
How to Build a Trusted Database System on Untrusted Storage

Umesh Maheshwari Radek Vingralek William Shapiro

STAR Lab, InterTrust Technologies Corporation, Santa Clara, CA 95054
{umesh, rvingral, shapiro}@intertrust.com

Abstract

Some emerging applications require programs to main-
tain sensitive state on untrusted hosts. This paper pre-
sents the architecture and implementation of a trusted
database system, TDB, which leverages a small amount
of trusted storage to protect a scalable amount of un-
trusted storage. The database is encrypted and validated
against a collision-resistant hash kept in trusted storage,
so untrusted programs cannot read the database or mod-
ify it undetectably. TDB integrates encryption and hash-
ing with a low-level data model, which protects data
and metadata uniformly, unlike systems built on top of a
conventional database system. The implementation ex-
ploits synergies between hashing and log-structured
storage. Preliminary performance results show that
TDB outperforms an off-the-shelf embedded database
system, thus supporting the suitability of the TDB archi-
tecture.

1 Introduction

Some emerging applications require trusted programs to
run on untrusted hosts. For example, vendors of digital
goods such as software and music need to control the
use of their goods according to their contracts with the
consumers. The contracts may be enforced by executing
a trusted program on the consumer’s computer or play-
ing device [SBV95, IBM00, Xer00].

Often, trusted programs need to maintain some sensi-
tive, persistent state. For example, under a pay-per-use
contract, the program may verify and debit the con-
sumer’s account. Or, under a limited-use trial, the pro-
gram may count and limit the number of times the good
is used. The amount of such state may grow with the
number of vendors, goods, and the types of contracts.
Furthermore, the sensitive nature of the state makes it
desirable to protect it from both tampering and acciden-
tal corruption. Therefore, the state should be stored in a
scalable and trusted database system.

Although a trusted program runs on the client, it could
maintain its database on a trusted server for best secu-
rity. However, this may require frequent communication

between the trusted program and the server, which is
constraining for devices with poor connectivity. Ideally,
consumers should be able to use goods distributed on
mass media or previously hoarded on their devices,
even when they are disconnected from the network.
Therefore, it is desirable to maintain the database on the
client side.

The party hosting the database storage has the opportu-
nity to alter its state for unauthorized benefits. For ex-
ample, a consumer could save a copy of the local data-
base, purchase some goods, then replay the saved copy,
thus eliminating payments for the purchased goods.

It is difficult to secure a trusted program and its data-
base because the hosting party ultimately controls the
underlying hardware and the operating system. How-
ever, a number of emerging trusted platforms provide a
processing environment that runs only trusted programs
and resists reverse engineering and tampering. Such
platforms employ a hardware package containing a
processor, memory, and tamper-detecting circuitry
[SPW98, KK99, Wav99, Dal00], or various techniques
for software protection [Coh93, Auc96, CTL98]. How-
ever, these platforms do not provide trusted persistent
storage in bulk because it is difficult to prevent read and
write access to devices such as disk and flash memory
from outside the trusted platform.

This paper presents the architecture and implementation
of a trusted database system, TDB. By “trust” we mean
secrecy (protection against reading from untrusted pro-
grams) and tamper detection (protection against writing
from untrusted programs). An untrusted program cannot
be prevented from tampering with the data, but such
data fails validation when a trusted program reads it.
This enables the trusted program to reject the data and
perhaps refuse further operation.

TDB may also be used to protect a database stored at an
untrusted server. Such a database may be used by client
devices that do not have enough local storage. In this
case, the user may have no incentive to tamper with the
client device, so no explicit mechanisms may be re-
quired to provide a trusted platform on the client.

1.1 Basic Trust Management

TDB leverages a trusted processing environment and a
small amount of trusted storage available on the plat-
form. It provides secrecy by encrypting data with a key
hidden in secret storage. It provides tamper detection by
leveraging a small amount of tamper-resistant storage,
as described below.

A common mechanism for validating data is to sign it
with a secret key. However, signed data is vulnerable to
replay attacks. The attack is easy because it does not
require understanding the data; it works even when the
data is encrypted. TDB resists replay attack by storing a
collision-resistant hash of the database in tamper-
resistant storage [MOV96]. When a trusted program
writes and reads database objects, TDB updates and
validates the database hash efficiently by maintaining a
tree of hash values over the objects, as suggested by
Merkle [Mer80].

TDB provides an option to use a tamper-resistant
counter, which cannot be decremented, in place of ge-
neric tamper-resistant storage. After each database up-
date, TDB increments the counter and generates a cer-
tificate containing the counter value and the database
hash. The certificate is signed with the secret key and
stored in untrusted storage.

1.2 Storage Management

To protect the state from accidental corruption, TDB
provides standard database-system services such as
crash atomicity, concurrent transactions, type checking,
pickling, cache management, and index maintenance.

One might consider building a trusted database system
by layering cryptography on top of a conventional data-
base system. This layer could encrypt objects before
storing them in the database and maintain a tree of hash
values over them. This architecture is attractive because
it does not require building a new database system. Un-
fortunately, the layer would not protect the metadata
inside the database system. An attack could effectively
delete an object by modifying the indexes. There could
be some performance problems as well. For example,
the database system could not maintain ordered indexes
for range queries on encrypted data.

For these reasons, TDB applies hashing and encryption
to a low-level data model, which protects data and
metadata uniformly. It also enables TDB to maintain
ordered indexes on data.

To protect the sensitive state from media failures such
as disk crashes, TDB provides the ability to create
backups and to restore valid backups. An attacker might
fake a media failure and restore a backup to rollback the

state. To limit the extent of a rollback, it is desirable to
make frequent backups and disallow restoring old back-
ups. TDB facilitates this by providing incremental
backups [HMF99].

We discovered and exploited the synergy between the
functions mentioned above and log-structured storage
systems [RO91]. Log-structured systems have a com-
prehensive and hierarchical location map, because all
objects are relocatable. Embedding the hash tree in the
location map allows an object to be validated as it is
located. The checkpointing optimization defers and
consolidates the propagation of hash values up the tree.
Copy-on-write using the location map provides cheap
snapshots, which enables incremental backups. Fur-
thermore, the absence of fixed object locations makes it
hard to link multiple updates to the same object, thus
resisting some traffic-monitoring attacks.

Preliminary performance results show that TDB outper-
forms a system that layers cryptography on top of an
off-the-shelf database system. The database overhead is
dominated by I/O; encryption and hashing represent
only 6% of the total overhead.

1.3 Outline

The rest of this paper is organized as follows. Section 2
specifies the infrastructure TDB requires and the ser-
vice it provides. Section 3 describes the overall archi-
tecture of TDB. Sections 4 and 5 describe the integra-
tion of encryption and hashing in a low-level data
model. Section 6 describes backup creation and re-
stores. Sections 7 and 8 briefly describe the construc-
tion of database functions over the low-level data
model. Section 9 gives preliminary performance results.
Section 10 describes potential extensions to TDB. Sec-
tion 11 compares TDB with related work. Section 12
draws some conclusions.

2 System Specification

This section specifies the infrastructure TDB requires
and the service it provides to applications.

2.1 Required Infrastructure

TDB requires a trusted platform that provides the fol-
lowing, as shown in Figure 1:
• Trusted processing environment, which executes only

trusted programs and protects the volatile state of an
executing program from being read or modified by
untrusted programs. The static image of a trusted
program need not be secret.

• Secret store: a small amount (e.g., 16 bytes) of read-
only persistent storage that can be read only by a
trusted program.

• Tamper-resistant store: a small amount (e.g., 16
bytes) of writable persistent storage that can be writ-
ten only by a trusted program. Alternatively, the tam-
per-resistant store may be a counter that cannot be
decremented. In either case, we assume that the tam-
per-resistant store can be updated atomically with re-
spect to crashes.

Archival
store

Tamper resistant
store

Secret
store

CPU
Volatile
memory

Processing environment

Trusted platform

Authorized program Unauthorized program

Untrusted
store

Archival
store

Tamper resistant
store

Secret
store

CPU
Volatile
memory

Processing environment

Trusted platform

Authorized program Unauthorized program

Untrusted
store

Untrusted
store

Figure 1: The trusted platform

The trusted platform may be a hardware package such
as the IBM secure cooprocessor [SPW98], which con-
tains a processor, battery-backed SRAM, DRAM, and
ROM. The ROM firmware loads only trusted programs
using a hash supplied during the manufacturing process.
The battery-backed SRAM is zeroed if tampering is
detected, so it can serve as both secret and tamper-
resistant store.

The infrastructure also provides an untrusted store to
hold the database. It is persistent, allows efficient ran-
dom access, and can be read and written by any pro-
gram. This might be a disk, flash memory, or an un-
trusted storage server connected to the trusted platform.

An archival store is needed to recover from the failures
of the untrusted store. It is also untrusted. It need not
provide efficient random access to data, only input and
output streams. It might be a tape or an ftp server. We
assume its failures are independent of the untrusted
store.

We assume that suitable steps are taken when tampering
is detected. The exact nature of such steps is outside the
scope of this paper.

2.2 Service Provided

We list the functions of TDB below.

Trusted storage: TDB provides tamper-detection and
secrecy for bulk data. This includes resistance to replay
attacks and attacks on metadata.

Partitions: An application may need to protect different
types of data differently. For example, it may have no
need to encrypt some data or to validate other data.
TDB allows an application to create multiple logical
partitions, each protecting data with its own crypto-
graphic parameters:
• a secret key
• a cipher (an encryption algorithm), e.g., 3DES
• a collision-resistant hash function, e.g., SHA-1

Using appropriate parameters avoids unnecessary time
and space overhead. Using different secret keys reduces
the loss from the disclosure of a single key. This should
not be confused with access control among trusted par-
ties, which may be provided in a higher layer, if needed.

Atomic updates: TDB can update multiple pieces of
data atomically with respect to fail-stop crashes such as
power failures.

Backups: TDB can back up a consistent snapshot of a
set of partitions and restore a backup after validation.
Backups allow recovery from media corruption. TDB
provides fast incremental backups, which contain only
changes made since a previous backup.

Concurrent transactions: TDB provides serializable
access to data from concurrent transactions. Unlike
shared databases or file servers, TDB is not designed
for simultaneous access by many users. Therefore, its
concurrency control is geared to low concurrency. It
employs techniques for reducing latency, but lacks so-
phisticated techniques for sustaining throughput.

Database size: TDB allows the database to scale with
gradual performance degradation. It uses scalable data
structures and fetches data piecemeal on demand. How-
ever, it relies on a cacheable working set for perform-
ance because its log-structured storage may destroy
physical clustering. Another limitation is its no-steal
buffering of dirty data, which does not scale to transac-
tions with many modifications [GR93].

Objects: TDB stores abstract objects that the applica-
tion can access without explicitly invoking encryption,
validation, and pickling. TDB pickles objects using
application-provided methods so the stored representa-
tion is compact and portable.

Collection and Indexes: TDB provides index mainte-
nance over collections of objects. A collection is a set

of objects that share one or more indexes. An index
provides scan, exact-match, and range iterators.

3 System Architecture

TDB is designed for use on personal computers as well
as smaller devices. The architecture is layered, so appli-
cations can trade off functionality for smaller code size.
In Figure 2, boxes represent modules and arrows repre-
sent dependencies between them. Dashed boxes repre-
sent infrastructural modules.

Object Store
abstract objects
concurrency control
object cache

Collection Store
object collections
functional indexes
scan, match, range queries

Backup Store
partition backups
full/incremental
validated restore

Chunk Store
untyped chunks
partitions
encryption, hashing
partition copies
atomic updates
recovery

Untrusted
Store
large size
any R/W
database

Tamper-resistant
Store
small size
trusted write, any read
hash/count

Secret
Store
small size
trusted read
secret key

Archival Store
large size
any stream R/W
backups

Object Store
abstract objects
concurrency control
object cache

Collection Store
object collections
functional indexes
scan, match, range queries

Backup Store
partition backups
full/incremental
validated restore

Chunk Store
untyped chunks
partitions
encryption, hashing
partition copies
atomic updates
recovery

Untrusted
Store
large size
any R/W
database

Tamper-resistant
Store
small size
trusted write, any read
hash/count

Secret
Store
small size
trusted read
secret key

Archival Store
large size
any stream R/W
backups

Figure 2: System architecture

The chunk store provides trusted storage for a set of
named chunks. A chunk is a variable-sized sequence of
bytes that is the unit of encryption and validation. (We
expect chunk sizes between 100 bytes and 10 Kbytes.)
All data and metadata from higher modules are stored
as chunks. Chunks are logically grouped into partitions
with separate cryptographic parameters. Partitions can
be snapshot using the copy-on-write technique.

Chunks are stored in the untrusted store. The chunk
store supports atomic updates of multiple chunks in the
presence of crashes. It hides logging and recovery from
higher modules. This architecture does not support logi-
cal logging, but the variable-sized chunks form a more
compact log than fixed-sized pages.

The backup store creates and restores a set of partition
backups. The chunk store and the backup store encapsu-
late secrecy and tamper-detection. This enables the
higher modules to provide database management with-
out worrying about trust.

The object store manages a set of named objects. It
stores pickled objects in chunks—one or more objects
per chunk. It keeps a cache of frequently-used or dirty
objects. Caching data at this level is beneficial because
the data is decrypted, validated, and unpickled. The
object store also provides read transactional access to
objects using read-write locking.

The collection store manages a set of named collections
of objects. It updates the indexes on a collection as
needed. Collections and indexes are themselves repre-
sented as objects.

This paper focuses on integrating trust with storage
management in the chunk store and the backup store. It
describes higher modules briefly to show that the chunk
store is able to support them, and to explain a high-level
performance benchmark we use.

4 Chunk Store: Single Partition

To simplify presentation, this section describes the
chunk store as it would be in the absence of multiple
partitions. Section 5 describes multiple partitions.

4.1 Specification

The chunk store manages a set of chunks named with
unique ids. It provides the following operations:
• Allocate() returns ChunkId

Returns an unallocated chunk id.
• Write(chunkId, bytes)

Sets the state of chunkId to bytes, possibly of differ-
ent size than the previous state. Signals if chunkId is
not allocated.

• Read(chunkId) returns Bytes
Returns the last written state of chunkId.
Signals if chunkId is not written.

• Deallocate(chunkId)
Deallocates chunkId.
Signals if chunkId is not allocated.

Tamper Detection: In an idealized secret and tamper-
proof chunk store, the operations listed above would be
available only to trusted programs. Since tampering
with the untrusted store cannot be prevented, the chunk
store provides tamper-detection instead. It behaves like
the tamper-proof store, except its operations may signal
tamper detection if the untrusted store is tampered with.

Crash Atomicity and Durability: The write and deal-
locate operations are special cases of a commit opera-
tion. In general, a number of write and deallocate opera-
tions may be grouped into a single commit, which is
atomic with respect to fail-stop crashes.

Allocated but unwritten chunks are deallocated auto-
matically upon system restart. We have deliberately
separated allocate and commit operations. An alterna-
tive is to allocate ids when new, unnamed chunks are
committed. However, this alternative does not allow an
application to store a newly-allocated chunk id in an-
other chunk during the same commit operation, which
may be needed for data integrity. Systems that swizzle
application-provided references into persistent ids upon
commit do not face this problem. However, the chunk
store does not interpret application data chunks.

Concurrency Control: Operations are executed in a
serializable manner. However, the chunk store is un-
aware of transactions. Allocate, read, and commit op-
erations from different transactions may be interleaved.

4.2 Implementation Overview

This section gives an overview of the implementation;
subsequent sections give further detail.

The chunk store writes chunks by appending them to a
log in the untrusted store. As in other log-structured
systems, chunks do not have static versions outside the
log [RO91]. When a chunk is written or deallocated, its
previous version in the log, if any, becomes obsolete.

The chunk store uses a chunk map to locate and validate
the current versions of chunks. To scale to a large num-
ber of chunks, the chunk map is itself organized as a
tree of chunks. Updates to the chunk map are buffered
and written to the log occasionally. Updates lost upon a
crash are recovered from the log.

Secrecy is provided by encrypting chunks with the key
in the secret store. Tamper-detection is provided by
creating a path of hash links from the tamper-resistant
store to every current chunk version. We say there is a
hash link from data x to y if x contains a hash of some
data that includes y. If x is linked to y via one or more
links using a collision-resistant hash function, it is com-
putationally hard to change y without changing x or
breaking a hash link [Mer80]. The hash links are em-
bedded in the chunk map and the log.

Serializability of operations is provided through mutual
exclusion, which does not overlap I/O and computation,
but is simple and acceptable when concurrency is low.

4.3 Chunk Map

The chunk map maps a chunk id to a chunk descriptor,
which contains the following information:
• status of chunk id: unallocated, unwritten, or written
• if written, current location in the untrusted store
• if written, expected hash value of chunk

Figure 3 shows the tree structure of the chunk map. The
leaves are the chunks created by the applications of the
chunk store; we call them data chunks. (These include
chunks containing metadata of higher modules, for ex-
ample, the indexing data of the collection store.) Each
internal chunk, called a map chunk, stores a fixed-size
vector of chunk descriptors. In the figure, each shaded
slot is a chunk descriptor, and an arrow links the chunk
containing the descriptor to the chunk described by the
descriptor. The chunk at the top contains the descriptor
of the root map chunk and some additional metadata
needed to manage the tree; we call it the leader chunk.
The descriptor of the leader chunk is retrieved at
startup, as described later. The chunk store interprets
map and leader chunks, but not data chunks.

3.1

2.1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

leader chunk

map chunks

data chunks

2.2 2.3

L.L

Figure 3: The chunk map

For uniformity of access and storage management, non-
data chunks are also named using chunk ids. The id of a
chunk encodes its position in the tree. The position
comprises the height of the chunk in the tree and its
rank from the left among the chunks at that height. In
the figure, chunk ids are denoted as “height.rank”. As
the tree grows, new chunks are added to the right and to
the top, which preserves the positions of existing
chunks. (The position of the leader does change, so it is
given a reserved id instead.) Besides unifying access to
chunks, this approach enables id-based navigation of
the map without storing ids in the map explicitly.

4.4 Allocate Operation

Ids of deallocated data chunks are reused to keep the
chunk map compact and conserve id space. Deallocated
ids are linked through a free list embedded in the de-
scriptors. The head of the list is stored in the leader.

As mentioned, id allocation is not persistent until the
chunk is written (committed). Upon system restart,
chunk ids that were previously allocated but not written
are made available in the free list for re-allocation.

4.5 Read Operation

Given a chunk id c, its state may be located and vali-
dated by traversing the path of descriptors from the
leader to c. For each descriptor in the path, the chunk
state is found as follows. The encrypted state is read
from the location stored in the descriptor. It is de-
crypted using the secret key. The decrypted state is
hashed. If the computed hash does not match that stored
in the descriptor, tamper detection is signaled.

For better performance, the chunk map keeps a cache of
descriptors indexed by chunk ids. Also, the leader
chunk is pinned in the cache. The cached data is de-
crypted, validated, and unpickled.

If the descriptor for c is not in cache, the read operation
looks for the descriptor of c’s parent chunk. Thus, the
read operation proceeds bottom up until it finds a de-
scriptor in the cache. Then it traverses the path back
down to c, reading and validating each chunk in the
path. This approach exploits the validated cache to
avoid validating the entire path from the leader to the
specified chunk.

4.6 Commit Operation

The commit operation hashes and encrypts each chunk
to be written, and writes the encrypted state to the log in
the untrusted store. We refer to the set of chunks written
as the commit set.

When a chunk c is written or deallocated, its descriptor
is updated to reflect its new location, hash, or status.
Conceptually, this changes c’s parent chunk d; if d were
also written out, its descriptor would be updated, and so
on up to the leader, whose descriptor would be written
to the tamper-resistant store. Instead, to save time and
log space, the chunk store updates c’s descriptor in
cache and marks it as dirty so it is not evicted. The bot-
tom-up search during reads ensures that the stale de-
scriptor stored in d is not used.

4.7 Checkpoint

When the cache becomes too large because of dirty
descriptors, all map chunks containing dirty descriptors
and their ancestors up to the leader are written to the
log. This is done as a special commit operation called a
checkpoint. In practice, checkpoints happen infre-
quently compared to regular commits. Other log-
structured systems use similar checkpoints to defer and

consolidate updates to the location map [RO91]. The
chunk store extends the optimization to propagating
hash values up the chunk map.

The leader is written last during a checkpoint. We refer
to the part of the log written before the leader as the
checkpointed log and the part including and after the
leader as the residual log. Figure 4 shows a simple ex-
ample, where the log tail contains some data chunks,
possibly written in multiple commits, a checkpoint con-
taining the affected map chunks and the leader chunk,
and some more data chunks. Arrows link chunks as in
Figure 3.

1.51.4 3.1 L.L1.1 2.2 2.1...

checkpoint

1.1

checkpointed log residual log

1.71.3 1.51.1

Figure 4: Checkpointing the chunk map

4.8 Recovery

A crash loses buffered updates to the chunk map, but
they are recovered upon system restart by rolling for-
ward through the residual log. Section 4.9 describes
how the log is represented so the recovery procedure
may find the sequence of chunks in the residual log.

For each chunk in the residual log, the recovery proce-
dure computes the descriptor based on its location and
hash, and puts the descriptor in the chunk-map cache.
This procedure requires additional support from the
commit operation to redo chunk deallocations and to
validate the chunks in the residual log. This is described
in the next two sections.

4.8.1 Chunk Deallocation

For each chunk to be deallocated, the commit operation
writes a deallocate chunk to the log, which contains the
id of the deallocated chunk.

Deallocate chunks are instances of unnamed chunks:
they do not have chunk ids or positions in the chunk
map. This is acceptable because they are used solely for
recovery from the residual log and are always obsolete
in the checkpointed log.

Like other chunks, unnamed chunks are encrypted with
the secret key. They are also protected against tamper-
ing, as described in the next section. Otherwise, an at-

tack could cause a chunk to be un-deallocated. Or, an
attack could replay the deallocation of a chunk id after
it was re-allocated.

4.8.2 Validation of Residual Log

Although checkpointing defers the propagation of hash
values up the chunk map, each commit operation must
still update the tamper-resistant store to reflect the new
state of the database. If the tamper-resistant store kept
the hash of the leader and were updated only at check-
points, the system would be unable to detect tampering
with the residual log after a crash. We have imple-
mented two approaches for maintaining up-to-date vali-
dation information in the tamper-resistant store.

4.8.2.1 Direct Hash Validation

The chunk store maintains a sequential hash of the re-
sidual log. The log hash is stored in the tamper-resistant
store and updated after every commit. Upon recovery,
the hash in the tamper-resistant store is matched against
the hash computed over the residual log. This approach
is illustrated in Figure 5.

1.51.4 3.1 L.L1.1 2.2 2.1...

checkpointed log residual log

1.71.31.1 1.51.1

hash

T.R. store

1.51.4 3.1 L.L1.1 2.2 2.1...

checkpointed log residual log

1.71.31.1 1.51.1

hash

T.R. store

Figure 5: Tamper-resistant store contains database hash

A commit operation waits until the commit set is written
to the untrusted store reliably before it updates the hash
in the tamper-resistant store. Otherwise, a crash could
leave the tamper-resistant store updated when the un-
trusted store is not, and cause validation to fail upon
recovery. The update to the tamper-resistant store is the
real commit point: If there is a crash during this update,
the previous value stored in the tamper-resistant store is
recovered, and the last commit set in the untrusted store
is ignored. The commit operation returns after the tam-
per-resistant store is updated reliably.

Direct hash validation creates paths of hash links from
the tamper-resistant store to all current chunk ver-
sions—in both the residual log and the checkpointed
log. This is true because the tamper-resistant store is
directly linked to all chunks in the residual log, which

includes the leader from the last checkpoint, and the
leader is linked through the chunk map to all current
chunk versions in the checkpointed log. Note that all
unnamed chunks in the residual log are linked as well.
Unnamed chunks in the checkpointed log are not linked,
which is not a weakness because all such chunks are
obsolete.

4.8.2.2 Counter-based validation

In this approach, upon each commit, a sequential hash
of the commit set is stored in an unnamed chunk added
to the log, called the commit chunk. The commit chunk
is signed with the secret key. (The signature need not be
publicly verifiable, so it may be based on symmetric-
key encryption [MOV96].) An attack cannot insert an
arbitrary commit set into the residual log because it will
be unable to create an appropriately signed commit
chunk. Replays of old commit sets are resisted by add-
ing a count to the commit chunk that is incremented
after every commit. Deletion of commit sets at the tail
of the log is resisted by storing the current commit
count in the tamper-resistant store. This approach is
illustrated in Figure 6.

c.c.
73 1.31.1

c.c.
74

hash
hash

1.51.4 3.1 L.L1.1 2.2 2.1... 1.7 1.51.1
c.c.
75

hash

T.R. store
count = 75

secret key

c.c.
72

sign

checkpointed log residual log

c.c.
73 1.31.1

c.c.
74

hash
hash

1.51.4 3.1 L.L1.1 2.2 2.1... 1.7 1.51.1
c.c.
75

hash

T.R. store
count = 75

secret key

c.c.
72

sign

checkpointed log residual log

Figure 6: Tamper-resistant store contains commit count

A checkpoint is followed by a commit chunk containing
the hash of the leader chunk, as if the leader were the
only chunk in the commit set. The recovery procedure
checks that the hash of each commit set in the residual
log matches that stored in the commit chunk, and that
the counts stored in the commit chunks form a se-
quence. Finally, the procedure compares the count in
the last commit chunk with that in the tamper-resistant
store. The hash-links created in this approach are simi-
lar to those in direct hash validation, except that the
commit chunks are signed and linked from the tamper-
resistant store through a sequence of numbers.

Counter-based validation has several advantages. First,
the tamper-resistant counter is a weaker requirement
than a generic tamper-resistant store. Provided the

counter cannot be decremented by any program, it does
not need additional protection against untrusted pro-
grams. There is little incentive for untrusted programs
to increment the counter because they would not be able
to sign a commit chunk with the increased count.

Second, the commit count allows the system to tolerate
bounded discrepancies between the tamper-resistant
store and the untrusted store, if desired. For example,
the system might allow the count in the tamper-resistant
store, t, to be a little behind the last count in the un-
trusted store, u. This trades off security for perform-
ance. The security risk is that an attack might delete
commit sets t+1 through u. The performance gain is that
a commit operation need not wait for updating the count
in the tamper-resistant store, provided (u-t) is smaller
than some threshold ∆ut. This is useful if the tamper-
resistant store has high update latency. The system
might also allow t to leap ahead of u by another thresh-
old ∆tu. This admits situations where the untrusted store
is written lazily (e.g., IDE disk controllers often flush
their cache lazily) and the tamper-resistant store might
be updated before the untrusted store. The only security
risk is the deletion of at most ∆tu commit sets from the
tail of the log.

A drawback of counter-based validation is that tamper
detection relies on the secrecy of the key used to sign
the commit chunk. Therefore, if a database system
needed to provide tamper-detection but not secrecy, it
would still need a secret store.

4.9 Log Representation

This section describes the structure of the data written
to the log. The log consists of a sequence of chunks; we
refer to the representation of a chunk in the log as a
version.

4.9.1 Chunk Versions

Chunk versions are read for three different functions:
• Read operation, which uses the chunk id and the de-

scriptor to read the current version.
• Log cleaning, which reads a segment of the check-

pointed log sequentially.
• Recovery, which reads the residual log sequentially.

To enable sequential reading, the log contains informa-
tion to identify and demarcate chunks. Each chunk ver-
sion comprises a header followed by a body. The header
contains the chunk id and the size of the chunk state.
The header of an unnamed chunk contains a reserved id.
Both the header and the body are encrypted with the
secret key. Similarly, the hash of the residual log or a
commit set covers both headers and bodies.

4.9.2 Head of Residual Log

The recovery procedure needs to locate the head and the
tail of the residual log. The head of the residual log is
the leader. Its location is stored in a fixed place, as in
other log-structured storage systems. It need not be kept
in tamper-resistant store: With direct hash validation,
tampering with this state will change the computed hash
of the residual log. With counter-based validation, it is
possible for an attack to change the location to the be-
ginning of another commit set. Therefore, the recovery
procedure checks that the chunk at the stored location is
the leader.

Because the location of the leader is updated infre-
quently—upon each checkpoint—storing it at a fixed
location outside the log does not degrade performance.
This location is written after the writes to the untrusted
store and the tamper-resistant store have finished. Its
update marks the completion of the checkpoint. If there
is a crash before this update, the recovery procedure
ignores the checkpoint at the tail of the log.

4.9.3 Tail of Residual Log

With direct hash validation, the location of the log tail
may be stored in the tamper-resistant store along with
the database hash. This works well because the write to
the tamper-resistant store is the true commit point.

With counter-based validation, it is possible to infer the
location of the tail from the log itself, as in conventional
databases [GR93]. The last commit set in the log may
have been corrupted in a crash. The hash stored in a
commit chunk serves well as a checksum for the commit
set. The recovery procedure stops when the hash of a
commit set does not match the hash stored in the com-
mit chunk.

4.9.4 Segments

The untrusted store is divided into fixed-size segments
to aid cleaning, as in Sprite LFS [RO91]. The segment
size is chosen for efficient reading and writing by the
cleaner, e.g., on the order of 100 KB for disk-based
storage. A segment is expected to contain many chunk
versions. The size of a chunk version cannot exceed the
segment size. A commit set may span multiple seg-
ments.

The log is represented as a sequence of potentially non-
adjacent segments. Since the recovery procedure needs
to read the residual log sequentially, segments in the
residual log contain an unnamed next-segment chunk at
the end, which contains the location of the next seg-
ment.

4.9.5 Log Cleaning

The log cleaner reclaims the storage of obsolete chunk
versions and compacts the storage to create empty seg-
ments. It selects a segment to clean and determines
whether each chunk version is current by using the
chunk id in the header to find the current location in the
chunk map. It then commits the set of current chunks,
which rewrites them to the end of the log [BHS95].

The set of steps from selecting a segment to committing
the current chunks happens atomically with respect to
externally invoked operations. The cleaner may be in-
voked synchronously when space is low, but it is mostly
invoked asynchronously during idle periods.

The cleaner does not clean segments in the residual log,
because that would destroy the sequencing of the resid-
ual log. This also resolves what the cleaner should do
with unnamed chunks, because they are always obsolete
in the checkpointed log. For performance reasons, the
cleaner selects segments with low utilization. Details on
the utilization metric and the maintenance of this infor-
mation are beyond the scope of this paper.

The cleaner need not validate the chunks read from the
segment provided the commit operation for rewriting
current chunks does not update the hash values stored in
chunk descriptors. If the hashes are recomputed and
updated, as they would be in a regular commit, the
cleaner must validate the current chunks; otherwise, the
cleaner might launder chunks modified by an attack.
Because of its simplicity, we have implemented the sec-
ond, less efficient, approach.

5 Chunk Store: Multiple Partitions

This section describes extensions to the chunk store that
provide multiple partitions and partition copies. Multi-
ple partitions enable the use of different cryptographic
parameters for different types of data. Partition copies
enable fast backups.

5.1 Specification

The chunk store manages a set of named partitions, each
containing a set of named chunks. A chunk id comprises
the chunk position, as before, and the id of the contain-
ing partition. (A chunk in one partition may have the
same position as another chunk in another partition.)
The chunks in a partition are protected with the parame-
ters associated with it.

The following partition operations are provided:
• Allocate() returns PartitionId

Returns an unallocated partition id.
• Write(partitionId, secretKey, cipher, hashFunction)

Sets the state of partitionId to an empty partition with
the specified cryptographic parameters.

• Write(partitionId, sourcePId)
Copies the current state of sourcePId to partitionId.
Each chunk in sourcePId is logically duplicated in
partitionId at the same position.

• Diff(oldPId, newPId) returns set<ChunkPosition>
Returns a set containing chunk positions whose state
is different in newPId and oldPId.

• Deallocate(partitionId)
Deallocates partitionId and all of its copies, and all
chunks in these partitions.

Furthermore, the chunk allocate operation requires the
id of the partition in which the chunk is to be created. A
commit operation may include a number of write and
deallocate operations on both partitions and chunks.
This makes it possible, for example, to store the id of a
newly-written partition into a chunk in an existing parti-
tion in one atomic step.

The next few sections describe how the extended speci-
fication is implemented.

5.2 Multi-partition Chunk Map

Figure 7 shows the structure of the multi-partition chunk
map. Each written partition has a position map, which
maps a chunk position in the partition to a descriptor.
This map is like the single-partition map described in
Section 4.3. The map chunks in the position map of
partition P belong to P: their partition id is P and they
are protected using P’s cryptographic parameters. In the
figure, chunk ids are denoted as partition:position.

system leader

position m
ap

partition m
ap partition

leader

L:L.L

S:1.1 S:1.2 S:1.3

S:2.1 S:2.2

1:3.1

1:2.1 1:2.2

S:3.1

1:1.1 1:1.2 1:1.3 1:1.4

2:3.1

2:2.1 2:2.2

2:1.1 2:1.2 2:1.3 2:1.4

3:3.1

3:2.1 3:2.2

3:1.1 3:1.2 3:1.3

Partition 1 Partition 2 Partition 3

system leader

position m
ap

partition m
ap partition

leader

L:L.L

S:1.1 S:1.2 S:1.3

S:2.1 S:2.2

1:3.1

1:2.1 1:2.2

S:3.1

1:1.1 1:1.2 1:1.3 1:1.4

2:3.1

2:2.1 2:2.2

2:1.1 2:1.2 2:1.3 2:1.4

3:3.1

3:2.1 3:2.2

3:1.1 3:1.2 3:1.3

Partition 1 Partition 2 Partition 3

Figure 7: Multi-partition chunk map

The leader chunk for a partition contains information
needed to manage the position map, as before, and the
cryptographic parameters of the partition, including the
secret key. The partition map at the top maps a partition
id to the partition leader. This map is managed like the
position map of a special partition, called the system
partition, which has a reserved id denoted S in the fig-
ure. The partition leaders are the data chunks of the
system partition and are protected using the crypto-
graphic parameters of the system partition. Many parti-
tion operations such as allocating a partition id or read-
ing a partition leader translate into chunk-level opera-
tions on the system partition.

Chunks in the system partition and the system leader are
protected using a fixed cipher and hash function that are
considered secure, such as 3DES and SHA-1 [MOV96].
They are encrypted with the key in the secret store.
Thus, secrecy is provided be creating a path of cipher
links from the secret store to every current chunk ver-
sion. We say that there is a cipher link from one piece
of data to another if the second is encrypted using a key
stored in the first.

5.3 Partition Copies and Diffs

To copy a partition P to Q, the chunk store copies the
contents of P’s leader to Q’s leader. Thus, Q and P
share both map and data chunks, and Q inherits the
cryptographic parameters of P. Thus, partition copies
are cheap in space and time.

When chunks in P are updated, the position map for P
is updated, but that for Q continues to point to the
chunk versions at the time of copying. The chunks of Q
can also be modified independently of P, but the com-
mon use is to create a read-only copy, called a snapshot.

The chunk store diffs two partitions by traversing their
position maps and comparing the descriptors of the cor-
responding chunks. Commonly, diffs are performed
between two snapshots of the same partition.

5.4 Log Representation

A commit set may contain chunks from different parti-
tions. A chunk body is encrypted with the secret key
and cipher of its partition. However, chunk headers are
encrypted with the system key and cipher, so that clean-
ing and recovery may decrypt the header without know-
ing the partition id of the chunk.

The system leader is the head of the residual log, so it is
linked from the tamper-resistant store. The residual log
is hashed using the system hash function. Thus, each
chunk in a commit set is hashed twice: once with its
partition-specific hash function to update the chunk

descriptor, and once with the system hash function to
update the log hash. In principle, the log hash could be
computed over the partition-specific hashes of chunk
bodies. However, a weak partition hash function could
then invalidate the use of the log hash as a checksum for
recovery (see Section 5.4). For simplicity, and because
hashing is relatively fast, we chose to keep the hashes
separate.

5.5 Cleaning and Recovery

Checking whether a chunk version is current is compli-
cated by partition copies. A chunk header contains the
id of the partition P to which it belonged when the
chunk was written. Even if the version is obsolete in P,
it may be current in some direct or indirect copy of P.
Therefore, each partition leader stores the ids of its di-
rect copies and the cleaner checks for current-ness in
the copies, recursively. The process would be more
complex had it not been that the deallocation of a parti-
tion deallocates the partition’s copies as well.

Suppose the cleaner rewrites a chunk version identified
as P:x that is current only in partitions Q and R. The
commit procedure updates the descriptors for Q:x and
R:x in the cache. Further, in order that the recovery pro-
cedure is able to identify the chunk correctly, the
cleaner appends an unnamed cleaner chunk, which
specifies that the chunk is current in both Q and R.

6 Backup Store

The backup store creates and restores backup sets. A
backup set consists of one or more partition backups.
The backup store creates backup sets by streaming
backups of individual partitions to the archival store and
restores them by replacing partitions with the backu
ps read from the archival store.

6.1 Backup Consistency

The backup store guarantees consistency of backup
creation and restore with respect to other chunk store
operations. Instead of locking each partition for the en-
tire duration of backup creation, the backup store cre-
ates a consistent snapshot of the source partitions using
a single commit operation. It then copies the snapshots
to archival storage in the background. We assume that
restores are infrequent, so it is acceptable to stop all
other activity while a restore is in progress.

6.2 Backup Representation

Partition backups may be full or incremental. A full
partition backup contains all data chunks of the parti-
tion. An incremental backup of a partition is created

with respect to a previous snapshot, the base, and con-
tains the data chunks that were created, updated, or de-
allocated since the base snapshot. Backups do not con-
tain map chunks since chunk locations in the untrusted
store are not needed. Chunks in a backup are repre-
sented like chunk versions in the log.

Current state
Partition P

Created empty
Partition P

Base snapshot
Partition Q

New snapshot
Partition R

Incremental backup

Full backup

Current state
Partition P

Created empty
Partition P

Base snapshot
Partition Q

New snapshot
Partition R

Incremental backup

Full backup

Figure 8: Full and incremental backups

A partition backup contains a backup descriptor, a se-
quence of chunk versions, and a backup signature. The
backup descriptor contains the following (illustrated
using partition ids from Figure 8):
• id of source partition (P)
• id of partition snapshot used for this backup (R)
• id of base partition snapshot (Q, if incremental)
• backup set id (a random number assigned to the set)
• number of partition backups in the backup set
• partition cipher and hasher
• time of backup creation

The representation of partition backups is illustrated
below. Here, Hs denotes the system hash function, Hp
denotes the partition hash function, Es denotes system
cipher using the system key, and Ep denotes the parti-
tion cipher using the partition key.

PartitionBackup ::=
Es(BackupDescriptor)
(Es(ChunkHeader) Ep(ChunkBody))*
BackupSignature
Checksum

BackupSignature ::=
Es(Hs(BackupDescriptor Hp((ChunkId ChunkBody)*)))

The backup signature binds the backup descriptor with
the chunks in the backup and guarantees integrity of the
partition backup. The unencrypted checksum allows an
external application to verify that the backup was writ-
ten completely and successfully.

6.3 Backup Restore

The backup store restores a backup by reading a stream
of one or more backup sets from the archival store. The
backup store restores one partition at a time, enforcing
the following constraints:
• Incremental backups are restored in the same order as

they were created, with no missing links in between.

This is enforced by matching the base partition id in
the backup descriptor against the id of the previous
restored snapshot for the same partition.

• If a partition backup is restored, the remaining parti-
tion backups in the same backup set must also be re-
stored. This is enforced by matching the number of
backups with a given set id against the set size re-
corded in backup descriptors.

After reading the entire backup stream, the restored
partitions are atomically committed to the chunk store.
Backup restores require approval from a trusted pro-
gram, which may deny frequent restoring or restoring of
old backups.

7 Object Store

The object store adds safety against errors in applica-
tion programs. It provides type-safe and transactional
access to a set of objects. An object is the unit of typed
data accessed by the application. The object store im-
plements two-phase locking on objects and breaks dead-
locks using timeouts. Transactions acquire locks in ei-
ther shared or exclusive mode. We chose not to imple-
ment granular or operation-level locks because we
expect only a few concurrent transactions. The object
store keeps a cache of frequently-used or dirty objects.
Caching data at this level is beneficial because the data
is decrypted, validated, and unpickled.

The object store could store one or more pickled objects
in each chunk. We chose to store each object in a dif-
ferent chunk because it results in a smaller volume of
data that must be encrypted, hashed, and written to the
log upon a commit. In addition, the implementation of
the cache is simplified since no chunk can contain both
committed and uncommitted objects. On the other hand,
storing each object in a different chunk destroys inter-
object clustering and increases the database size due to
per-chunk overhead (see Section 9.3). Because we ex-
pect much of the working set to be cached, the lack of
inter-object clustering is not important.

8 Collection Store

The collection store provides applications with indexes
on collections of objects. A collection is a set of objects
sharing one or more indexes. Indexes can be dynami-
cally added and removed from each collection. Collec-
tions and indexes are themselves represented as objects.

The collection store supports functional indexes that use
keys extracted from objects by deterministic functions
[Hwa94]. The use of functional indexes allows us to
avoid a separate data definition language for the data-
base schema. Indexes are maintained automatically as

objects are updated. Indexes may be unsorted or sorted,
which is possible because the objects are decrypted.

9 Performance

In this section we describe preliminary performance
measurements. First, we present the performance on
chunk and backup store operations based on several
micro-benchmarks. Then we compare the performance
an off-the-shelf database system and TDB using a
higher-level benchmark.

9.1 Platform

Performance was evaluated on a 450 MHz Pentium PC
with 128 MB of RAM, running the Windows NT 4.0
operating system. TDB is written in C++.

The untrusted store was implemented as an NTFS file
on a hard disk with 9 ms average seek and 7200 rpm (4
ms average rotational latency). Using a raw disk parti-
tion would be more efficient, but we do not expect the
users of TDB to provide one. The total size of TDB
caches (including the object cache and the chunk-map
cache) was set to 4 Mbytes.

The tamper-resistant store was emulated with an NTFS
file on another hard disk to avoid interference with ac-
cesses to the untrusted store. This disk has 12 ms aver-
age seek and 5200 rpm (6 ms average rotational la-
tency). The access time is similar to that for writing
EEPROM, 5 ms [Inf00].

We used counter-based validation and allowed the
count in the tamper-resistant store to lag behind that in
untrusted store by ∆ut = 5. The tamper-resistant store is
flushed only once is ∆ut commits. The untrusted store is
flushed upon every commit and we set ∆tu to 0.

9.2 Micro-benchmarks

This section presents the performance of basic crypto-
graphic, disk, chunk store and backup store operations.

9.2.1 Cryptographic and Disk Operations

Encryption: We used 3DES in CBC mode for the sys-
tem partition, which has a measured bandwidth of 2.5
MB/s (0.4 µs per byte). We used DES in CBC mode for
other partitions; the measured bandwidth is 7.2 MB/s
(0.14 µs per byte). There are other, more secure, algo-
rithms that run faster than DES [MOV96].

Hashing: We used SHA-1. The measured bandwidth is
21.1 MB/s (0.05 µs per byte). Additionally, the “final-
ization” of a hash value has a fixed overhead of 5 µs.

Store latency: While the disk specs provide average
latency, the measured latency varies widely based on
the position of disk head. Furthermore, the latency of
the NTFS flush operation for files larger than 512 bytes
is doubled because it writes file metadata separately.
We measured write latencies of 10 ms to 20 ms for
small files and 25 ms to 40 ms otherwise. Therefore, we
shall focus on the computational overhead and denote
the latencies of the untrusted and tamper-resistant store
symbolically as lu and lt.

Store bandwidth: The measured bandwidth, bu, of
reading or writing the NTFS file implementing the un-
trusted store varies between 3.5 and 4.7 MB/s.

9.2.2 Chunk Store Operations

We repeated each operation 10 times and found that the
computational overhead does not vary much, typically
deviating less than 2%.

Allocate chunk id: This operation does not change the
persistent state. The average latency is 6 µs.

Write chunks + commit: We committed sets of 1 to
128 chunks of sizes 128 bytes to 16 KB per chunk,
which covers the range we expect. The computational
latency, measured using linear regression, is 132 µs +
36 µs per chunk + 0.24 µs per byte of cumulative chunk
size. The fixed overhead comes largely from processing
the commit chunk (pickling, encrypting, hashing, etc.),
the per-chunk overhead from processing the chunk
header and finalizing the chunk’s hash value, and the
per-byte overhead from encryption and hashing the
chunk bodies. The I/O overhead is lu + lt/∆ut + 1/ bu per
byte, which usually dominates the computational over-
head.

Read chunk: If the chunk descriptor is cached, the
computational latency of reading a chunk is 47 µs +
0.18 µs per byte of chunk size. The fixed overhead
comes largely from processing the chunk header and
finalizing the hash, and the per-byte overhead from de-
cryption and hashing. The I/O overhead is lu + 1/bu per
byte. If the descriptor is not cached, the read operation
reads in parental map chunks up to one whose descrip-
tor is cached. In our experiments, each map chunk has
64 descriptors and has a size of 1.5 KB.

Write partition + commit: The computational latency
of committing a new partition is 223 µs. The computa-
tional latency of copying a partition is 386 µs, regard-
less of the number of chunks in the source partition,
owing to our use of the copy-on-write technique.

9.2.3 Backup Store Operations

We benchmarked only backup creation, we assume that
backup restore performance is not critical.

Partition backup: We used 512 byte chunks. The
computational latency to create an incremental backup
of a partition is 675 µs + 9 µs per chunk in the backed
up partition + 278 µs per updated chunk. The fixed
overhead comes mostly from creating the partition
snapshot and processing the backup descriptor and sig-
nature. The overhead per chunk in the backed up parti-
tion comes from diff-ing the snapshot of the backed up
partition against the base snapshot. The overhead per
updated chunk comes from copying the chunk.

The size of a backup determines the I/O overhead for
writing it. The size of an incremental backup is 456 B +
528 B per updated chunk, which may be significantly
less than the size of a full backup.

9.3 Space Overhead

The chunk descriptor, header, and padding add an over-
head of about 52 bytes for chunks encrypted using an 8-
byte block cipher. The additional overhead per chunk
due to the chunk map is small because the fanout degree
of the tree is large (64). Obsolete chunk versions in the
log add additional overhead. When cleaning in idle pe-
riods, the space utilization may be kept as high as 90%
with reasonable performance [BHS95].

9.4 Code Complexity

Figure 9 gives the complexity of TDB in terms of num-
ber of semicolons in C++ code.

Module semicolons
Collection store 1,388
Object store 512
Backup store 516
Chunk store 2,570
Common utilities 1,070
TOTAL 6,056

Figure 9: TDB code complexity

9.5 Performance Comparison

In this section, we compare the performance of a system
using either TDB or an off-the-shelf embedded database
system, which we shall call XDB. The XDB-based
system layers cryptography on top of XDB. We config-
ured both systems to use the same cryptographic pa-
rameters, cache size, and frequency of flushing the tam-
per-resistant store.

9.5.1 Workload

We measured the performance on a benchmark that
models two operations related to vending digital goods:
• Bind: A vendor binds three alternative contracts to a

digital good.
• Release: A consumer releases the digital good select-

ing one of the three contracts randomly.

The benchmark first creates 30 collections for different
object types. Each collection has one to four indexes.
The benchmark loads the cache before executing an
experiment. The experiment consists of 10 consecutive
bind or release operations. Figure 10 gives the number
of database operations executed in each experiment.

 read update delete add commit
release 781 181 10 41 96

bind 1732 733 10 220 292

Figure 10: Number of database operations.

9.5.2 Comparison Results

We repeated each experiment 10 times. Figure 11
shows the average times for the release and bind ex-
periments, the part spent in the database system, and the
part thereof spent in commit, which is the major over-
head.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

XDB-release TDB-release XDB-bind TDB-bind

ru
n

ti
m

e
(m

s)

db-commit db-other non-db

Figure 11: Runtime comparison

TDB outperformed XDB, primarily because of faster
commits, but also in the remaining database overhead.
We believe that XDB performs multiple disk writes at
commit.

The stored size of XDB after running the release ex-
periment was 3.8 MB. The stored size of TDB was 4.0
MB, based on 60% maximum log utilization.

9.5.3 TDB Performance Analysis

Here, we analyze the performance of the release ex-
periment. Figure 12 breaks down the TDB overhead by

module. The time reported for each module excludes
nested calls to other reported modules. The figure gives
the average time (µ), the standard deviation (σ), and
percentage of total (%).

module µ(ms) σ(ms) %

DB TOTAL 4209 484 100

collection store 162 0 4

object store 85 0 2

chunk store 61 1 1

encryption 157 1 4

hashing 93 5 2

untrusted store read 8 0 0

untrusted store write 3353 164 81

tamper-resistant store 229 46 6

Figure 12: TDB runtime analysis

The overhead is dominated by writes to the untrusted
store. The experiment flushed the untrusted store 96
times and the tamper-resistant store 19 times. The over-
head of writing to the tamper-resistant store may vary
significantly depending on the device and the frequency
of flushes. There was no checkpoint or log cleaning
during the experiment. (In the bind experiment, log
cleaning took a total of 1030 ms.)

The overhead of encryption and hashing is only 6% of
the database overhead. The effective bandwidths of
encryption and hashing are 6.5 MB/s and 20.6 MB/s,
which are close to the peak bandwidths reported in Sec-
tion 9.2.1.

10 Potential Extensions

The current design of TDB has a number of limitations.
Below we describe extensions to address them.

Untrusted storage on servers: TDB may be used to pro-
tect a database stored at an untrusted server. This appli-
cation of TDB may benefit from additional optimiza-
tions for reducing network round-trips to the untrusted
server, such as batching reads and writes.

Trusted paging. The current design assumes that the
entire runtime, volatile state of a trusted program is pro-
tected by the trusted processing environment. TDB lim-
its its volatile state by controlling its cache size, but this
limit is not hard. Therefore, some volatile state may
have to be paged out to untrusted storage. This problem
may be solved by using a page fault handler to store
encrypted and validated pages in the chunk store.

Steal buffer management. Currently, modified objects
must remain in the cache until their transaction com-
mits, which may degrade the security and performance
of large transactions. Evicting dirty objects would re-
quire writing them to the log. This requires additional
support in the chunk store.

Logical logging. Logical logging may reduce the vol-
ume of data that must be encrypted, hashed, and written
to the untrusted store. The chunk store uses logical log-
ging for some operations (for example, deallocation of
chunks), but it does not allow higher modules to specify
operations that should be logged logically.

11 Related Work

There are many systems aimed at providing secure stor-
age. TDB differs from most of them because of its
unique trust model.

In another paper at this conference, Fu et al. describe a
read-only file system that may be stored in untrusted
servers [FKM00]. A hash tree is embedded in the inode
hierarchy. The trusted creator signs the root hash with
the time of update and expiration. This system is not
designed to handle frequent updates or updates to indi-
vidual file blocks in the untrusted server.

Techniques for securing audit logs stored on weakly-
protected hosts are suitable for securing append-only
data that is read infrequently and sequentially by a
trusted computer [BY97, SK98]. They employ a linear
chain of hash values instead of a tree. When the data
needs to be read, it is validated by recomputing the hash
over the entire log. These techniques are not suitable for
a database system such as ours, which requires frequent
and random read-write access to data.

Blum et al. considered the problem of securing various
data structures in untrusted memory using a hash tree
rooted in a small amount of trusted memory [BEG+91].
This work does not address storage management for
persistent data.

Some systems provide secure storage by dispersing data
onto multiple hosts, with the expectation that at least a
certain fraction of them (for example, two-thirds) will
be honest. The data may be replicated as-is for time
efficiency [CL99], or it might be encoded to reduce the
cumulative space overhead [Rab89, Kra93, GGJ+97].
Read requests are broadcast to all machines and the data
returned is error corrected. This approach provides re-
covery from tampering, not merely tamper detection.
However, it relies on more trusted resources than are
available to TDB. The expectation of an honest quorum
is based on the assumption that, under normal opera-
tion, the hosts are weakly protected but not hostile, so

the difficulty for a hostile party to take over k hosts in-
creases significantly with k.

Our use of log-structured storage builds on a previous
work on log-structured storage systems [RO91,
JKH93]. The Shadows database system is log structured
and provides snapshots [Ylo94]. Otherwise, there has
been little interest in log-structured database systems,
perhaps because of the need to keep large sets of data
physically clustered or to keep the log compact using
logical logging.

12 Conclusions

We have presented a trusted database system that lever-
ages a trusted processing environment and a small
amount of trusted storage to extend tamper-detection
and secrecy to a scalable amount of untrusted storage.
The architecture integrates encryption and hashing with
a low-level data model, which protects data and meta-
data uniformly. The model is powerful enough to sup-
port higher-level database functions such as transac-
tions, backups, and indexing.

We found that log-structured storage is well suited for
building such a system. The implementation is simpli-
fied by embedding a hash tree in the comprehensive
location map that is central to log-structured systems:
objects can be validated as they are located. The check-
pointing optimization defers and consolidates the
propagation of hash values up the tree. Because updates
are not made in place, a snapshot of the database state
can be created using copy-on-write, which facilitates
incremental backups.

We measured the performance of TDB using micro-
benchmarks as well as a high-level workload. The data-
base overhead was dominated by writes to the untrusted
store and the tamper-resistant store, which may vary
significantly based on the types of devices used. The
overhead of encryption and hashing was only 6% of the
total. On this workload, TDB outperformed a system
that layers cryptography on an off-the-shelf embedded
database system, while also providing more protection.
This supports the suitability of the TDB architecture.

Acknowledgements

Olin Sibert and Susan Owicki motivated us to work on
this problem. Various members of STAR Lab and In-
terTrust provided useful comments and help with per-
formance measurement. Our shepherd, Frans Kaashoek,
guided us in improving the presentation.

References

[Auc96] D. Aucsmith. Tamper resistant software: an
implementation. In Proc. International Workshop on
Information Hiding, Lecture Notes in Computer Sci-
ence, Vol. 1174, Cambridge, UK, 1996, pp. 317-333.

[BEG+91] M. Blum, W. Evans, P. Gemmel, S. Kannan,
and M. Naor. Checking the correctness of memories. In
Proc. IEEE Conf. on Foundations of Computer Science,
San Juan, Puerto Rico, 1991, pp. 90-99.

[BHS95] T. Blackwell, J. Harris, and M. Seltzer. Heu-
ristic cleaning algorithms in log-structured file systems.
In Proc. USENIX Technical Conference, New Orleans,
LA, 1995, pp. 249-264.

[BY97] M. Bellare and B. Yee. Forward integrity for
secure audit logs. Technical Report, Computer Science
and Engineering Department, University of California at
San Diego, 1997.

[Coh93] F. Cohen. Operating system protection through
program evolution. In Computers & Security, 12(6),
Oxford, 1993.

[CL99] M. Castro and B. Liskov. Practical byzantine
fault tolerance. In Proc. Symposium on Operating Sys-
tems Design and Implementation, New Orleans, LA,
1999, pp. 173-186.

[CTL98] C. Collberg, C. Thomborson, and D. Low.
Manufacturing cheap, resilient, and stealthy opaque
constructs. In Proc. ACM Principles of Programming
Languages, San Diego, CA, 1998, pp. 184-196.

[Dal00] Dallas Semiconductor secure microcontroller
family,
http://www.dalsemi.com/products/micros/secure.html,
August 2000.

[FKM00] K. Fu, F. Kaashoek, and D. Mazieres. Fast
and secure distributed read-only file system. To appear
in Proc. Symposium on Operating Systems Design and
Implementation, San Diego, CA, 2000.

[GGJ+97] J. Garay, R. Gennaro, C. Jutla, and T. Rabin.
Secure distributed storage and retrieval. In Proc. Intl.
Workshop on Distributed Algorithms, Berlin, Germany,
1997, pp. 275-289.

[GR93] J. Gray and A. Reuter. Transaction processing:
concepts and techniques. Morgan Kaufmann Publish-
ers, 1993.

[HMF+99] N. Hutchinson, S. Manley, M. Federwisch,
G. Harris, D. Hitz, S. Kleiman, S. O’Malley. Logical vs.

physical file backup. In Proc. Symp. on Operating Sys-
tem Design and Implementation, New Orleans, LA,
1999, pp. 239-249.

[Hwa94] D. Hwang. Function-based indexing for ob-
ject-oriented databases. PhD thesis, Massachusetts In-
stitute of Technology, 1994.

[Inf00] Infineon Technologies. Eurochip II—SLE 5536,
http://www.infineon.com/cgi/ecrm.dll/ecrm/scripts/prod
_ov.jsp?oid=14702&cat_oid=-8233, August 2000.

[Int00] InterTrust Technologies Corp. Digital rights
management. http://www.intertrust.com/de/index.html,
August 2000.

[IBM00] IBM. Cryptolope technology,
http://www.software.ibm.com/security/cryptolope, Au-
gust 2000.

[JKH93] W. Jonge, M. F. Kaashoek, W. Hsieh. The
logical disk: a new approach to improving file systems.
In Proc. ACM Symposium on Operating Systems Prin-
ciples, Asheville, NC, 1993, pp. 15-28.

[KK99] O. Kommerling and M. Kuhn. Design princi-
ples for tamper-resistant smartcard processors. In Proc.
USENIX Workshop on Smartcard Technology, Chicago,
IL, 1999.

[Kra93] H. Krawczyk. Distributed fingerprints and se-
cure information dispersal. In Proc. ACM Symp. on
Principles of Distributed Computing, Ithaca, NY, 1993,
pp. 207-218.

[Mer80] R. Merkle. Protocols for public key cryptosys-
tems. In Proc. IEEE Symposium on Security and Pri-
vacy, Oakland, CA, 1980, pp. 122-134.

[MOV96] A. Menezes, P. van Oorschot, and S.
Vanstone. Handbook of applied cryptography. CRC
Press, 1996.

[Rab89] T. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal of
the ACM, 36(2), 1989, pp. 335-348.

[RO91] M. Rosenblum and J. Ousterhout. The design
and implementation of a log-structured file system. In
Proc. ACM Symposium on Operating Systems Princi-
ples, Pacific Grove, CA, 1991, pp. 1-15.

[SBV95] O. Sibert, D. Bernstein, and D. Van Wie.
DigiBox: a self protecting container for information
commerce. In Proc. USENIX Conference on Electronic
Commerce, New York, NY, 1995, pp. 171-186.

[SK98] B. Schneier and J. Kelsey. Cryptographic sup-
port for secure logs on untrusted machines. In Proc.
USENIX Security Symposium, San Antonio, TX, 1998,
pp. 52-62.

[SPW98] S. Smith, E. Palmer, and S. Weingart. Using a
high-performance, programmable secure coprocessor.
In Proc. Intl. Conf. on Financial Cryptography, An-
guilla, British West Indies, 1998.

[Wav99] Wave Systems Corp. The Embassy e-
commerce system.
http://www.wave.com/technology/Embassywhitepaper.p
df, August 2000.

[Xer00] ContentGuard, Rights management from
Xerox, http://www.contentguard.com, August 2000.

[Ylo94] T. Ylonen. Shadow paging is feasible. Licenti-
ate’s thesis, Helsinki University of Technology, 1994.

