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Abstract  

Some emerging applications require programs to main-
tain sensitive state on untrusted hosts. This paper pre-
sents the architecture and implementation of a trusted 
database system, TDB, which leverages a small amount 
of trusted storage to protect a scalable amount of un-
trusted storage. The database is encrypted and validated 
against a collision-resistant hash kept in trusted storage, 
so untrusted programs cannot read the database or mod-
ify it undetectably. TDB integrates encryption and hash-
ing with a low-level data model, which protects data 
and metadata uniformly, unlike systems built on top of a 
conventional database system. The implementation ex-
ploits synergies between hashing and log-structured 
storage. Preliminary performance results show that 
TDB outperforms an off-the-shelf embedded database 
system, thus supporting the suitability of the TDB archi-
tecture. 

1 Introduction 

Some emerging applications require trusted programs to 
run on untrusted hosts. For example, vendors of digital 
goods such as software and music need to control the 
use of their goods according to their contracts with the 
consumers. The contracts may be enforced by executing 
a trusted program on the consumer’s computer or play-
ing device  [SBV95, IBM00, Xer00].  

Often, trusted programs need to maintain some sensi-
tive, persistent state. For example, under a pay-per-use 
contract, the program may verify and debit the con-
sumer’s account. Or, under a limited-use trial, the pro-
gram may count and limit the number of times the good 
is used. The amount of such state may grow with the 
number of vendors, goods, and the types of contracts. 
Furthermore, the sensitive nature of the state makes it 
desirable to protect it from both tampering and acciden-
tal corruption. Therefore, the state should be stored in a 
scalable and trusted database system. 

Although a trusted program runs on the client, it could 
maintain its database on a trusted server for best secu-
rity. However, this may require frequent communication 

between the trusted program and the server, which is 
constraining for devices with poor connectivity. Ideally, 
consumers should be able to use goods distributed on 
mass media or previously hoarded on their devices, 
even when they are disconnected from the network. 
Therefore, it is desirable to maintain the database on the 
client side. 

The party hosting the database storage has the opportu-
nity to alter its state for unauthorized benefits. For ex-
ample, a consumer could save a copy of the local data-
base, purchase some goods, then replay the saved copy, 
thus eliminating payments for the purchased goods. 

It is difficult to secure a trusted program and its data-
base because the hosting party ultimately controls the 
underlying hardware and the operating system. How-
ever, a number of emerging trusted platforms provide a 
processing environment that runs only trusted programs 
and resists reverse engineering and tampering.  Such 
platforms employ a hardware package containing a 
processor, memory, and tamper-detecting circuitry 
[SPW98, KK99, Wav99, Dal00], or various techniques 
for software protection [Coh93, Auc96, CTL98]. How-
ever, these platforms do not provide trusted persistent 
storage in bulk because it is difficult to prevent read and 
write access to devices such as disk and flash memory 
from outside the trusted platform. 

This paper presents the architecture and implementation 
of a trusted database system, TDB. By “trust” we mean 
secrecy (protection against reading from untrusted pro-
grams) and tamper detection (protection against writing 
from untrusted programs). An untrusted program cannot 
be prevented from tampering with the data, but such 
data fails validation when a trusted program reads it. 
This enables the trusted program to reject the data and 
perhaps refuse further operation. 

TDB may also be used to protect a database stored at an 
untrusted server. Such a database may be used by client 
devices that do not have enough local storage. In this 
case, the user may have no incentive to tamper with the 
client device, so no explicit mechanisms may be re-
quired to provide a trusted platform on the client. 



1.1 Basic Trust Management 

TDB leverages a trusted processing environment and a 
small amount of trusted storage available on the plat-
form. It provides secrecy by encrypting data with a key 
hidden in secret storage. It provides tamper detection by 
leveraging a small amount of tamper-resistant storage, 
as described below. 

A common mechanism for validating data is to sign it 
with a secret key. However, signed data is vulnerable to 
replay attacks. The attack is easy because it does not 
require understanding the data; it works even when the 
data is encrypted. TDB resists replay attack by storing a 
collision-resistant hash of the database in tamper-
resistant storage [MOV96]. When a trusted program 
writes and reads database objects, TDB updates and 
validates the database hash efficiently by maintaining a 
tree of hash values over the objects, as suggested by 
Merkle [Mer80].  

TDB provides an option to use a tamper-resistant 
counter, which cannot be decremented, in place of ge-
neric tamper-resistant storage. After each database up-
date, TDB increments the counter and generates a cer-
tificate containing the counter value and the database 
hash. The certificate is signed with the secret key and 
stored in untrusted storage. 

1.2 Storage Management 

To protect the state from accidental corruption, TDB 
provides standard database-system services such as 
crash atomicity, concurrent transactions, type checking, 
pickling, cache management, and index maintenance. 

One might consider building a trusted database system 
by layering cryptography on top of a conventional data-
base system. This layer could encrypt objects before 
storing them in the database and maintain a tree of hash 
values over them. This architecture is attractive because 
it does not require building a new database system. Un-
fortunately, the layer would not protect the metadata 
inside the database system. An attack could effectively 
delete an object by modifying the indexes. There could 
be some performance problems as well. For example, 
the database system could not maintain ordered indexes 
for range queries on encrypted data.  

For these reasons, TDB applies hashing and encryption 
to a low-level data model, which protects data and 
metadata uniformly. It also enables TDB to maintain 
ordered indexes on data. 

To protect the sensitive state from media failures such 
as disk crashes, TDB provides the ability to create 
backups and to restore valid backups. An attacker might 
fake a media failure and restore a backup to rollback the 

state. To limit the extent of a rollback, it is desirable to 
make frequent backups and disallow restoring old back-
ups. TDB facilitates this by providing incremental 
backups [HMF99]. 

We discovered and exploited the synergy between the 
functions mentioned above and log-structured storage 
systems [RO91]. Log-structured systems have a com-
prehensive and hierarchical location map, because all 
objects are relocatable. Embedding the hash tree in the 
location map allows an object to be validated as it is 
located. The checkpointing optimization defers and 
consolidates the propagation of hash values up the tree. 
Copy-on-write using the location map provides cheap 
snapshots, which enables incremental backups. Fur-
thermore, the absence of fixed object locations makes it 
hard to link multiple updates to the same object, thus 
resisting some traffic-monitoring attacks. 

Preliminary performance results show that TDB outper-
forms a system that layers cryptography on top of an 
off-the-shelf database system. The database overhead is 
dominated by I/O; encryption and hashing represent 
only 6% of the total overhead. 

1.3 Outline 

The rest of this paper is organized as follows. Section 2 
specifies the infrastructure TDB requires and the ser-
vice it provides. Section 3 describes the overall archi-
tecture of TDB. Sections 4 and 5 describe the integra-
tion of encryption and hashing in a low-level data 
model. Section 6 describes backup creation and re-
stores. Sections 7 and 8 briefly describe the construc-
tion of database functions over the low-level data 
model. Section 9 gives preliminary performance results. 
Section 10 describes potential extensions to TDB. Sec-
tion 11 compares TDB with related work. Section 12 
draws some conclusions. 

2 System Specification 

This section specifies the infrastructure TDB requires 
and the service it provides to applications. 

2.1 Required Infrastructure 

TDB requires a trusted platform that provides the fol-
lowing, as shown in Figure 1: 
• Trusted processing environment, which executes only 

trusted programs and protects the volatile state of an 
executing program from being read or modified by 
untrusted programs. The static image of a trusted 
program need not be secret. 



• Secret store: a small  amount (e.g., 16 bytes) of read-
only persistent storage that can be read only by a 
trusted program. 

• Tamper-resistant store: a small amount (e.g., 16 
bytes) of writable persistent storage that can be writ-
ten only by a trusted program. Alternatively, the tam-
per-resistant store may be a counter that cannot be 
decremented. In either case, we assume that the tam-
per-resistant store can be updated atomically with re-
spect to crashes. 
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Figure 1: The trusted platform 

The trusted platform may be a hardware package such 
as the IBM secure cooprocessor [SPW98], which con-
tains a processor, battery-backed SRAM, DRAM, and 
ROM. The ROM firmware loads only trusted programs 
using a hash supplied during the manufacturing process. 
The battery-backed SRAM is zeroed if tampering is 
detected, so it can serve as both secret and tamper-
resistant store.  

The infrastructure also provides an untrusted store to 
hold the database. It is persistent, allows efficient ran-
dom access, and can be read and written by any pro-
gram. This might be a disk, flash memory, or an un-
trusted storage server connected to the trusted platform.  

An archival store is needed to recover from the failures 
of the untrusted store. It is also untrusted. It need not 
provide efficient random access to data, only input and 
output streams. It might be a tape or an ftp server. We 
assume its failures are independent of the untrusted 
store. 

We assume that suitable steps are taken when tampering 
is detected. The exact nature of such steps is outside the 
scope of this paper. 

 

2.2 Service Provided 

We list the functions of TDB below. 

Trusted storage: TDB provides tamper-detection and 
secrecy for bulk data. This includes resistance to replay 
attacks and attacks on metadata. 

Partitions: An application may need to protect different 
types of data differently. For example, it may have no 
need to encrypt some data or to validate other data. 
TDB allows an application to create multiple logical 
partitions, each protecting data with its own crypto-
graphic parameters: 
• a secret key 
• a cipher (an encryption algorithm), e.g., 3DES 
• a collision-resistant hash function, e.g., SHA-1 

Using appropriate parameters avoids unnecessary time 
and space overhead. Using different secret keys reduces 
the loss from the disclosure of a single key. This should 
not be confused with access control among trusted par-
ties, which may be provided in a higher layer, if needed. 

Atomic updates: TDB can update multiple pieces of 
data atomically with respect to fail-stop crashes such as 
power failures. 

Backups: TDB can back up a consistent snapshot of a 
set of partitions and restore a backup after validation. 
Backups allow recovery from media corruption. TDB 
provides fast incremental backups, which contain only 
changes made since a previous backup. 

Concurrent transactions: TDB provides serializable 
access to data from concurrent transactions. Unlike 
shared databases or file servers, TDB is not designed 
for simultaneous access by many users. Therefore, its 
concurrency control is geared to low concurrency. It 
employs techniques for reducing latency, but lacks so-
phisticated techniques for sustaining throughput. 

Database size: TDB allows the database to scale with 
gradual performance degradation. It uses scalable data 
structures and fetches data piecemeal on demand. How-
ever, it relies on a cacheable working set for perform-
ance because its log-structured storage may destroy 
physical clustering. Another limitation is its no-steal 
buffering of dirty data, which does not scale to transac-
tions with many modifications [GR93]. 

Objects: TDB stores abstract objects that the applica-
tion can access without explicitly invoking encryption, 
validation, and pickling. TDB pickles objects using 
application-provided methods so the stored representa-
tion is compact and portable. 

Collection and Indexes: TDB provides index mainte-
nance over collections of objects. A collection is a set 



of objects that share one or more indexes. An index 
provides scan, exact-match, and range iterators. 

3 System Architecture 

TDB is designed for use on personal computers as well 
as smaller devices. The architecture is layered, so appli-
cations can trade off functionality for smaller code size. 
In Figure 2, boxes represent modules and arrows repre-
sent dependencies between them. Dashed boxes repre-
sent infrastructural modules. 

 

Object Store
abstract objects
concurrency control
object cache

Collection Store
object collections
functional indexes
scan, match, range queries

Backup Store
partition backups
full/incremental
validated restore

Chunk Store
untyped chunks
partitions 
encryption, hashing
partition copies
atomic updates
recovery

Untrusted 
Store
large size
any R/W
database

Tamper-resistant
Store
small size
trusted write, any read 
hash/count

Secret 
Store
small size
trusted read
secret key

Archival  Store
large size
any stream R/W
backups

Object Store
abstract objects
concurrency control
object cache

Collection Store
object collections
functional indexes
scan, match, range queries

Backup Store
partition backups
full/incremental
validated restore

Chunk Store
untyped chunks
partitions 
encryption, hashing
partition copies
atomic updates
recovery

Untrusted 
Store
large size
any R/W
database

Tamper-resistant
Store
small size
trusted write, any read 
hash/count

Secret 
Store
small size
trusted read
secret key

Archival  Store
large size
any stream R/W
backups

 

Figure 2: System architecture 

The chunk store provides trusted storage for a set of 
named chunks. A chunk is a variable-sized sequence of 
bytes that is the unit of encryption and validation. (We 
expect chunk sizes between 100 bytes and 10 Kbytes.) 
All data and metadata from higher modules are stored 
as chunks. Chunks are logically grouped into partitions 
with separate cryptographic parameters. Partitions can 
be snapshot using the copy-on-write technique.  

Chunks are stored in the untrusted store. The chunk 
store supports atomic updates of multiple chunks in the 
presence of crashes. It hides logging and recovery from 
higher modules. This architecture does not support logi-
cal logging, but the variable-sized chunks form a more 
compact log than fixed-sized pages. 

The backup store creates and restores a set of partition 
backups. The chunk store and the backup store encapsu-
late secrecy and tamper-detection. This enables the 
higher modules to provide database management with-
out worrying about trust. 

The object store manages a set of named objects. It 
stores pickled objects in chunks—one or more objects 
per chunk. It keeps a cache of frequently-used or dirty 
objects. Caching data at this level is beneficial because 
the data is decrypted, validated, and unpickled. The 
object store also provides read transactional access to 
objects using read-write locking. 

The collection store manages a set of named collections 
of objects. It updates the indexes on a collection as 
needed. Collections and indexes are themselves repre-
sented as objects. 

This paper focuses on integrating trust with storage 
management in the chunk store and the backup store. It 
describes higher modules briefly to show that the chunk 
store is able to support them, and to explain a high-level 
performance benchmark we use. 

4 Chunk Store: Single Partition 

To simplify presentation, this section describes the 
chunk store as it would be in the absence of multiple 
partitions. Section 5 describes multiple partitions.  

4.1 Specification 

The chunk store manages a set of chunks named with 
unique ids. It provides the following operations:  
• Allocate() returns ChunkId 

Returns an unallocated chunk id. 
• Write(chunkId, bytes) 

Sets the state of chunkId to bytes, possibly of differ-
ent size than the previous state. Signals if chunkId is 
not allocated. 

• Read(chunkId) returns Bytes 
Returns the last written state of chunkId. 
Signals if chunkId is not written. 

• Deallocate(chunkId) 
Deallocates chunkId. 
Signals if chunkId is not allocated. 

Tamper Detection: In an idealized secret and tamper-
proof chunk store, the operations listed above would be 
available only to trusted programs. Since tampering 
with the untrusted store cannot be prevented, the chunk 
store provides tamper-detection instead. It behaves like 
the tamper-proof store, except its operations may signal 
tamper detection if the untrusted store is tampered with. 



Crash Atomicity and Durability: The write and deal-
locate operations are special cases of a commit opera-
tion. In general, a number of write and deallocate opera-
tions may be grouped into a single commit, which is 
atomic with respect to fail-stop crashes.  

Allocated but unwritten chunks are deallocated auto-
matically upon system restart. We have deliberately 
separated allocate and commit operations. An alterna-
tive is to allocate ids when new, unnamed chunks are 
committed. However, this alternative does not allow an 
application to store a newly-allocated chunk id in an-
other chunk during the same commit operation, which 
may be needed for data integrity. Systems that swizzle 
application-provided references into persistent ids upon 
commit do not face this problem. However, the chunk 
store does not interpret application data chunks. 

Concurrency Control: Operations are executed in a 
serializable manner. However, the chunk store is un-
aware of transactions. Allocate, read, and commit op-
erations from different transactions may be interleaved. 

4.2 Implementation Overview 

This section gives an overview of the implementation; 
subsequent sections give further detail. 

The chunk store writes chunks by appending them to a 
log in the untrusted store. As in other log-structured 
systems, chunks do not have static versions outside the 
log [RO91]. When a chunk is written or deallocated, its 
previous version in the log, if any, becomes obsolete. 

The chunk store uses a chunk map to locate and validate 
the current versions of chunks. To scale to a large num-
ber of chunks, the chunk map is itself organized as a 
tree of chunks. Updates to the chunk map are buffered 
and written to the log occasionally. Updates lost upon a 
crash are recovered from the log.  

Secrecy is provided by encrypting chunks with the key 
in the secret store. Tamper-detection is provided by 
creating a path of hash links from the tamper-resistant 
store to every current chunk version. We say there is a 
hash link from data x to y if x contains a hash of some 
data that includes y. If x is linked to y via one or more 
links using a collision-resistant hash function, it is com-
putationally hard to change y without changing x or 
breaking a hash link [Mer80]. The hash links are em-
bedded in the chunk map and the log. 

Serializability of operations is provided through mutual 
exclusion, which does not overlap I/O and computation, 
but is simple and acceptable when concurrency is low. 

4.3 Chunk Map 

The chunk map maps a chunk id to a chunk descriptor, 
which contains the following information: 
• status of chunk id: unallocated, unwritten, or written 
• if written, current location in the untrusted store 
• if written, expected hash value of chunk 

Figure 3 shows the tree structure of the chunk map. The 
leaves are the chunks created by the applications of the 
chunk store; we call them data chunks. (These include 
chunks containing metadata of higher modules, for ex-
ample, the indexing data of the collection store.) Each 
internal chunk, called a map chunk, stores a fixed-size 
vector of chunk descriptors. In the figure, each shaded 
slot is a chunk descriptor, and an arrow links the chunk 
containing the descriptor to the chunk described by the 
descriptor. The chunk at the top contains the descriptor 
of the root map chunk and some additional metadata 
needed to manage the tree; we call it the leader chunk. 
The descriptor of the leader chunk is retrieved at 
startup, as described later. The chunk store interprets 
map and leader chunks, but not data chunks. 
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Figure 3: The chunk map 

For uniformity of access and storage management, non-
data chunks are also named using chunk ids. The id of a 
chunk encodes its position in the tree. The position 
comprises the height of the chunk in the tree and its 
rank from the left among the chunks at that height. In 
the figure, chunk ids are denoted as “height.rank”. As 
the tree grows, new chunks are added to the right and to 
the top, which preserves the positions of existing 
chunks. (The position of the leader does change, so it is 
given a reserved id instead.) Besides unifying access to 
chunks, this approach enables id-based navigation of 
the map without storing ids in the map explicitly. 

4.4 Allocate Operation 

Ids of deallocated data chunks are reused to keep the 
chunk map compact and conserve id space. Deallocated 
ids are linked through a free list embedded in the de-
scriptors. The head of the list is stored in the leader.  



As mentioned, id allocation is not persistent until the 
chunk is written (committed). Upon system restart, 
chunk ids that were previously allocated but not written 
are made available in the free list for re-allocation. 

4.5 Read Operation 

Given a chunk id c, its state may be located and vali-
dated by traversing the path of descriptors from the 
leader to c. For each descriptor in the path, the chunk 
state is found as follows. The encrypted state is read 
from the location stored in the descriptor. It is de-
crypted using the secret key. The decrypted state is 
hashed. If the computed hash does not match that stored 
in the descriptor, tamper detection is signaled. 

For better performance, the chunk map keeps a cache of 
descriptors indexed by chunk ids. Also, the leader 
chunk is pinned in the cache. The cached data is de-
crypted, validated, and unpickled.  

If the descriptor for c is not in cache, the read operation 
looks for the descriptor of c’s parent chunk. Thus, the 
read operation proceeds bottom up until it finds a de-
scriptor in the cache. Then it traverses the path back 
down to c, reading and validating each chunk in the 
path. This approach exploits the validated cache to 
avoid validating the entire path from the leader to the 
specified chunk. 

4.6 Commit Operation 

The commit operation hashes and encrypts each chunk 
to be written, and writes the encrypted state to the log in 
the untrusted store. We refer to the set of chunks written 
as the commit set. 

When a chunk c is written or deallocated, its descriptor 
is updated to reflect its new location, hash, or status. 
Conceptually, this changes c’s parent chunk d; if d were 
also written out, its descriptor would be updated, and so 
on up to the leader, whose descriptor would be written 
to the tamper-resistant store. Instead, to save time and 
log space, the chunk store updates c’s descriptor in 
cache and marks it as dirty so it is not evicted. The bot-
tom-up search during reads ensures that the stale de-
scriptor stored in d is not used. 

4.7 Checkpoint 

When the cache becomes too large because of dirty 
descriptors, all map chunks containing dirty descriptors 
and their ancestors up to the leader are written to the 
log. This is done as a special commit operation called a 
checkpoint. In practice, checkpoints happen infre-
quently compared to regular commits. Other log-
structured systems use similar checkpoints to defer and 

consolidate updates to the location map [RO91]. The 
chunk store extends the optimization to propagating 
hash values up the chunk map. 

The leader is written last during a checkpoint. We refer 
to the part of the log written before the leader as the 
checkpointed log and the part including and after the 
leader as the residual log. Figure 4 shows a simple ex-
ample, where the log tail contains some data chunks, 
possibly written in multiple commits, a checkpoint con-
taining the affected map chunks and the leader chunk, 
and some more data chunks. Arrows link chunks as in 
Figure 3. 
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Figure 4: Checkpointing the chunk map 

4.8 Recovery 

A crash loses buffered updates to the chunk map, but 
they are recovered upon system restart by rolling for-
ward through the residual log. Section 4.9 describes 
how the log is represented so the recovery procedure 
may find the sequence of chunks in the residual log. 

For each chunk in the residual log, the recovery proce-
dure computes the descriptor based on its location and 
hash, and puts the descriptor in the chunk-map cache. 
This procedure requires additional support from the 
commit operation to redo chunk deallocations and to 
validate the chunks in the residual log. This is described 
in the next two sections. 

4.8.1 Chunk Deallocation 

For each chunk to be deallocated, the commit operation 
writes a deallocate chunk to the log, which contains the 
id of the deallocated chunk.  

Deallocate chunks are instances of unnamed chunks: 
they do not have chunk ids or positions in the chunk 
map. This is acceptable because they are used solely for 
recovery from the residual log and are always obsolete 
in the checkpointed log. 

Like other chunks, unnamed chunks are encrypted with 
the secret key. They are also protected against tamper-
ing, as described in the next section. Otherwise, an at-



tack could cause a chunk to be un-deallocated. Or, an 
attack could replay the deallocation of a chunk id after 
it was re-allocated. 

4.8.2 Validation of Residual Log 

Although checkpointing defers the propagation of hash 
values up the chunk map, each commit operation must 
still update the tamper-resistant store to reflect the new 
state of the database. If the tamper-resistant store kept 
the hash of the leader and were updated only at check-
points, the system would be unable to detect tampering 
with the residual log after a crash. We have imple-
mented two approaches for maintaining up-to-date vali-
dation information in the tamper-resistant store. 

4.8.2.1 Direct Hash Validation 

The chunk store maintains a sequential hash of the re-
sidual log. The log hash is stored in the tamper-resistant 
store and updated after every commit. Upon recovery, 
the hash in the tamper-resistant store is matched against 
the hash computed over the residual log. This approach 
is illustrated in Figure 5. 

 

1.51.4 3.1 L.L1.1 2.2 2.1...

checkpointed log residual log

1.71.31.1 1.51.1

hash

T.R. store

1.51.4 3.1 L.L1.1 2.2 2.1...

checkpointed log residual log

1.71.31.1 1.51.1

hash

T.R. store

 

Figure 5: Tamper-resistant store contains database hash 

A commit operation waits until the commit set is written 
to the untrusted store reliably before it updates the hash 
in the tamper-resistant store. Otherwise, a crash could 
leave the tamper-resistant store updated when the un-
trusted store is not, and cause validation to fail upon 
recovery. The update to the tamper-resistant store is the 
real commit point: If there is a crash during this update, 
the previous value stored in the tamper-resistant store is 
recovered, and the last commit set in the untrusted store 
is ignored. The commit operation returns after the tam-
per-resistant store is updated reliably. 

Direct hash validation creates paths of hash links from 
the tamper-resistant store to all current chunk ver-
sions—in both the residual log and the checkpointed 
log. This is true because the tamper-resistant store is 
directly linked to all chunks in the residual log, which 

includes the leader from the last checkpoint, and the 
leader is linked through the chunk map to all current 
chunk versions in the checkpointed log. Note that all 
unnamed chunks in the residual log are linked as well. 
Unnamed chunks in the checkpointed log are not linked, 
which is not a weakness because all such chunks are 
obsolete. 

4.8.2.2 Counter-based validation 

In this approach, upon each commit, a sequential hash 
of the commit set is stored in an unnamed chunk added 
to the log, called the commit chunk. The commit chunk 
is signed with the secret key. (The signature need not be 
publicly verifiable, so it may be based on symmetric-
key encryption [MOV96].) An attack cannot insert an 
arbitrary commit set into the residual log because it will 
be unable to create an appropriately signed commit 
chunk. Replays of old commit sets are resisted by add-
ing a count to the commit chunk that is incremented 
after every commit. Deletion of commit sets at the tail 
of the log is resisted by storing the current commit 
count in the tamper-resistant store. This approach is 
illustrated in Figure 6. 
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Figure 6: Tamper-resistant store contains commit count 

A checkpoint is followed by a commit chunk containing 
the hash of the leader chunk, as if the leader were the 
only chunk in the commit set. The recovery procedure 
checks that the hash of each commit set in the residual 
log matches that stored in the commit chunk, and that 
the counts stored in the commit chunks form a se-
quence. Finally, the procedure compares the count in 
the last commit chunk with that in the tamper-resistant 
store. The hash-links created in this approach are simi-
lar to those in direct hash validation, except that the 
commit chunks are signed and linked from the tamper-
resistant store through a sequence of numbers. 

Counter-based validation has several advantages. First, 
the tamper-resistant counter is a weaker requirement 
than a generic tamper-resistant store. Provided the 



counter cannot be decremented by any program, it does 
not need additional protection against untrusted pro-
grams. There is little incentive for untrusted programs 
to increment the counter because they would not be able 
to sign a commit chunk with the increased count.  

Second, the commit count allows the system to tolerate 
bounded discrepancies between the tamper-resistant 
store and the untrusted store, if desired. For example, 
the system might allow the count in the tamper-resistant 
store, t, to be a little behind the last count in the un-
trusted store, u. This trades off security for perform-
ance. The security risk is that an attack might delete 
commit sets t+1 through u. The performance gain is that 
a commit operation need not wait for updating the count 
in the tamper-resistant store, provided (u-t) is smaller 
than some threshold ∆ut. This is useful if the tamper-
resistant store has high update latency. The system 
might also allow t to leap ahead of u by another thresh-
old ∆tu. This admits situations where the untrusted store 
is written lazily (e.g., IDE disk controllers often flush 
their cache lazily) and the tamper-resistant store might 
be updated before the untrusted store. The only security 
risk is the deletion of at most ∆tu commit sets from the 
tail of the log. 

A drawback of counter-based validation is that tamper 
detection relies on the secrecy of the key used to sign 
the commit chunk. Therefore, if a database system 
needed to provide tamper-detection but not secrecy, it 
would still need a secret store.  

4.9 Log Representation 

This section describes the structure of the data written 
to the log. The log consists of a sequence of chunks; we 
refer to the representation of a chunk in the log as a 
version.  

4.9.1 Chunk Versions 

Chunk versions are read for three different functions: 
• Read operation, which uses the chunk id and the de-

scriptor to read the current version. 
• Log cleaning, which reads a segment of the check-

pointed log sequentially. 
• Recovery, which reads the residual log sequentially. 

To enable sequential reading, the log contains informa-
tion to identify and demarcate chunks. Each chunk ver-
sion comprises a header followed by a body. The header 
contains the chunk id and the size of the chunk state. 
The header of an unnamed chunk contains a reserved id. 
Both the header and the body are encrypted with the 
secret key. Similarly, the hash of the residual log or a 
commit set covers both headers and bodies.  

4.9.2 Head of Residual Log 

The recovery procedure needs to locate the head and the 
tail of the residual log. The head of the residual log is 
the leader. Its location is stored in a fixed place, as in 
other log-structured storage systems. It need not be kept 
in tamper-resistant store: With direct hash validation, 
tampering with this state will change the computed hash 
of the residual log. With counter-based validation, it is 
possible for an attack to change the location to the be-
ginning of another commit set. Therefore, the recovery 
procedure checks that the chunk at the stored location is 
the leader. 

Because the location of the leader is updated infre-
quently—upon each checkpoint—storing it at a fixed 
location outside the log does not degrade performance. 
This location is written after the writes to the untrusted 
store and the tamper-resistant store have finished. Its 
update marks the completion of the checkpoint. If there 
is a crash before this update, the recovery procedure 
ignores the checkpoint at the tail of the log. 

4.9.3 Tail of Residual Log 

With direct hash validation, the location of the log tail 
may be stored in the tamper-resistant store along with 
the database hash. This works well because the write to 
the tamper-resistant store is the true commit point. 

With counter-based validation, it is possible to infer the 
location of the tail from the log itself, as in conventional 
databases [GR93]. The last commit set in the log may 
have been corrupted in a crash. The hash stored in a 
commit chunk serves well as a checksum for the commit 
set. The recovery procedure stops when the hash of a 
commit set does not match the hash stored in the com-
mit chunk. 

4.9.4 Segments 

The untrusted store is divided into fixed-size segments 
to aid cleaning, as in Sprite LFS [RO91]. The segment 
size is chosen for efficient reading and writing by the 
cleaner, e.g., on the order of 100 KB for disk-based 
storage. A segment is expected to contain many chunk 
versions. The size of a chunk version cannot exceed the 
segment size. A commit set may span multiple seg-
ments.  

The log is represented as a sequence of potentially non-
adjacent segments. Since the recovery procedure needs 
to read the residual log sequentially, segments in the 
residual log contain an unnamed next-segment chunk at 
the end, which contains the location of the next seg-
ment.  



4.9.5 Log Cleaning 

The log cleaner reclaims the storage of obsolete chunk 
versions and compacts the storage to create empty seg-
ments. It selects a segment to clean and determines 
whether each chunk version is current by using the 
chunk id in the header to find the current location in the 
chunk map. It then commits the set of current chunks, 
which rewrites them to the end of the log [BHS95].  

The set of steps from selecting a segment to committing 
the current chunks happens atomically with respect to 
externally invoked operations. The cleaner may be in-
voked synchronously when space is low, but it is mostly 
invoked asynchronously during idle periods. 

The cleaner does not clean segments in the residual log, 
because that would destroy the sequencing of the resid-
ual log. This also resolves what the cleaner should do 
with unnamed chunks, because they are always obsolete 
in the checkpointed log. For performance reasons, the  
cleaner selects segments with low utilization. Details on 
the utilization metric and the maintenance of this infor-
mation are beyond the scope of this paper. 

The cleaner need not validate the chunks read from the 
segment provided the commit operation for rewriting 
current chunks does not update the hash values stored in 
chunk descriptors. If the hashes are recomputed and 
updated, as they would be in a regular commit, the 
cleaner must validate the current chunks; otherwise, the 
cleaner might launder chunks modified by an attack. 
Because of its simplicity, we have implemented the sec-
ond, less efficient, approach. 

5 Chunk Store: Multiple Partitions 

This section describes extensions to the chunk store that 
provide multiple partitions and partition copies. Multi-
ple partitions enable the use of different cryptographic 
parameters for different types of data. Partition copies 
enable fast backups. 

5.1 Specification 

The chunk store manages a set of named partitions, each 
containing a set of named chunks. A chunk id comprises 
the chunk position, as before, and the id of the contain-
ing partition. (A chunk in one partition may have the 
same position as another chunk in another partition.) 
The chunks in a partition are protected with the parame-
ters associated with it. 

  

 

 

The following partition operations are provided: 
• Allocate() returns PartitionId 

Returns an unallocated partition id. 
• Write(partitionId, secretKey, cipher, hashFunction) 

Sets the state of partitionId to an empty partition with 
the specified cryptographic parameters. 

• Write(partitionId, sourcePId) 
Copies the current state of sourcePId to partitionId. 
Each chunk in sourcePId is logically duplicated in 
partitionId at the same position. 

• Diff(oldPId, newPId) returns set<ChunkPosition> 
Returns a set containing chunk positions whose state 
is different in newPId and oldPId. 

• Deallocate(partitionId) 
Deallocates partitionId and all of its copies, and all 
chunks in these partitions. 

Furthermore, the chunk allocate operation requires the 
id of the partition in which the chunk is to be created. A 
commit operation may include a number of write and 
deallocate operations on both partitions and chunks. 
This makes it possible, for example, to store the id of a 
newly-written partition into a chunk in an existing parti-
tion in one atomic step. 

The next few sections describe how the extended speci-
fication is implemented. 

5.2 Multi-partition Chunk Map 

Figure 7 shows the structure of the multi-partition chunk 
map. Each written partition has a position map, which 
maps a chunk position in the partition to a descriptor. 
This map is like the single-partition map described in 
Section 4.3. The map chunks in the position map of 
partition P belong to P: their partition id is P and they 
are protected using P’s cryptographic parameters. In the 
figure, chunk ids are denoted as partition:position.  
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Figure 7: Multi-partition chunk map 



The leader chunk for a partition contains information 
needed to manage the position map, as before, and the 
cryptographic parameters of the partition, including the 
secret key. The partition map at the top maps a partition 
id to the partition leader. This map is managed like the 
position map of a special partition, called the system 
partition, which has a reserved id denoted S in the fig-
ure. The partition leaders are the data chunks of the 
system partition and are protected using the crypto-
graphic parameters of the system partition. Many parti-
tion operations such as allocating a partition id or read-
ing a partition leader translate into chunk-level opera-
tions on the system partition. 

Chunks in the system partition and the system leader are 
protected using a fixed cipher and hash function that are 
considered secure, such as 3DES and SHA-1 [MOV96]. 
They are encrypted with the key in the secret store. 
Thus, secrecy is provided be creating a path of cipher 
links from the secret store to every current chunk ver-
sion. We say that there is a cipher link from one piece 
of data to another if the second is encrypted using a key 
stored in the first. 

5.3 Partition Copies and Diffs 

To copy a partition P to Q, the chunk store copies the 
contents of P’s leader to Q’s leader. Thus, Q and P 
share both map and data chunks, and Q inherits the 
cryptographic parameters of P. Thus, partition copies 
are cheap in space and time. 

When chunks in P are updated, the position map for P 
is updated, but that for Q continues to point to the 
chunk versions at the time of copying. The chunks of Q 
can also be modified independently of P, but the com-
mon use is to create a read-only copy, called a snapshot. 

The chunk store diffs two partitions by traversing their 
position maps and comparing the descriptors of the cor-
responding chunks. Commonly, diffs are performed 
between two snapshots of the same partition. 

5.4 Log Representation 

A commit set may contain chunks from different parti-
tions. A chunk body is encrypted with the secret key 
and cipher of its partition. However, chunk headers are 
encrypted with the system key and cipher, so that clean-
ing and recovery may decrypt the header without know-
ing the partition id of the chunk. 

The system leader is the head of the residual log, so it is 
linked from the tamper-resistant store. The residual log 
is hashed using the system hash function. Thus, each 
chunk in a commit set is hashed twice: once with its 
partition-specific hash function to update the chunk 

descriptor, and once with the system hash function to 
update the log hash. In principle, the log hash could be 
computed over the partition-specific hashes of chunk 
bodies. However, a weak partition hash function could 
then invalidate the use of the log hash as a checksum for 
recovery (see Section 5.4). For simplicity, and because 
hashing is relatively fast, we chose to keep the hashes 
separate. 

5.5 Cleaning and Recovery 

Checking whether a chunk version is current is compli-
cated by partition copies. A chunk header contains the 
id of the partition P to which it belonged when the 
chunk was written. Even if the version is obsolete in P, 
it may be current in some direct or indirect copy of P. 
Therefore, each partition leader stores the ids of its di-
rect copies and the cleaner checks for current-ness in 
the copies, recursively. The process would be more 
complex had it not been that the deallocation of a parti-
tion deallocates the partition’s copies as well. 

Suppose the cleaner rewrites a chunk version identified 
as P:x that is current only in partitions Q and R. The 
commit procedure updates the descriptors for Q:x and 
R:x in the cache. Further, in order that the recovery pro-
cedure is able to identify the chunk correctly, the 
cleaner appends an unnamed cleaner chunk, which 
specifies that the chunk is current in both Q and R.  

6 Backup Store 

The backup store creates and restores backup sets. A 
backup set consists of one or more partition backups. 
The backup store creates backup sets by streaming 
backups of individual partitions to the archival store and 
restores them by replacing partitions with the backu                         
ps read from the archival store. 

6.1 Backup Consistency 

The backup store guarantees consistency of backup 
creation and restore with respect to other chunk store 
operations. Instead of locking each partition for the en-
tire duration of backup creation, the backup store cre-
ates a consistent snapshot of the source partitions using 
a single commit operation. It then copies the snapshots 
to archival storage in the background. We assume that 
restores are infrequent, so it is acceptable to stop all 
other activity while a restore is in progress.  

6.2 Backup Representation  

Partition backups may be full or incremental. A full 
partition backup contains all data chunks of the parti-
tion.  An incremental backup of a partition is created 



with respect to a previous snapshot, the base, and  con-
tains the data chunks that were created, updated, or de-
allocated since the base snapshot. Backups do not con-
tain map chunks since chunk locations in the untrusted 
store are not needed. Chunks in a backup are repre-
sented like chunk versions in the log. 
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New snapshot
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Figure 8: Full and incremental backups 

A partition backup contains a backup descriptor, a se-
quence of chunk versions, and a backup signature. The 
backup descriptor contains the following (illustrated 
using partition ids from Figure 8): 
• id of source partition (P) 
• id of partition snapshot used for this backup (R) 
• id of base partition snapshot (Q, if incremental) 
• backup set id (a random number assigned to the set) 
• number of partition backups in the backup set 
• partition cipher and hasher 
• time of backup creation 

The representation of partition backups is illustrated 
below. Here, Hs denotes the system hash function, Hp 
denotes the partition hash function, Es denotes system 
cipher using the system key, and Ep denotes the parti-
tion cipher using the partition key.  
 

PartitionBackup ::=  
Es(BackupDescriptor) 
( Es( ChunkHeader)  Ep(ChunkBody)  )* 
BackupSignature 
Checksum 

 
BackupSignature ::= 
Es(Hs(BackupDescriptor  Hp((ChunkId ChunkBody)*))) 

The backup signature binds the backup descriptor with 
the chunks in the backup and guarantees integrity of the 
partition backup. The unencrypted checksum allows an 
external application to verify that the backup was writ-
ten completely and successfully. 

6.3 Backup Restore 

The backup store restores a backup by reading a stream 
of one or more backup sets from the archival store. The 
backup store restores one partition at a time, enforcing 
the following constraints: 
• Incremental backups are restored in the same order as 

they were created, with no missing links in between. 

This is enforced by matching the base partition id in 
the backup descriptor against the id of the previous 
restored snapshot for the same partition. 

• If a partition backup is restored, the remaining parti-
tion backups in the same backup set must also be re-
stored. This is enforced by matching the number of 
backups with a given set id against the set size re-
corded in backup descriptors. 

After reading the entire backup stream, the restored 
partitions are atomically committed to the chunk store.   
Backup restores require approval from a trusted pro-
gram, which may deny frequent restoring or restoring of 
old backups. 

7 Object Store 

The object store adds safety against errors in applica-
tion programs. It provides type-safe and transactional 
access to a set of objects. An object is the unit of typed 
data accessed by the application. The object store im-
plements two-phase locking on objects and breaks dead-
locks using timeouts. Transactions acquire locks in ei-
ther shared or exclusive mode. We chose not to imple-
ment granular or operation-level locks because we 
expect only a few concurrent transactions. The object 
store keeps a cache of frequently-used or dirty objects. 
Caching data at this level is beneficial because the data 
is decrypted, validated, and unpickled. 

The object store could store one or more pickled objects 
in each chunk. We chose to store each object in a dif-
ferent chunk because it results in a smaller volume of 
data that must be encrypted, hashed, and written to the 
log upon a commit. In addition, the implementation of 
the cache is simplified since no chunk can contain both 
committed and uncommitted objects. On the other hand, 
storing each object in a different chunk destroys inter-
object clustering and increases the database size due to 
per-chunk overhead (see Section 9.3). Because we ex-
pect much of the working set to be cached, the lack of 
inter-object clustering is not important. 

8 Collection Store 

The collection store provides applications with indexes 
on collections of objects. A collection is a set of objects 
sharing one or more indexes. Indexes can be dynami-
cally added and removed from each collection. Collec-
tions and indexes are themselves represented as objects. 

The collection store supports functional indexes that use 
keys extracted from objects by deterministic functions 
[Hwa94]. The use of functional indexes allows us to 
avoid a separate data definition language for the data-
base schema. Indexes are maintained automatically as 



objects are updated. Indexes may be unsorted or sorted, 
which is possible because the objects are decrypted. 

9 Performance 

In this section we describe preliminary performance 
measurements. First, we present the performance on 
chunk and backup store operations based on several 
micro-benchmarks. Then we compare the performance 
an off-the-shelf database system and TDB using a 
higher-level benchmark.   

9.1 Platform 

Performance was evaluated on a 450 MHz Pentium PC 
with 128 MB of RAM, running the Windows NT 4.0 
operating system. TDB is written in C++. 

The untrusted store was implemented as an NTFS file 
on a hard disk with 9 ms average seek and 7200 rpm (4 
ms average rotational latency). Using a raw disk parti-
tion would be more efficient, but we do not expect the 
users of TDB to provide one. The total size of TDB 
caches (including the object cache and the chunk-map 
cache) was set to 4 Mbytes. 

The tamper-resistant store was emulated with an NTFS 
file on another hard disk to avoid interference with ac-
cesses to the untrusted store. This disk has 12 ms aver-
age seek and 5200 rpm (6 ms average rotational la-
tency). The access time is similar to that for writing 
EEPROM, 5 ms [Inf00].  

We used counter-based validation and allowed the 
count in the tamper-resistant store to lag behind that in 
untrusted store by ∆ut = 5. The tamper-resistant store is 
flushed only once is ∆ut commits. The untrusted store is 
flushed upon every commit and we set ∆tu to 0. 

9.2 Micro-benchmarks 

This section presents the performance of basic crypto-
graphic, disk, chunk store and backup store operations. 

9.2.1 Cryptographic  and Disk Operations 

Encryption: We used 3DES in CBC mode for the sys-
tem partition, which has a measured bandwidth of 2.5 
MB/s (0.4 µs per byte). We used DES in CBC mode for 
other partitions; the measured bandwidth is 7.2 MB/s 
(0.14 µs per byte). There are other, more secure, algo-
rithms that run faster than DES [MOV96]. 

Hashing: We used SHA-1. The measured bandwidth is 
21.1 MB/s (0.05 µs per byte). Additionally, the “final-
ization” of a hash value has a fixed overhead of 5 µs.  

Store latency: While the disk specs provide average 
latency, the measured latency varies widely based on 
the position of disk head. Furthermore, the latency of 
the NTFS flush operation for files larger than 512 bytes 
is doubled because it writes file metadata separately. 
We measured write latencies of 10 ms to 20 ms for 
small files and 25 ms to 40 ms otherwise. Therefore, we 
shall focus on the computational overhead and denote 
the latencies of the untrusted and tamper-resistant store 
symbolically as lu and lt. 

Store bandwidth: The measured bandwidth, bu, of 
reading or writing the NTFS file implementing the un-
trusted store varies between 3.5 and 4.7 MB/s. 

9.2.2 Chunk Store Operations 

We repeated each operation 10 times and found that the 
computational overhead does not vary much, typically 
deviating less than 2%. 

Allocate chunk id: This operation does not change the 
persistent state. The average latency is 6 µs.  

Write chunks + commit: We committed sets of 1 to 
128 chunks of sizes 128 bytes to 16 KB per chunk, 
which covers the range we expect. The computational 
latency, measured using linear regression, is 132 µs + 
36 µs per chunk + 0.24 µs per byte of cumulative chunk 
size. The fixed overhead comes largely from processing 
the commit chunk (pickling, encrypting, hashing, etc.), 
the per-chunk overhead from processing the chunk 
header and finalizing the chunk’s hash value, and the 
per-byte overhead from encryption and hashing the 
chunk bodies. The I/O overhead is lu + lt/∆ut + 1/ bu per 
byte, which usually dominates the computational over-
head. 

Read chunk: If the chunk descriptor is cached, the 
computational latency of reading a chunk is 47 µs + 
0.18 µs per byte of chunk size. The fixed overhead 
comes largely from processing the chunk header and 
finalizing the hash, and the per-byte overhead from de-
cryption and hashing. The I/O overhead is lu + 1/bu per 
byte. If the descriptor is not cached, the read operation 
reads in parental map chunks up to one whose descrip-
tor is cached. In our experiments, each map chunk has 
64 descriptors and has a size of 1.5 KB. 

Write partition + commit: The computational latency 
of committing a new partition is 223 µs. The computa-
tional latency of copying a partition is 386 µs, regard-
less of the number of chunks in the source partition, 
owing to our use of the copy-on-write technique. 



9.2.3 Backup Store Operations 

We benchmarked only backup creation, we assume that 
backup restore performance is not critical.  

Partition backup: We used 512 byte chunks. The 
computational latency to create an incremental backup 
of a partition is 675 µs + 9 µs per chunk in the backed 
up partition + 278 µs per updated chunk. The fixed 
overhead comes mostly from creating the partition 
snapshot and processing the backup descriptor and sig-
nature. The overhead per chunk in the backed up parti-
tion comes from diff-ing the snapshot of the backed up 
partition against the base snapshot. The overhead per 
updated chunk comes from copying the chunk.  

The size of a backup determines the I/O overhead  for 
writing it. The size of an incremental backup is 456 B + 
528 B per updated chunk, which may be significantly 
less than the size of a full backup. 

9.3 Space Overhead 

The chunk descriptor, header, and padding add an over-
head of about 52 bytes for chunks encrypted using an 8-
byte block cipher. The additional overhead per chunk 
due to the chunk map is small because the fanout degree 
of the tree is large (64). Obsolete chunk versions in the 
log add additional overhead. When cleaning in idle pe-
riods, the space utilization may be kept as high as 90% 
with reasonable performance [BHS95]. 

9.4 Code Complexity 

Figure 9 gives the complexity of TDB in terms of num-
ber of semicolons in C++ code. 

 
Module semicolons 
Collection store 1,388 
Object store 512 
Backup store 516 
Chunk store 2,570 
Common utilities 1,070 
TOTAL 6,056 

Figure 9: TDB code complexity 

9.5 Performance Comparison 

In this section, we compare the performance of a system 
using either TDB or an off-the-shelf embedded database 
system, which we shall call XDB.  The XDB-based 
system layers cryptography on top of XDB. We config-
ured both systems to use the same cryptographic pa-
rameters, cache size, and frequency of flushing the tam-
per-resistant store. 

9.5.1 Workload 

We measured the performance on a benchmark that 
models two operations related to vending digital goods: 
• Bind: A vendor binds three alternative contracts to a 

digital good. 
• Release: A consumer releases the digital good select-

ing one of the three contracts randomly. 

The benchmark first creates 30 collections for different 
object types. Each collection has one to four indexes. 
The benchmark loads the cache before executing an 
experiment. The experiment consists of 10 consecutive 
bind or release operations. Figure 10 gives the number 
of database operations executed in each experiment. 

 
 read update delete add commit 
release 781 181 10 41 96 

bind 1732 733 10 220 292 

Figure 10: Number of database operations. 

9.5.2 Comparison Results 

We repeated each experiment 10 times. Figure 11 
shows the average times for the release and bind ex-
periments, the part spent in the database system, and the 
part thereof spent in commit, which is the major over-
head. 
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Figure 11: Runtime comparison 

TDB outperformed XDB, primarily because of faster 
commits, but also in the remaining database overhead. 
We believe that XDB performs multiple disk writes at 
commit. 

The stored size of XDB after running the release ex-
periment was 3.8 MB. The stored size of TDB was 4.0 
MB, based on 60% maximum log utilization. 

9.5.3 TDB Performance Analysis 

Here, we analyze the performance of the release ex-
periment. Figure 12 breaks down the TDB overhead by 



module. The time reported for each module excludes 
nested calls to other reported modules.  The figure gives 
the average time (µ), the standard deviation (σ), and 
percentage of total (%). 

 

 
module µ(ms) σ(ms) % 

DB TOTAL 4209 484 100 

collection store 162 0 4 

object store 85 0 2 

chunk store 61 1 1 

encryption 157 1 4 

hashing 93 5 2 

untrusted store read 8 0 0 

untrusted store write 3353 164 81 

tamper-resistant store 229 46 6 

Figure 12: TDB runtime analysis 

The overhead is dominated by writes to the untrusted 
store. The experiment flushed the untrusted store 96 
times and the tamper-resistant store 19 times. The over-
head of writing to the tamper-resistant store may vary 
significantly depending on the device and the frequency 
of flushes. There was no checkpoint or log cleaning 
during the experiment. (In the bind experiment, log 
cleaning took a total of 1030 ms.)  

The overhead of encryption and hashing is only 6% of 
the database overhead. The effective bandwidths of 
encryption and hashing are 6.5 MB/s and 20.6 MB/s, 
which are close to the peak bandwidths reported in Sec-
tion 9.2.1. 

10 Potential Extensions 

The current design of TDB has a number of limitations. 
Below we describe extensions to address them. 

Untrusted storage on servers: TDB may be used to pro-
tect a database stored at an untrusted server. This appli-
cation of TDB may benefit from additional optimiza-
tions for reducing network round-trips to the untrusted 
server, such as batching reads and writes. 

Trusted paging. The current design assumes that the 
entire runtime, volatile state of a trusted program is pro-
tected by the trusted processing environment. TDB lim-
its its volatile state by controlling its cache size, but this 
limit is not hard. Therefore, some volatile state may 
have to be paged out to untrusted storage. This problem 
may be solved by using a page fault handler to store 
encrypted and validated pages in the chunk store. 

Steal buffer management. Currently, modified objects 
must remain in the cache until their transaction com-
mits, which may degrade the security and performance 
of large transactions. Evicting dirty objects would re-
quire writing them to the log. This requires additional 
support in the chunk store. 

Logical logging. Logical logging may reduce the vol-
ume of data that must be encrypted, hashed, and written 
to the untrusted store. The chunk store uses logical log-
ging for some operations (for example, deallocation of 
chunks), but it does not allow higher modules to specify 
operations that should be logged logically. 

11 Related Work 

There are many systems aimed at providing secure stor-
age. TDB differs from most of them because of its 
unique trust model. 

In another paper at this conference, Fu et al. describe a 
read-only file system that may be stored in untrusted 
servers [FKM00]. A hash tree is embedded in the inode 
hierarchy. The trusted creator signs the root hash with 
the time of update and expiration. This system is not 
designed to handle frequent updates or updates to indi-
vidual file blocks in the untrusted server. 

Techniques for securing audit logs stored on weakly-
protected hosts are suitable for securing append-only 
data that is read infrequently and sequentially by a 
trusted computer [BY97, SK98]. They employ a linear 
chain of hash values instead of a tree. When the data 
needs to be read, it is validated by recomputing the hash 
over the entire log. These techniques are not suitable for 
a database system such as ours, which requires frequent 
and random read-write access to data.  

Blum et al. considered the problem of securing various 
data structures in untrusted memory using a hash tree 
rooted in a small amount of trusted memory [BEG+91]. 
This work does not address storage management for 
persistent data. 

Some systems provide secure storage by dispersing data 
onto multiple hosts, with the expectation that at least a 
certain fraction of them (for example, two-thirds) will 
be honest. The data may be replicated as-is for time 
efficiency [CL99], or it might be encoded to reduce the 
cumulative space overhead [Rab89, Kra93, GGJ+97]. 
Read requests are broadcast to all machines and the data 
returned is error corrected. This approach provides re-
covery from tampering, not merely tamper detection. 
However, it relies on more trusted resources than are 
available to TDB. The expectation of an honest quorum 
is based on the assumption that, under normal opera-
tion, the hosts are weakly protected but not hostile, so 



the difficulty for a hostile party to take over k hosts in-
creases significantly with k.  

Our use of log-structured storage builds on a previous 
work on log-structured storage systems [RO91, 
JKH93]. The Shadows database system is log structured 
and provides snapshots [Ylo94]. Otherwise, there has 
been little interest in log-structured database systems, 
perhaps because of the need to keep large sets of data 
physically clustered or to keep the log compact using 
logical logging.  

12 Conclusions 

We have presented a trusted database system that lever-
ages a trusted processing environment and a small 
amount of trusted storage to extend tamper-detection 
and secrecy to a scalable amount of untrusted storage. 
The architecture integrates encryption and hashing with 
a low-level data model, which protects data and meta-
data uniformly. The model is powerful enough to sup-
port higher-level database functions such as transac-
tions, backups, and indexing. 

We found that log-structured storage is well suited for 
building such a system. The implementation is simpli-
fied by embedding a hash tree in the comprehensive 
location map that is central to log-structured systems: 
objects can be validated as they are located. The check-
pointing optimization defers and consolidates the 
propagation of hash values up the tree. Because updates 
are not made in place, a snapshot of the database state 
can be created using copy-on-write, which facilitates 
incremental backups.  

We measured the performance of TDB using micro-
benchmarks as well as a high-level workload. The data-
base overhead was dominated by writes to the untrusted 
store and the tamper-resistant store, which may vary 
significantly based on the types of devices used. The 
overhead of encryption and hashing was only 6% of the 
total. On this workload, TDB outperformed a system 
that layers cryptography on an off-the-shelf embedded 
database system, while also providing more protection. 
This supports the suitability of the TDB architecture. 
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