression may help, but certainly there is an 
opportunity to develop a more sophisticated system.  

We estimate that servers will index less than 
10,000 documents in total [15], corresponding to 
approximately 400Kb. For a user connected by 
modem, the transfer may be long. However, the 
majority of indexes should be much smaller [15]. 

The current implementation of Panaché addresses 
none of the described challenges. Handling transience 
in a distributed index is closely tied to the issue of 
index reliability. We plan to address transience and 
reliability more completely in a future version. 

4.5 Expected Performance 
Panaché is expected to perform well for single 

keyword queries since identifying the correct index 
server requires O(log n) messages by Chord’s lookup 
service. For multiple keyword queries, servers must 
perform joins of their respective data sets, yielding 
O(k*m) performance, where k is the number of 
keywords and m is the number of matches. For queries 
with few keywords or a low number of matching 
documents, query ordering and Bloom filters should 
yield good performance. For larger numbers of 
matching documents, truncated results can reduce the 
amount of data that needs to be transmitted over the 
network. Popularity information is used to ensure that 
the most relevant documents are returned. 
Nonetheless, Panaché may not perform optimally for 
queries composed of many keywords or for many 
matching documents since even with truncated results, 
a large number of documents must be ranked to return 
relevant responses. 

According to Reynolds and Vahdat [13], about 
28.5% of queries to popular search services were for a 
single keyword while 67.1% were for 2 to 5 keywords. 
Under the assumption that there are several tens of 
thousands of unique keywords [13] and a few million 
documents stored in a system like Gnutella [1], we 
expect that most keyword indexes will contain at most 
a few hundred entries. Thus, Panaché should yield 
satisfactory performance for the majority of queries. 
We acknowledge that documents are likely to follow a 
Zipf distribution [13], leaving some indexes 
particularly large. Several potential optimizations 
described in Section 6 address this problem. 

4.6 Comparison with Gnutella 
We claim that Panaché will outperform Gnutella in 

bandwidth utilization. Gnutella uses bandwidth 
inefficiently due to its broadcasting of queries. Every 
node must be searched to find all matching documents. 
Panaché utilizes a query routing protocol, along with 
some overhead to maintain index information, to 

eliminate the cost of searching the entire network. 
Thus, searches can be exhaustive without incurring the 
same penalties as Gnutella. However, Panaché requires 
overhead to maintain indices when nodes enter and 
exit, whereas Gnutella nodes may enter and exit freely. 

We present a mathematical model based on real 
data from Gnutella to validate our claims of efficient 
bandwidth use. Let us assume the following 
parameters: 
Time online 60 mins 
# of keywords/query k 
Bytes per keyword  b 
Queries per 60 minutes Q 
# of matching docs/query m 
Size of index entry in bytes s 
# of entries/host  D 
# of nodes in the system  N 
Gnutella query size in bytes  R 
Average Bloom filter reduction B 
Table 1. Assumptions about the P2P environment. 

Based on statistics from [8], [13] and [15], the 
following values seem appropriate : k = 3, b = 5 
bytes, N ~ 30000 nodes, R = 23 bytes + 
k * b, s = 100, and B = 0.1. To compare 
the efficiency of the two networks, we will analyze the 
cost of carrying a node. We will focus on a time 
window of 60 minutes [15]. 

The cost of carrying a Gnutella node for one hour 
may be given by the following equation: 

)*()()()1( mQCQCnC gG +=  

where Cg(Q) is the cost of Gnutella queries from node 
n and C(Q*m) is the cost of returned results. Thus, 

QmsQNRnCG +=)()2(  
Gnutella employs a TTL, which limits this value. 

However, we ignore the TTL since using the TTL 
results in the loss of complete network coverage. 
Furthermore, Gnutella carries a relatively high 
percentage of users that do not share any files, called 
freeloaders [1]. Freeloaders are essentially query 
forwarders and will exaggerate the loss of network 
coverage using TTLs. 

The cost of carrying a node in Panaché may be 
given as follows, ignoring Chord RPCs since they are 
minimal compared to Panaché’s traffic: 

)*()()()()3( mQCQCnCnC pTP ++=  

where CT(n) is the transience cost, Cp(Q) is the cost of 
Panaché queries, and C(Q*m) is the cost of returned 
results. Equation (2) becomes: 

QmsQkmsBDsnC p ++= 2)()4(  

Thus, CP(n) << Cg(n) if the following is true: 

N
R

Bsmk
RQ

sD
<<+

***
*

**2)5(  
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Using reasonable values, s = 100 and Q = 5: 
NmD <<+ *789.0*05.1)6(  

The most popular P2P FSS, KaZaa, maintains 
approximately 700 million documents for 3.78 million 
users [9]. Thus, a rough estimate for D is 185. Even in 
the context of the Gnutella network, where N = 30,000 
and approximately 3 million documents are shared, D 
= 1000 [1]. Therefore, we expect that Panaché will not 
approach the bandwidth required by Gnutella’s queries 
until m begins to exceed 30,000. As shown by 
Equation (5), Panaché’s performance is expected to 
degrade with increasing k, the number of keywords 
per query. Although our system is best for indexing 
documents with a few keywords, research indicates 
that most queries are less than 5 keywords [13]. 

The optimizations introduced in Panaché explicitly 
address the issue of limiting the number of matching 
documents, m, by truncating results. Using popularity 
scoring, we are able to do so without significantly 
sacrificing search quality. 

5. Experimental Results 
Our experimentation involved simulating 

performance using the three 6.824 lab machines. As a 
result, our results were subject to noise. Due to 
resource constraints, we were unable to develop a 
heterogeneous environment for performance 
evaluations. In this section, we describe the data we 
collected as indicators of Panaché’s performance.  

5.1 Indexing 
The time required for indexing documents over 

eight servers is shown in Table 2. We estimate that it 
should take 10 to 15 seconds to insert 1000 documents 
into the system with a 56Kbps modem connection. 
10 Docs 100 Docs 1000 Docs 10k Docs 

0.11 sec 0.12 sec 1.478 sec 20.32 sec 
Table 2. Time needed for indexing new documents. 
5.2 Querying 
5.2.1 False Positives from Bloom Filters 

We tested the false positive rate generated by 
Bloom filters using two keywords to populate the 
system with 100 matching documents. For the second 
keyword, we added a varying number of documents 
that would not match a query on the two keywords. 
Since our implementation requires Bloom filter sizes, 
m, to be powers of 2, m was 2048. With n equal to 
100, this yields an m/n ratio of 20.48 and an optimal 
false positive rate of (0.6185)20.48 = 0.0053% [3]. 

As shown in Table 3, the average false positive rate 
was 0.013%. The actual rate was greater than expected 
since the number of hashes used was restricted to 

integer values in our implementation and could not be 
exactly optimal. We believe that the observed false 
positive rate is acceptable in a P2P search system. 
# Non-Matching 
Documents 

Ave # False 
Positives 

False Positive  
Rate 

10000 1.6 0.016% 
20000 2.4 0.012% 
30000 3.6 0.012% 
Table 3. Average number of false positives and false 
positive rates for 10000, 20000, and 30000 non-
matching documents for two keyword queries. 
5.2.2 Query Time vs. System Documents 

To determine the affect of the number of indexed 
system documents per server on query time, we 
populated 3 and 10 servers with varying numbers of 
total system documents and 100 matching documents 
and performed single and two keyword queries. 
System documents refer to non-matching documents 
for the test query. As shown in Figure 5, query times 
for a given number of total documents per server is 
roughly constant at several tens of milliseconds.  
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Figure 5. Query time for varying total system 
documents per server. Data was taken for 3 servers 
and 10 servers with single and two keyword queries 
and 100 matching documents. 

Although query times degrade with higher index 
entries per server probably due to resource competition 
with non-matching documents, they typically remain 
under 100 ms for below 105 entries. Since most clients 
are expected to index less than 10,000 documents [15], 
the majority of index servers in Panaché will operate 
under 10,000 documents and will exhibit good 
performance. The minority that has more documents 
will still respond to queries with acceptable latencies. 

5.2.3 Query Time vs. # of Query Keywords 
As mentioned in Section 4.3.4, query time should 

scale with the number of query keywords. We 
measured a linear dependence of query time on the 
number of keywords. For 100 matching documents 
and 10 servers, single keyword queries took about 20 
ms while 4 keyword queries took about 115 ms. Thus, 
performance will degrade for queries with many 
keywords, but queries typically contain less than five 
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keywords [13]. The graph showing this trend is 
omitted due to space constraints. 

5.2.4 Truncated Queries 
The benefits of truncated queries were measured by 

inserting increasing numbers of matching documents 
over 10 index servers and performing truncation 
queries with varying sizes. Panaché yields up to 200 
results in less than 800 ms, for two keyword queries 
and 30,000 matching documents. As the number of 
matching documents grows, the truncated query time 
increases since more documents must be ranked and 
more passes through the query-chain must occur. The 
slight increase in query time is shown in Figure 6 for 
the two keyword case. Alternatively, each index could 
be periodically sorted by hit count so document ranks 
would not have to be calculated on the fly. 
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Figure 6. Truncated query time for varying numbers 
of matching documents and varying truncated query 
result sizes. 
5.2.5 Query Time vs. # of Index Servers 

Query time should increase with more index 
servers because more Chord messages have to be sent 
to locate responsible servers. Figure 7 shows that an 
order of magnitude increase in the number of index 
servers resulted in a minimal increase in query time. 

Based on the trends shown here and Chord’s 
fundamental sub-linear lookup operation [1], we 
believe that query times will not degrade drastically 
with many index servers. 
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Figure 7. Query time for varying number of index 
servers in the system for 100 matching documents and 
single and two keyword queries. 

5.2.6 Index Server Performance 
Raw index server performance was determined by 

the number of queries per minute that could be 
satisfied within a reasonable amount of time. Three 
trials were conducted for varying index sizes. 

We populated the server with a random test data 
set. A random number of keywords were generated, 
each with a maximum of 100 random documents out 
of a 1 million document set. Therefore, a random 
number of documents matched multiple keywords. We 
measured the response time for each query in a stream 
of queries. Each query was randomly made to be one 
to four keywords long. The keywords were selected 
from those used to populate the system, under the 
assumption that users typically know which keywords 
should be used in the search. Response times were 
averaged after streaming queries for 2 minutes. 

Figure 8 demonstrates that the server successfully 
processed nearly 400 queries/min with a 50,000 
document index. We believe these results are 
underestimates. First, activity from other users may 
have affected performance. Second, our 
implementation prevented us from writing a 
standalone client. Thus, our client ran on the same 
machine as the server, leading to resource contention. 
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Figure 8. Raw index server performance measured 
against an input stream of random queries against a 
random distribution of documents. 

Gnutella nodes must process approximately 45 
queries per sec [10]. However, this is an inaccurate 
expectation for Panaché. First, Panaché queries are not 
as lightweight as Gnutella queries, since they may 
contain results that are to be intersected. Second, 
Gnutella broadcasts its queries, whereas queries in 
Panaché are routed. Routing reduces the number of 
queries that a particular node should process. 

5.2.7 Bandwidth vs. Matched Documents 
Bandwidth was measured by recording the total 

number of bytes that were sent between machines 
while processing a query. The protocol was modified 
to carry a cumulative byte count in each forwarded 
query. Figure 9 illustrates the amount of bandwidth 
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utilized during query processing. As expected, a linear 
growth in the number of documents is observed. 
Nonetheless, the crucial point of Figure 9 is that the 
bandwidth required for 32 index servers has barely 
increased beyond that needed for eight index servers.  
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Figure 9. Bandwidth used during query processing. 
Systems with 8 and 32 index servers were measured. 
5.3 Transience 

To gauge the effects of transience, we were 
interested in the amount of bandwidth consumed and 
the time needed for host entry and exit. 

Since the number of documents transmitted is 
fairly identical on an entry or an exit, we measured the 
number of bytes needed for an exit. The measurements 
do not include the underlying Chord messages used to 
lookup successors. The amount of data generated 
during an exit is plotted in Figure 10. On average, each 
document that must be transferred generated 38.8 
bytes of data. Transmitting the index information for 
nearly 7000 documents resulted in 270Kb of data 
being transferred and took less than one second. 
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Figure 10. Bytes sent on exit versus the number of 
documents on the exiting server. 

The transfer time needed during a transient event 
was measured as well. We populated one host with a 
variable number of documents. 20% of these 
documents were transferred to an entering host. The 
mean time for transmitting one document’s indexing 
information was 8.5 µs. Transmitting 2000 documents 
took 170 ms; 5000 documents took 429.5 ms. 

As described in Section 4.5, each host should index 
a few hundred documents on average. Even with a 

56Kbps connection, transmitting index information for 
100 documents takes just a few seconds.  

6. Future Enhancements 
There are several optimizations and enhancements 

that can be made to Panaché.  
Query joins could be short-circuited. Each 

document entry could contain a list of all the keywords 
used to index the document. The first server to receive 
a query could filter the resulting set and return only the 
documents that contain all the keywords. 

To further minimize network bandwidth consumed, 
compressed Bloom filters could be used [3]. 

Our current transience model does not handle 
staleness when a host leaves the network. A host’s 
departure results in the loss of an index server and 
removes all the documents it is sharing. To prevent 
staleness, the host's departure would need to be 
broadcast to all hosts so that they can update their 
indexes and remove references to the departing server. 
This is inefficient as a significant fraction of hosts in 
the network may have references to the departing host. 
We realize this is a limitation of Panaché and propose 
two solutions to address the invalidation problem. 

The first solution is to assign an expiration date to 
all documents when they are indexed. The date is 
delayed every time the file is accessed. In the absence 
of any notification from the document owner or in the 
absence of any accesses, the document is invalidated 
and removed from the index. The second solution is to 
have the client notify all index servers which 
processed the query that a result they returned is stale 
and should be removed. The two solutions could be 
combined to minimize staleness even further. 

Currently, Panaché only supports the graceful exit 
of hosts. By replicating data on multiple hosts, 
Panaché could support network failures and 
unexpected disconnections from the network. 
Replicated data could restore the indexes on the 
remaining servers. Large or popular indices could be 
replicated more often to provide load balancing. 

The result set produced for a query is currently 
returned to the client via an RPC call over UDP. Since 
the result set may be quite large, UDP is not well-
suited to this task. Instead, the result set should be sent 
via TCP to be more robust to network errors. 

Based on Panaché’s popularity metric, an 
optimization based on KSS [7] could be implemented. 
If a particular two keyword query was detected to be 
extremely popular, the servers responsible for the 
keywords could insert a new index into the system 
corresponding to the popular query. The old servers 
could notify query agents for query ordering purposes.  

To improve the response of Panaché to repeated 
queries, caching can be implemented on index servers. 
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Since query ordering is performed, the last server in 
the query-chain that responded to the same query 
previously can directly return the answer to the agent. 
This can also mitigate the cost of querying against 
extremely large indices. 

To handle the varying amount of resources 
available to nodes in a heterogeneous P2P system such 
as Panaché, virtual nodes may be implemented. 
Physical nodes with greater system resources could be 
responsible for more ChordIDs and thus, documents. 

Since we implemented our keyword search system 
separately from any particular P2P storage system, it is 
possible that Panaché could be used to do keyword 
search for Gnutella. This would require Gnutella to 
make a few modifications to insert documents in the 
index and to update the index based on popularity. 

Our system design does not preclude the use of 
crawlers to build and update our index. This may be 
desirable for index construction and for certain 
applications that require data freshness. 

Currently, Panaché is vulnerable to attacks by 
nodes that may flood the network with invalid 
documents. An expiration date for index entries 
partially addresses the issue. Malicious index servers 
could also generate false information. Replication of 
index data and checking the accuracy of queries with 
multiple servers could mitigate this problem at the 
expense of greater bandwidth consumption. 

7. Conclusions 
All peer-to-peer file sharing systems require 

efficient keyword search capabilities. Panaché 
provides a scalable solution to this problem by using 
optimizations such as Bloom filters and query 
ordering. Panaché provides scalability that is O(c*m) 
in each query for m matching documents and a small 
number of keywords, c. Using truncated queries, 
Panaché will use O(c) bandwidth, without sacrificing 
search quality or the ability to completely search the 
index. Thus, we expect that Panaché will significantly 
outperform Gnutella.  

Panaché needs more comprehensive testing. 
However, based on our simulated experiments, we 
believe that Panaché could provide valuable search 
capabilities for peer-to-peer systems. We are excited 
about the future work to be done. 
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