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1. INTRODUCTION 

Caches have been used in many operating systems to improve file system 
performance. Typically, caching is implemented by retaining in main memory a 
few of the most recently accessed disk blocks (e.g., UNIX [16]).l Repeated 
accesses to a block in the cache can be handled without involving the disk; this 
feature has two advantages. First, caching reduces delays: a block in the cache 
can usually be returned to a waiting process five to ten times more quickly than 
one that must be fetched from disk. Second, caching reduces contention for the 
disk arm, which may be advantageous if several processes are attempting to 
access files on the same disk. Measurements of time-sharing systems indicate 
that even small caches provide substantial benefits, and that the benefits are 
increasing as larger physical memories permit larger caches [8, lo]. 

1 UNIX is a trademark of AT&T Bell Laboratories. 
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Fig. 1. File caches in the Sprite system. When a process makes a file access, it is presented first 
to the cache of the process’s workstation (“file traffic”). If not satisfied there, the request is passed 
either to the local disk, if the file is stored there (“disk traffic”), or to the server where the file is 
stored (“server traffic”). Servers also maintain caches in order to reduce their disk traffic. 

This paper describes a simple distributed mechanism for caching files among 
a networked collection of workstations. We have implemented it as part of the 
Sprite operating system. In Sprite, file information is cached in the main 
memories of both servers (workstations with disks), and clients (workstations 
wishing to access files on nonlocal disks), as shown in Figure 1. On machines 
with disks, the caches achieve the same effects described above, namely, to reduce 
disk-related delays and contention. On clients, the caches also reduce the com- 
munication delays that would otherwise be required to fetch blocks from servers. 
In addition, client. caches reduce contention for the network and for the server 
machines. Since server CPUs appear to be the bottleneck in several existing 
network file systems [6,14], client caching offers the possibility of greater system 
scalability as well as increased performance. 

There are two unusual aspects to the Sprite caching mechanism. The first is 
that Sprite guarantees workstations a consistent view of the data in the file 
system, even when multiple workstations access the same file simultaneously 
and the file is cached in several places at once. This is done through a simple 
cache consistency mechanism that flushes portions of caches and disables caching 
for files undergoing read-write sharing. The result is that file access under Sprite 
has exactly the same semantics as if all of the processes on all of the workstations 
were executing on a single time-sharing system. 

The second unusual feature of the Sprite caches is that they vary dynamically 
in size. This feature was a consequence of our desire to provide very large client 
caches, perhaps occupying most of the clients’ memories. Unfortunately, large 
caches may occasionally conflict with the needs of the virtual memory system, 
which would like to use as much memory as possible to run user processes. Sprite 
provides a simple mechanism through which the virtual memory system and file 
system of each workstation negotiate over the machine’s physical memory. As 
the relative needs of the two systems change, the file cache changes in size. 

We used a collection of benchmark programs to measure the performance of 
the Sprite file system. On average, client caching resulted in a speedup of about 
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lo-40 percent for programs running on diskless workstations, compared to 
diskless workstations without client caches. With client caching enabled, diskless 
workstations completed the benchmarks only O-12 percent more slowly than 
workstations with disks. Client caches reduced the server utilization from about 
5-18 percent per active client to only about l-9 percent per active client. Since 
normal users are rarely active, our measurements suggest that a single server 
should be able to support at least 50 clients. In comparison with Sun’s Network 
File System [13] and the Andrew file system [14], Sprite completed a file- 
intensive benchmark 30-35 percent faster than the other systems. Sprite’s server 
utilization was substantially less than NFS but more than Andrew. 

The rest of the paper is organized as follows: Section 2 gives a brief overview 
of Sprite; Section 3 describes prior work that motivated our cache design; 
Section 4 presents the basic structure of the Sprite caches; Section 5 describes 
the consistency protocols, and Section 6 discusses the mechanism for varying the 
cache sizes; Section 7 presents the benchmark results; Section 8 compares Sprite 
to other network file systems; and Section 9 describes work still to be done in 
the areas of recovery and allocation. 

2. OVERVIEW OF SPRITE 

Sprite is a new operating system being implemented at the University of Califor- 
nia at Berkeley as part of the development of SPUR, a high-performance 
multiprocessor workstation [3]. A preliminary version of Sprite is currently 
running on Sun-2 and Sun-3 workstations, which have about l-2 MIPS process- 
ing power and 4-16 megabytes of main memory. The system is targeted for 
workstations like these and newer models likely to become available in the near 
future, such as SPURS; we expect the future machines to have at least five to 
ten times the processing power and main memory of our current machines, as 
well as small degrees of multiprocessing. We hope that Sprite will be suitable for 
networks of up to a few hundred of these workstations. Because of economic and 
environmental factors, most workstations will not have local disks; instead, large 
fast disks will be concentrated on a few server machines. 

The interface that Sprite provides to user processes is much like that provided 
by UNIX [12]. The file system appears as a single shared hierarchy equally 
accessible by processes on any workstation in the network (see [18] for infor- 
mation on how the name space is managed). The user interface to the file system 
is through UNIX-like system calls such as open, close, read, and write. 

Although Sprite appears similar in function to UNIX, we have completely 
reimplemented the kernel in order to provide better network integration. In 
particular, Sprite’s implementation is based on a simple kernel-to-kernel remote 
procedure call (RPC) facility [17], which allows kernels on different workstations 
to request services of each other using a protocol similar to the one described by 
Birrell and Nelson [2]. The Sprite file system uses the RPC mechanism exten- 
sively for cache management. 

3. BACKGROUND WORK 

The main motivation for the Sprite cache design came from a trace-driven 
analysis of tile activity in several time-shared UNIX 4.2 BSD systems, hereinafter 
referred to as the BSD study [lo]. For those systems, the BSD study showed 
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that even small file caches are effective in reducing disk traffic, and that large 
caches (4-16 megabytes) work even better by cutting disk traffic by as much as 
90 percent. For the kinds of applications measured in the BSD study, it appears 
that increases in memory sizes will soon make it possible to keep entire file 
working sets in main memory, with disks serving primarily as backup devices. 
Although the BSD study was based on time-sharing machines rather than 
networks of personal workstations, we hypothesized that the results would apply 
in a network environment too, and that the overheads associated with remote 
file access could be reduced by caching on clients as well as servers (Sections 5.3 
and 7 provide simulation and measurement data to support this hypothesis.) 

An additional motivating factor for us was a concern about server contention. 
A study of remote file access by Lazowska et al. concluded that the server CPU 
is the primary bottleneck that limits system scalability [6]. Independently, the 
designers of the Andrew file system decided to redesign their system in order to 
offload the servers [14] and achieved substantial improvements as a result [4]. 
These experiences, plus our own informal observations of our computing envi,- 
ronment, convinced us that client caching could substantially increase the 
scalability of the system. 

4. BASIC CACHE DESIGN 

This section describes the basic organization of file caches in Sprite and addresses 
three issues: 

(1) Where should client caches be kept: main memory or local disk? 
(2) How should caches be structured and addressed? 

(3) What policy should be used for writing blocks back to disk? 

The issues of maintaining cache consistency and varying the sizes of caches are 
discussed separately in the following two sections. 

4.1 Caches on Disk or in Main Memory? 

In several previous network file systems (e.g., Andrew [4, 141 and Cedar [15]), 
clients’ file caches were kept on their local disks. For Sprite we chose to cache 
file data in main memory for four reasons. First, main-memory caches permit 
workstations to be diskless, which makes them cheaper and quieter. Second, data 
can be accessed more quickly from a cache in main memory than a cache on disk. 
Third, physical memories on client workstations are now large enough to provide 
high hit ratios (e.g., a l-megabyte client cache provides greater than 80 percent 
read hits). As memories get larger, main-memory caches will grow to achieve 
even higher hit ratios. Fourth, the server caches will be in main memory regardless 
of where client caches are located: by using main-memory caches on clients too, 
we were able to build a single caching mechanism for use by both servers and 
clients. 

4.2 Cache Structure 

The Sprite caches are organized on a block basis using a fixed block size of 
4 kilobytes. We made this choice largely for simplicity and are prepared to revise 
it after we have more experience with the system. Cache blocks are addressed 
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virtually using a unique file identifier provided by the server and a block number 
within the file. We used virtual addresses instead of physical disk addresses so 
that clients could create new blocks in their caches without first contacting a 
server to find out their physical locations. Virtual addressing also allows blocks 
in the cache to be located without traversing the tile’s disk map. 

For files accessed remotely, client caches hold only data blocks. Servers also 
cache file maps and other disk management information. These blocks are 
addressed in the cache using the blocks’ physical disk addresses, along with a 
special “file identifier” corresponding to the physical device. 

4.3 Writing Policy 

The policy used to write dirty blocks back to the server or disk has a critical 
effect on the system’s performance and reliability. The simplest policy is to write 
data through to disk as soon as it is placed in any cache. The advantage of write- 
through is its reliability: Little information is lost when a client or server crashes. 
However, this policy requires each write access to wait until the information is 
written to disk, which results in poor write performance. Since about one-third 
of all file accesses are writes [lo], a caching scheme based on write-through 
cannot reduce disk or server traffic by more than two-thirds. 

An alternate write policy is to delay write-backs: blocks are initially written 
only to the cache and then written through to the disk or server some time later. 
This policy has 2 advantages over write-through. First, since writes are to the 
cache, write accesses complete much more quickly. Second, data may be deleted 
before it is written back, in which case it need not be written at all. In the BSD 
study, 20-30 percent of new data was deleted within 30 seconds, and 50 percent 
was deleted within 5 minutes. Thus, a policy that delays writes several minutes 
can substantially reduce the traffic to the server or disk. Unfortunately, delayed- 
write schemes introduce reliability problems, since unwritten data will be lost 
whenever a server or client crashes. 

For Sprite, we chose a delayed-write policy similar to the one used in UNIX: 
Every 30 seconds, all dirty blocks that have not been modified in the last 
30 seconds are written back. A block written on a client will be written to the 
server’s cache in 30-60 seconds and will be written to disk in 30-60 more seconds. 
This policy avoids delays when writing files and permits modest reductions in 
disk/server traffic, while limiting the damage that can occur in a crash. We plan 
to experiment with longer write-back intervals in the future. 

Another alternative is to write data back to the server when the file is closed. 
This approach is used in the Andrew system and NFS. Unfortunately, the BSD 
study found that 75 percent of files are open less than 0.5 seconds and 90 percent 
are open less than 10 seconds. This indicates that a write-on-close policy will not 
significantly reduce disk or server traffic. In addition, the write-on-close policy 
requires the closing Ijrocess to delay while the file is written through, which 
reduces the performance advantages of delayed writes. 

5. CACHE CONSISTENCY 

Allowing clients to cache tiles introduces a consistency problem: what happens 
if a client modifies a file that is also cached by other clients? Can subsequent 
references to the file by other clients return “stale” data? Most existing network 
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file systems provide only limited guarantees about consistency. For example, the 
NFS and Andrew systems guarantee that once a file is closed all data is back on 
the server, and future opens by other clients will cause their caches to be updated 
with the new version. Under conditions of sequential write sharing in which a file 
is shared but is never open simultaneously for reading and writing on different 
clients, each client will always see the most up-to-date version of the file. 
However, if a file in NFS or Andrew is open simultaneously on several clients, 
and one of them modifies it, the other clients will not see the changes immediately; 
users are warned not to attempt this kind of sharing (which we call concurrent 
write sharing). 

For Sprite we decided to permit both concurrent and sequential write sharing. 
Sprite guarantees that whenever a process reads data from a file, it receives the 
most recently written data, regardless of when and where the data were last 
written. We did this in order to make the user’s view of the file system as clean 
and simple as possible and to encourage use of the file system as a shared system- 
wide store for exchanging information between different processes on different 
machines. We hope that shared files will be used to simplify the implementation 
of system services such as print spoolers and mailers. Of course, we still expect 
that concurrent write sharing will be infrequent, so the consistency algorithm is 
optimized for the case in which there is no sharing. 

It is important to distinguish between consistency and correct synchronization. 
Sprite’s mechanism provides consistency: each read returns the most up-to-date 
data. However, the cache consistency mechanism cannot guarantee that concur- 
rent applications perform their reads and writes in a sensible order. If the order 
matters, applications must synchronize their actions on the file using system 
calls for file locking or other available communication mechanisms. Cache 
consistency simply eliminates the network issues and reduces the problem to 
what it was on time-sharing systems. 

Sprite uses the file servers as centralized control points for cache consistency. 
Each server guarantees cache consistency for all the files on its disks, and clients 
deal only with the server for a file: there are no direct client-to-client interac- 
tions. The Sprite algorithm depends on the fact that the server is notified 
whenever one of its files is opened or closed, so it can detect when concurrent 
write sharing is about to occur. This approach prohibits performance optimiza- 
tions (such as name caching) that allow clients to open files without contacting 
the files’ servers. Section 8 discusses the potential performance improvements 
that name caching could provide. 

5.1 Concurrent Write Sharing 

Concurrent write sharing occurs for a file when it is open on multiple clients, 
and at least one of them has it open for writing. Sprite deals with this situation 
by disabling client caching for the file, so that all reads and writes for the file go 
through to the server. When a server detects (during an “open” operation) that 
concurrent write sharing is about to occur for a file, it takes two actions. First, it 
notifies the client that has the file open for writing, if any, telling it to write all 
dirty blocks back to the server. There can be at most one such client. Second, 
the server notifies all clients that have the file open that the file is no longer 
cacheable. This causes the clients to remove all of the file’s blocks from their 
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caches. Once these two actions are taken, clients will send all future accesses for 
that file to the server. The server’s kernel serializes the accesses to its cache and 
produces a result identical to running all the client processes on a single time- 
shared machine. 

Caching is disabled on a file-by-file basis and only when concurrent write 
sharing occurs. A file can be cached simultaneously by many clients as long as 
none of them is writing the file, and a writing client can cache the file as long as 
there are no concurrent readers or writers on other workstations. When a file 
becomes noncacheable, only those clients with the file open are notified; if other 
clients have some of the file’s data in their caches, they will take consistency 
actions the next time they open the file, as described in the next section. A 
noncacheable file becomes cacheable again once it is no longer undergoing 
concurrent write sharing; for simplicity, however, Sprite does not reenable 
caching for files that are already open. 

5.2 Sequential Write Sharing 

Sequential write sharing occurs when a file is modified by one client, closed, then 
opened by some other client. There are two potential problems associated with 
sequential write sharing. First, when a client opens a tile it may have out-of-date 
blocks in its cache. To solve this problem, servers keep a version number for 
each file, which is incremented each time the file is opened for writing. Each 
client keeps the version numbers of all the files in its cache. When a file is 
opened, the client compares the server’s version number for the file with its own. 
If they differ, the client flushes the file from its cache. This approach is similar 
to NFS and the early versions of Andrew. 

The second potential problem with sequential write sharing is that the 
current data for the file may be in some other client’s cache (the last writer need 
not have flushed dirty blocks back to the server when it closed the file). Servers 
handle this situation by keeping track of the last writer for each file; this client 
is the only one that could potentially have dirty blocks in its cache. When a 
client opens a file, the server notifies the last writer (if there is one and if it is a 
client different from the opening client) and waits for it to write its dirty blocks 
through to the server. This ensures that the reading client will receive up-to-date 
information when it requests blocks from the server. 

5.3 Simulation Results 

We used the trace data from the BSD study to estimate the overheads associated 
with cache consistency and also to estimate the overall effectiveness of client 
caches. The traces were collected over 3-day midweek intervals on 3 VAX-ll/ 
780s running 4.2 BSD UNIX for program development, text processing, and 
computer-aided design applications; see [lo] for more details. The data were used 
as input to a simulator that treated each time-sharing user as a separate client 
workstation in a network with a single file server. The results are shown in 
Table I. Client caching reduced server traffic by over 70 percent and resulted in 
read-hit ratios of more than 80 percent. 

Table II presents similar data for a simulation in which no attempt was made 
to guarantee cache consistency. A comparison of the bottom-right entries in 
Tables I and II shows that about one-fourth of all server traffic in Table I is due 
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Table I. Server Traffic with Cache Consistency 

Client cache size Blocks read Blocks written Total Traffic ratio (%l 

0 Mbvte 445.815 172.546 618.361 100 

0.5 Mbyte 102,469 96,866 199,335 32 

1 Mbyte 84,017 96,796 180,813 29 

2 Mbvtes 77,445 96,796 174,241 28 

4hJbvtes 75.322 96.796 172.118 28 

8Mbytes 75,088 96,796 171,884 28 

Notes: Client caching simulation results based on trace data from the BSD study. Each 
user was treated as a different client with client caching and a 30-second delayed-write 
policy. The table shows the number of read and write requests made by client caches to 
the server for different client cache sizes. The “Traffic Ratio” column gives the total 
server traffic as a percentage of the total file traffic presented to the client caches. Write 
sharing is infrequent: Of the write traffic, 4041 blocks were written through because of 
concurrent write sharing, and 6887 blocks were flushed back because of sequential write 
sharing. 

Table II. Server Traffic, Ignoring Cache Consistency 

Client cache size Blocks read Blocks written Total Traffic ratio f%) 

0 Mbyte 445,815 172,546 618,361 100 

0.5 Mbyte 80,754 93,663 174,417 28 

1 Mbyte 52,377 93,258 145,635 24 

2 Mbytes 41,767 93,258 135,025 22 

4 Mbvtes 38.165 93,258 131,423 21 

8 Mbytes 37,007 93,258 130,265 21 

to cache consistency. Table II is not realistic in the sense that it simulates a 
situation in which incorrect results would have been produced, nonetheless, it 
provides an upper bound on the improvements that might be possible with a 
more clever cache consistency mechanism. 

6. VIRTUAL MEMORY AND THE FILE SYSTEM 

In addition to guaranteeing coherency between the client caches, we wanted to 
permit each client cache to be as large as possible. For example, applications that 
do not require much virtual memory should be able to use most of the physical 
memory as a file cache. However, if the caches were fixed in size (as they are in 
UNIX), then large caches would leave little physical memory for running user 
programs, and it would be difficult to run applications with large virtual memory 
needs. In order to get the best overall performance, Sprite allows each file cache 
to grow and shrink dynamically in response to changing demands on the ma- 
chine’s virtual memory system and file system. This is accomplished by having 
the two modules negotiate over physical memory usage. 

The file system module and the virtual memory module each manage a separate 
pool of physical memory pages. Virtual memory keeps its pages in approximate 
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least-recently-used (LRU) order through a version of the clock algorithm [9]. 
The file system keeps its cache blocks in perfect LRU order, since all block 
accesses are through the read and write system calls. Each system keeps a time- 
of-last-access for each page or block. Whenever either module needs additional 
memory (because of a page fault or a miss in the file cache), it compares the age 
of its oldest page with the age of the oldest page from the other module. If the 
other module has the oldest page, then it is forced to give up that page; otherwise, 
the module recycles its own oldest page. 

The approach just described has two potential problems: double caching and 
multiblock pages. Double caching can occur because virtual memory is a user of 
the file system; backing storage is implemented using ordinary files, and read- 
only code is demand-loaded directly from executable files. A naive implementa- 
tion might cause pages being read from backing files to end up in both the file 
cache and the virtual-memory page pool; pages being eliminated from the virtual- 
memory page pool might simply get moved to the file cache, where they would 
have to age for another 30 seconds before being sent to the server. To avoid these 
inefficiencies, the virtual-memory system bypasses the local file cache when 
reading and writing backing files. A similar problem occurs when demand-loading 
code from its executable file. In this case, the pages may already be in the file 
cache (e.g., because the program was just recompiled). If so, the page is copied to 
the virtual-memory page pool, and the block in the file cache is given an “infinite” 
age so that it will be replaced before anything else in memory. 

Although virtual memory bypasses its local file cache when reading and writing 
backing files, the backing files will be cached on servers. This makes servers’ 
memories into an extended main memory for their clients. 

The second problem with the negotiation between virtual memory and the file 
system occurs when virtual memory pages are large enough to hold several file 
blocks. Is the LRU time of a page in the file cache the age of the oldest block in 
the page, the age of the youngest block in the page, or the average age of the 
blocks in the page? Once it is determined which page to give back to virtual 
memory, what should be done with the other blocks in the page if they have been 
recently accessed? For our Sun-3 implementation of Sprite, which has &kilobyte 
pages but 4-kilobyte file blocks, we used a simple solution: the age of a page is 
the age of the youngest block in the page, and when a page is relinquished all 
blocks in the page are removed. We are currently investigating the effect of this 
policy on tile system performance. 

We also considered more centralized approaches to trading off physical memory 
between the virtual memory page pool and the file cache. One possibility would 
be to access all information through the virtual memory system. To access a file, 
it would first be mapped into a process’s virtual address space and then read and 
written just like virtual memory, as in Apollo’s DOMAIN system [7]. This 
approach would eliminate the file cache entirely; the standard page replacement 
mechanisms would automatically balance physical memory usage between file 
and program information. We rejected this approach for several reasons, the 
most important of which is that it would have forced us to use a more complicated 
cache consistency scheme for concurrent write sharing. A mapped-file approach 
requires a file’s pages to be cached in a workstation’s memory before they can be 

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966. 



Caching in the Sprite Network File System 143 

accessed, so we would not have been able to implement cache consistency by 
refusing to cache shared tiles. 

Another possible approach would have been to implement a centralized physical 
memory manager, from which both the virtual memory system and the file system 
would make page requests. The centralized manager would compute page ages 
and make all replacement decisions. We rejected this approach because the most 
logical way to compute page ages is different for virtual memory than for files. 
The only thing the two modules have in common is the notion of page age and 
LRU replacement. These shared notions are retained in our distributed mecha- 
nism, which leaves each module free to age its own pages in the most convenient 
way. Our approach also permits us to adjust the relative aging rates for virtual 
memory and file pages, if that should become desirable. Our initial experiences 
with the system suggest that virtual memory pages should receive preferential 
treatment, particularly in times of memory contention: the sequential nature of 
file accesses means that a low file-hit ratio has a much smaller impact on system 
performance than a low virtual-memory hit ratio. 

7. BENCHMARKS 

This section describes a series of benchmarks we ran to measure the performance 
of the Sprite file system. Our goal was to measure the benefits provided by client 
caches in reducing delays and contention by answering the following questions: 

-How much more quickly can file-intensive programs execute with client caches 
than without? 

-How much do client caches reduce the load placed on server CPUs? 

-How much do client caches reduce the network load? 

-How many clients can one server or network support? 
-How will the benefits of client caches change as CPU speeds and memory size 

increase? 

All of our measurements were made on configurations of Sun-3 workstations 
(about 2 MIPS processing power). Clients were Sun-3/75s and Sun-3/160s 
with at least 8 megabytes of memory, and the server was a Sun-3/180 with 
12 megabytes of memory and a 400-megabyte Fujitsu Eagle disk. 

7.1 Microbenchmarks 

We wrote several simple benchmarks to measure the low-level performance of 
the Sprite file system. The first set of benchmarks measured the time required 
for local and remote invocation of three common naming operations. These 
measurements are given in Table III. Each of these operations requires contacting 
the server of the named file. The remote versions took 3-4 times as long as the 
local versions: about half of the elapsed time for the remote operations was spent 
executing in the server’s CPU. The second set of benchmarks measured the raw 
read and write performance of the Sprite file system by reading or writing a 
single large file sequentially. Before running the programs, we rigged the system 
so that all the accesses would be satisfied in a particular place (e.g., the client’s 
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Table III. Cost of Common File-Name Lookup Operations 

Diskless 

Ooeration Local disk Elapsed time Server CPU time 

OoeniClose 2.17ms 8.11ms 3.75ms 

Failed Open 

Get Attributes 

1.48ms 4.13ms 2.01ms 

1.28ms 4.47ms 2.12ms 

Notes: Times are milliseconds per operation on a patbname with a single component. 
The first row is the cost of opening and closing a file, the second row is the cost of 
opening a file that does not exist, and the third row is the cost of getting the 
attributes of a file (“stat”). 

Table IV. Read and Write Throughput, Kbytes/Second 

Local cache Server cache Local disk Server disk 

Read 3269 475 224 212 

Write 2893 380 197 176 

cache). Table IV shows the I/O speeds achieved to and from caches and disks in 
different locations, using large files accessed sequentially. 

Table IV contains two important results. First, a client can access bytes in its 
own cache 6-8 times faster than those in the server’s cache. This means that, in 
the best case, client caching could permit an application program to run as much 
as 6-8 times faster than it could without client caching. The second important 
result is that a client can read and write the server’s cache at about the same 
speed as a local disk. In our current implementation, the server cache is twice as 
fast as a local disk, but this is because Sprite’s disk layout policy only allows one 
block to be read or written per disk revolution. We expect eventually to achieve 
throughput to local disk at least as good as 4.3BSD, or about 2-3 times the rates 
listed in Table IV; under these conditions the local disk will have about the same 
throughput as the server’s cache. In the future, as CPUs get much faster but 
disks do not, the server’s cache should become much faster than a local disk, up 
to the limits of network bandwidth. Even for paging traffic, this suggests that a 
large server cache may provide better performance than a local disk. 

7.2 Macrobenchmarks 

The microbenchmarks give an upper limit on the costs of remote file access and 
the possible benefits of client caching. To see how much these costs and benefits 
affect real applications, we ported several well-known programs frcm UNIX to 
Sprite and measured them under varying conditions. We ran each benchmark 
three times for each data point measured. As depicted in Table V the I/O columns 
give the average rates at which file data were read and written by the benchmark 
when run on Sun-3s with local disks and warm caches; that is, they measure the 
benchmark’s I/O intensity. 

7.2.1 Application Speedups. Table VI lists the total elapsed time to execute 
each of the macrobenchmarks with local or remote disks and with client caches 
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Table V. Macro Benchmarks 

I/O (Kbytes/second) 

Proaram Descrintion Read Write 

Andrew Copy a directory hierarchy containing 70 tiles and 200 Kbytes 54.9 34.4 
of data; examine the status of every tile in the new subtree; read 
every byte of the files; compile and link the files. Developed by 
M. Satyanarayanan for benchmarking the Andrew file system; 
see 141 for details. 

Fs-make Use the “make” program to recompile the Sprite file system: 33 56.6 28.9 
source files and 33.800 lines of C source code. 

Simulator Simulate set-associative cache memory using a 3375-Kbyte 23.0 0.0 
address trace. 

sort Sort a l-Mbyte file. 47.0 90.2 

Diff Comnare 2 identical 1-Mbvte files. 252.4 0 

Nroff Format the text of this naner. 16.1 18.1 

Table VI. Execution Times Measured on Sun-3s 

Benchmark 

Local disk with Diskless, server Diskless, client 
cache cache only and server caches 

Cold Warm Cold Warm Cold Warm 

Andrew 261 249 373 363 291 280 
105% 100% 150% 146% 117% 112% 

Fs-make 660 649 855 843 698 685 
102% 100% 132% 130% 108% 106% 

Simulator 161 147 168 153 167 147 
109% 100% 114% 104% 114% 100% 

sort 65 61 74 72 66 61 
107% 100% 121% 118% 108% 100% 

Diff 22 8 27 12 27 8 
165% 100% 225% 147% 223% 100% 

Nroff 53 51 57 56 53 52 
103% 100% 112% 109% 105% 102% 

Notes: The top number for each run is total elapsed time in seconds. The bottom 
number is normalized relative to the warm-start time with a local disk. Cold means that 
all caches, both on server and client, were empty at the beginning of the run. Warm 
means that the program was run once to load the caches, then timed on a second run. 
In the “Diskless, Server Cache Only” case, the client cache was disabled, but the server 
cache was still enabled. In all other cases, caches were enabled on all machines. All 
caches were allowed to vary in size using the VM-FS negotiation scheme. 

enabled or disabled. Without client caching, diskless machines were generally 
about lo-50 percent slower than those with disks. With client caching enabled 
and a warm start, the difference between diskless machines and those with disks 
was very small; in the worst case, it was only about 12 percent. Figure 2a shows 
how the performance varied with the size of the client cache. 

We expect the advantages of client caching to improve over time for two 
reasons. First, increasing memory sizes will make larger and larger caches feasible 
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Fig. 2. Client degradation and network traffic (diskless Sun-3s with client caches, warm start) as a 
function of maximum client cache size. For each point, the maximum size of the client cache was 
limited to a particular value. The “degradation” shown in (a) is relative to the time required to 
execute the benchmark with a local disk and warm cache. The network traffic shown in (b) includes 
bytes transmitted in packet headers and control packets, as well as file data. The diff benchmark did 
not fit on graph (b); for all cache sizes less than 2 Mbytes this benchmark has an I/O rate of 185 
kilobytes/second and for all larger cache sizes it has an I/O rate of only 0.5 kilobytes/second. 

and will increase their effectiveness. Second, processor speeds are increasing 
faster than network or disk speeds; without caches, workstations will end up 
spending more and more of their time waiting for the network or disk. 

7.2.2 Network Utilization. In their analysis of diskless file access, based on 
Sun-2 workstations, Lazowska et al. concluded that network loading was not yet 
a major factor in network file systems [6]. However, as CPU speeds increase, the 
network ban&i&h is becoming more and more of an issue. Figure 2b plots 
network traffic as a function of cache size for our benchmarks running on 
Sun-3s. Without client caching, the benchmarks averaged 6.5 percent utilization 
of the lo-Mbit/second Ethernet. The most intensive application, cliff, used 
15 percent of the network bandwidth for a single client. Machines at least 
5 times faster than Sun-3s will be widely available within a few years (e.g., the 
SPUR workstations under development at Berkeley or the recently announced 
Sun-4); a single one of these machines would utilize 30-50 percent of the Ethernet 
bandwidth running the benchmarks without client caching. Without client 
caches, application performance may become limited by network transmission 
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Fig. 2 (continued) 

delays, and the number of workstations on a single Ethernet may be limited by 
the bandwidth available on the network. 

Fortunately, Figure 2b shows that client caching reduces network utilization 
by about a factor of 10 to an average of about 0.6 percent for the benchmarks. 
This suggests that lo-Mbit Ethernets will be adequate for the current generation 
of CPUs and perhaps 1 or 2 more generations to follow. After that, higher 
performance networks will become essential. 

7.2.3 Server Load. One of the most beneficial effects of client caching is its 
reduction in the load placed on server CPUs. Figure 3 shows the server CPU 
utilization with and without client caching. In general, a diskless client without 
a client cache utilized about 5-20 percent of the server’s CPU. With client 
caching, the server utilization dropped by a factor of 2 or more to 2-9 percent. 

7.2.4 Contention. In order to measure the effects of loading on the performance 
of the Sprite file system, we ran several versions of the most server-intensive 
benchmark, Andrew, simultaneously on different clients. Each client used a 
different copy of the input and output files so there was no cache consistency 
overhead. Figure 4 shows the effects of contention on the client speed, on the 
serverls CPU, and on the network. Without client caches, there was significant 
performance degradation when more than a few clients were active at once. With 
7 clients and no client caching, the clients were executing two-and-a-half times 
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Fig. 3. Client caching reduces server loading by a factor of 2-5 (measured on Sun 3s with 
variable-size client caches). 

more slowly, the server was nearly 80 percent utilized, and the network was over 
30 percent utilized. With client caching and 7 active clients, each ran at a speed 
within 30 percent of what it could have achieved with a local disk; server 
utilization in this situation was about 50 percent and network utilization was 
only 5 percent. 

The measurements of Figure 4 suggest that client caches allow a single Sun-3 
server to support at least 10 Sun-3 clients simultaneously running the Andrew 
benchmark. However, typical users spend only a small fraction of their time 
running such intensive programs. We estimate that 1 instance of the Andrew 
benchmark corresponds to about 5-20 active users, so that 1 Sun-3 Sprite file 
server should be able to support at least 50 Sun-3 users. This estimate is based 
on the BSD study, which reported average file I/O rates per active user of 
.5-1.8 kilobytes/second. We estimate that the average total I/O for an active 
Sun-3 workstation user will be about 8-10 times higher than this, or about 
4-18 kilobytes/second because the BSD study did not include paging traffic 
and was based on slower machines used in a time-sharing mode (we estimate 
that each of these factors accounts for about a factor of 2). Since the average 
I/O rate for the Andrew benchmark was 90 kilobytes/second, it corresponds 
to about 5-20 users. This estimate is consistent with independent estimates 
made by Howard et al., who estimated that 1 instance of the Andrew benchmark 
corresponds to 5 average users [4], and by Lazowska et al., who estimated about 
4 kilobytes/second of I/O per user on slower Sun-2 workstations [6]). 

The server capacity should not change much with increasing CPU speeds, as 
long as both client and server CPU speeds increase at about the same rate. In a 
system with servers that are more powerful than clients, the server capacity 
should be even higher than this. 
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Fig. 4. Effect of multiple diskless clients running the Andrew benchmark simultaneously on different 
files in a Sun-3 configuration with variable-size client caches. (a) shows additional time required by 
each diskless client to complete the benchmark relative to a single client running with local disk. (b) 
shows server CPU utilization. (c) shows the percentage network utilization. 

8. COMPARISON TO OTHER SYSTEMS 

The Sprite file system is only one of many network file systems that have been 
implemented in the last several years. Table VII compares Sprite to six other 
well-known systems for five different parameters. Most of these parameters have 
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Table VII. Comparison of File Systems 

System 

NFS 
u31 

Cache Cache Writing Consistency Cache 
location size policy guarantees validation 

Memory Fixed On close or 30 Sequential Ask server on open 
second delay 

RFS 
111 
Andrew 
[41 

Locus 
I111 

Memory Fixed Write-through 

Disk Fixed On close 

Memory Fixed On close 

Sequential, 
Concurrent 

Sequential 

Sequential, 
Concurrent 

Ask server on open 

Server calls client when 
modified 

Ask server on open 

Apollo 
[71 

CFS 
P51 

Memory Variable Delayed or on Sequential Ask server when locked 
unlocked 

Disk Variable On SModel Not applicable Not applicable 

Sprite Memory Variable 30 second delay Sequential, 
Concurrent 

Ask server on open 

Notes: All of the systems but Apollo, Cedar and Sprite are variants of the UNIX operating system. 
The Apollo system delimits active use of a file by lock and unlock instead of open and close. The 
Cedar File System (CFS) only caches immutable files and provides a different type of cache 
consistency than the other systems. SModel is a software tool that is used to move cached files 
that have been changed back to their file server. 

already been discussed in previous sections; this section focuses on the cache 
consistency issues and compares Sprite’s performance with NFS and Andrew. 

Of the systems in Table VII, only two systems besides Sprite support both 
sequential and concurrent write sharing. The &FS system handles concurrent 
write sharing in a fashion similar to Sprite by disabling caching. However, RFS 
is based on write-through and disables caching on the first write to a file, rather 
than during the open. Locus supports concurrent write sharing without disabling 
caching. Instead, it uses a token-passing scheme in which each client must have 
a read or write token in order to access a file; the kernels pass the tokens around 
and flush caches in a way that guarantees consistency. The Apollo system does 
not support concurrent write sharing but provides lock and unlock primitives 
that concurrent readers and writers can use to serialize their accesses; the system 
flushes caches in a way that guarantees consistency if the locking primitives are 
used correctly. 

All of the systems in Table VII, except Andrew, check with a file’s server when 
the file is opened or locked in order to ensure that the client’s cached copy is up 
to date. The Andrew system used the check-on-open approach initially but was 
later redesigned to have the servers keep track of which clients have cached 
which files and to notify the clients when the files are modified. This allows 
clients to open files without contacting the servers and resulted in a substantial 
reduction in server loading. For Sprite we decided to process all opens and file- 
naming operations on the servers in order to avoid the complexity of maintaining 
file-name caches on clients. 
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Table VIII. Estimated Improvements from Name Caching and Server Callback 

Degradation Server utilization Network utilization 

Handle Handle Handle 
Benchmark Original 

Andrew 12.5% 

Fs-make 5.6% 

locally 

6.2% 

1.0% 

Original 

8.9% 

6.7% 

locally 

5.6% 

4.1% 

Original 

1.04% 

-75% 

locally 

.69% 

-45% 
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Although we are generally satisfied with Sprite’s performance and scalability, 
we were curious about how much improvement would be possible if we imple- 
mented client-level name caching with an Andrew-like callback mechanism. 
Table VIII contains simple upper bound estimates. The estimates were made by 
counting invocations of Open and Get Attributes operations in the benchmarks 
and recalculating degradations and utilizations under the assumption that all of 
these operations could be executed by clients without any network traffic or 
server involvement. The table suggests that client-visible performance would 
only improve by a few percentage points (even now, clients run almost as fast 
with remote disks as with local ones), but server utilization and network utiliza- 
tion would be reduced by as much as one-third. This could potentially allow a 
single server or network to support up to 50 percent more clients than in the 
current implementation. Our estimate for improvement in Sprite is much smaller 
than the measured improvement in Andrew when Andrew switched to callback. 
We suspect that this is because the Andrew servers are implemented as user- 
level processes, which made the system more portable but also made remote 
operations much more expensive than in Sprite’s kernel-level implementation. If 
the Andrew servers had been implemented in the kernel, we suspect that there 
would have been less motivation to switch to a callback approach. 

Figure 5 compares Sprite to the Andrew and NFS file systems using the 
Andrew benchmark. The measurements for the NFS and Andrew file systems 
were obtained from [4]. Unfortunately, the measurements in [4] were taken by 
using Sun-3/50 clients, whereas we had only Sun-3/75 clients available for 
the Sprite measurements; the Sun-3/75 is about 30 percent faster than the 
Sun-3/50. In order to make the systems comparable, we normalized for 
Sun-3/50 clients: the Sprite elapsed times from Table VI and Figure 4 were 
multiplied by 1.3, and the server utilizations from Figure 4 were divided by 1.3 
(the servers were the same for the Sprite measurements as for the Andrew and 
NFS measurements; slowing down the Sprite clients would cause the server to 
do the same amount of work over a longer time period for lower average 
utilization). Another difference between our measurements and the ones in [4] 
is that the NFS and Andrew measurements were made using local disks for 
program binaries, paging, and temporary files; for Sprite, all of this information 
was accessed remotely from the server. 

Figure 5 shows that, for a single client, Sprite is about 30 percent faster than 
NFS and about 35 percent faster than Andrew. The systems are sufficiently 
different that it is hard to pinpoint a single reason for Sprite’s better performance; 
however, we suspect that Sprite’s high-performance kernel-to-kernel RPC mech- 
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Fig. 5. Performance of the Andrew benchmark on 3 different file systems: Sprite, Andrew, and NFS. 
(a) shows the absolute running time of the benchmark as a function of the number of clients executing 
the benchmark simultaneously, and (b) shows the server CPU utilization as a function of number of 
clients. The Andrew and NFS numbers were taken from [4] and are based on Sun-3/50 clients. The 
Sprite numbers were taken from Table VI and Figure 4 and renormalized for Sun-3/50 clients. 

anism (versus more general-purpose but slower mechanisms used in NFS and 
Andrew), Sprite’s delayed writes, and Sprite’s kernel implementation (versus 
Andrew’s user-level implementation) are major factors. As the number of con- 
current clients increased, the NFS server quickly became saturated. The Andrew 
system showed the greatest scalability: each client accounted for only about 
2.4 percent server CPU utilization compared to 5.4 percent in Sprite and over 
20 percent in NFS. We attribute Andrew’s low server CPU utilization to its 
use of callbacks. Figure 5 reinforces our claim that a Sprite file server should be 
able to support at least 50 clients: our experience with NFS is that a single server 
can support lo-20 clients, and Sprite’s server utilization is only one-fourth that 
of NFS. 

9. FUTURE WORK 

There are two issues concerning client caching that we have not yet resolved in 
the Sprite implementation: crash recovery and disk overflow. The current system 
is fragile because of the amount of state kept in the main memory of each server. 
If a server crashes, then all the information in its memory, including dirty blocks 
in its cache and information about open files, is lost. As a result, all client 
processes using files from the server usually have to be killed. In contrast, the 
servers in Sun’s NFS are stateless. This results in less efficient operation (since 
all important information must be written through to disk), but it means that 
clients can recover from server crashes: the processes are put to sleep until the 
server reboots, then they continue with no ill effects. 
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We are currently exploring ways to provide better recovery from server crashes 
in Sprite. One possibility is to use write-through in the servers’ caches. Table IV 
shows that a client can write to a server’s disk at 176 kilobytes/second, yet with 
client caching even the most intensive benchmark generated data for the server 
at less than 20 kilobytes/second (see Figure 2b). Thus it appears that it might be 
possible to make server caches write through without significant performance 
degradation. This would guarantee that no file data would be lost on server 
crashes. Client caches would still use a delayed-write policy, so the extra overhead 
of writing through to the server cache would only be incurred by the background 
processes that clean client caches. In addition, clients should be able to provide 
servers with enough information to reopen files after a server crash. We hope 
that this approach will enable clients to continue transparently after server 
crashes. 

The second unresolved issue has to do with “disk-full” conditions. In the 
current implementation, a client does not notify the server when it allocates new 
blocks for files. This means that when the client eventually writes the new block 
to the server (as much as 30 seconds later), there may not be any disk space 
available for the block. In UNIX, a process is notified at the time of the “write” 
system call if the disk is full. We plan to provide similar behavior in Sprite with 
a simple quota system in which each client is given a number of blocks from 
which it can allocate disk space. If the client uses up its quota, it requests more 
blocks from the server. When the amount of free disk space is too small to give 
quotas to clients, clients will have to submit explicit disk allocation requests to 
the server whenever they create new blocks. 

10. CONCLUSIONS 

Sprite’s file system demonstrates the viability of large caches for providing high- 
performance access to shared file data. Large caches on clients allow diskless 
client workstations to attain performance comparable to workstations with disks. 
This performance is attained while utilizing only a small portion of servers’ CPU 
cycles. The caches can be kept consistent using a simple algorithm because write 
sharing is rare. By dynamically varying the cache sizes, Sprite permits the file 
caches to become as large as possible without impacting virtual memory 
performance. 

The high performance attainable with client caches casts doubts on the need 
for local disks on client workstations. For users considering the purchase of a 
local disk, our advice is to spend the same amount of money on additional 
memory instead. We believe that this would improve the performance of the 
workstation more than the addition of a local disk: it would not only improve file 
system performance by allowing a larger cache, but it would also improve virtual 
memory performance. 
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