dlifgliltlall

processor
handbook

odptiae

dlifgliltlall

PCPT40

processor
handbook

digital equipment corporation

Copyright© 1972, by Digital Equipment Corporation

DEC, PDP,UNIBUS are registered trademarks of Digital Equipment Corporation.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION e 1-1
1.1 GENERAL oot et 11
1.2 GENERAL CHARACTERISTICS 12

1.2.1 The UNIBUS ..o, 1-2
1.2.2 Central ProCeSSOrcccccoiivoiieceieieeieeeane, 1-3
1.2.3 MEMOFIES .oooiveeeeeeeeeeee oo 1-5
1.2.4 Floating Pointc.cccooiiiiiiiiiiiiee 15
1.2.5 Memory Management 1-5
1.3 PERIPHERALS/OPTIONS 1-5
1.3.1 1/O Devices 16
1.3.2 Storage DeViCeScccooieeeieeeieeeieeeeiieee, 1-6
1.3.3 BuS OPtioNSccoooooiviiiiiiiieee e 1-6
1.4 SOFTWARE ... 1-6
1.4.1 Paper Tape Softwarec..c....... 1-7
1.4.2 Disk Operating System Software 1-7
1.4.3 Higher Level Languagescccooeveev.nn... 1.7
1.5 NUMBER SYSTEMSc..ccccooiiiiiiriiiriiirerioriieneennns. 1.7

CHAPTER 2 SYSTEM ARCHITECTURE 2-1
2.1 SYSTEM DEFINITION ..., 2-1
2.2 UNIBUS

2.2.1 Bidirectional Lines ...

2.2.2 Master-Slave Relation

2.2.3 Interlocked Communication
2.3 CENTRALPROCESSORccoooiiiiiinnnn.

2.3.1 General Registers

2.3.2 Processor Status Word

2.3.3 Stack Limit Register .. -
2.4 EXTENDED INSTRUCTION SET & FLOATING POINT 25
25 CORE MEMORY
2.6 AUTOMATIC PRIORITY INTERRUPTS

2.6.1 Using the Interrupts

2.6.2 Interrupt Procedure

2.6.3 Interrupt Servicing ...
2.7 PROCESSOR TRAPS

2.7.1 Power Failure

2.7.2 0Odd Addressing Errors

2.7.3 Time-outErrors ...
2.7.4 Reserved Instructions
2.7.5 Trap Handling ...

CHAPTER 3 ADDRESSING MODES

3.1
3.2
33

w w
(6, -3

3.6
37

4.1

N

4,
4.3
4.4

AhA
Noo

SINGLE OPERAND ADDRESSING
DOUBLE OPERAND ADDRESSING
DIRECT ADDRESSING
3.3.1 Register Mode ...
3.3.2 Auto-increment Mode
3.3.3 Auto-decrement Mode
3.34 IndexModeiiiiii
DEFERRED (INDIRECT) ADDRESSING
USE OF THE PC AS A GENERAL REGISTER
3.5.1 Immediate Mode
3.5.2 Absolute Addressing ...
3.5.3 Relative Addressing
3.5.4 Relative Deferred Addressing -
USE OF STACK POINTER AS GENERAL REGISTER 3-16
SUMMARY OF ADDRESSING MODES 3-16
3.7.1 General Register Addressing 3-16
3.7.2 Program Counter Addressing 3-18

LIST OF INSTRUCTIONS
SINGLE OPERAND INSTRUCTIONS

.DOUBLE OPERAND INSTRUCTIONS 4-22

PROGRAM CONTROL INSTRUCTIONS
MISCELLANEOUS

CHAPTER 5 PROGRAMMING TECHNIQUES ... 5-1

5.1
5.2

5.3

5.5
5.6

THE STACK .o 5-1
SUBROUTINE LINKAGE
5.2.1 Subroutine Calls .. 5-5
5.2.2 Argument Transmission 5-6
5.2.3 Subroutine Return 5-9
5.2.4 PDP-11 Subroutine Advantage
INTERRUPTS ...,
5.3.1 General Principles
5.3.2 Nestingo.oooiiiii
REENTRANCY JUROTTTTT

POSITION INDEPENDENT CODE
CO-ROUTINES ..o e
MULTI-PROGRAMMING

5.7.1 Control Information
5.7.2 Datacoocoiieee e
5.7.3 Processor Status Word

CHAPTER 6 MEMORY MANAGEMENT

6.1 PDP-11 FAMILY BASIC ADDRESSING LOGIC 6-1
6.2 VIRTUAL ADDRESSINGccooooiiiiiiee e 6-2
6.3 INTERRUPT CONDITIONS UNDER MANAGEMENT
CONTROL ... 6-2
6.4 CONSTRUCTION OF A PHYSICAL ADDRESS 6-3
6.5 MANAGEMENT REGISTERScocoiviiiiiiiiiiiieeceee 6-4
6.5.1 Page Address Registercc 6-5
6.5.2 Page Descriptor Register 6-5
6.6 FAULT REGISTERSoooiiiiiieiieeiieee e, 6-7
6.6.1 Status Register #0 6-7
6.6.2 Status Register #2 6-8
CHAPTER 7 INTERNAL PROCESSOR OPTIONS
7.1 GENERAL ..., 7-1
7.2 EISOPTION ... 7-1
7.3 FLOATING POINT OPTION 7-3
7.4 STACK LIMIT OPTIONccooooiiiiiiiiniiiieee e 7-5

CHAPTER 8 CONSOLE OPERATION

81 CONSOLE ELEMENTSo.cccooiioiiiiimmmiimmirimireierenenn, 8-1
8.2 STATUS INDICATORS

8-2

8.3 CONSOLE SWITCHES 8-3

8.4 DISPLAYS ...ttt e s 84
CHAPTER 9 SPECIFICATIONS

9.1 PACKAGINGcoooiiiiiei et 9-1

9.2 CPU OPERATING SPECIFICATIONS 9-1

9.3 OTHER EQUIPMENToooooiiiiiiiiee. 9-1

9.4 PDP-11 FAMILY OF COMPUTERScccceviviniiiiiien, 9-4

Appendix A Instruction Set Processorccoccovviviennnenn, A-1

Appendix B Memory Mapccoooviiiiiiiieeiee e B-1

Appendix C PDP-11/40 Instruction Timingcc.....oeeee. C-1

Appendix D Instruction Index and Numerical Op Code List D-1

Appendix E Summary of PDP11 Instructions E-1

Vi

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The PDP-11 family includes several central processors, a large number
of peripheral devices and options, and extensive software. PDP-11 com-
puters have similar architecture and are hardware and software upwards
compatible, although each machine has some of its own characteristics.
New systems will be compatible with existing family members. The user
can choose the system which is most suitable for his application, but as
needs change or grow he can easily add or change hardware.

This Handbook describes the PDP-11/40, one of the latest computers in
the PDP-11 family from Digital Equipment Corporation (DEC). This
powerful, low-priced machine is packaged in a 21" front panel slide
chassis, allowing convenient access and expansion when mounted in a
standard rack. The PDP-11/40 was designed to fit a broad range of
applications, from small stand alone situations where the computer con-
sists of only 8K of memory and a processor, to large multi-user, multi-
task applications requiring up to 124K of addressable memory space.
Among its major features are a fast central processor with a choice of
floating point and sophisticated memory management, both of which are
hardware options.

Some of the PDP-11/40 features are:

¢ 16-bit word (two 8-bit bytes)
direct addressing of 32K 16-bit words or 64K 8-bit bytes (K = 1024)

e Word or byte processing
very efficient handling of 8-bit characters

e Asynchronous operation)
systems run at their highest possible speed, replacement with faster
devices means faster operation with no other hardware or software
changes

¢ Modular component design
extreme ease and flexibility in configuring systems

e Stack Processing
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

1-1

o 8 fast general-purpose registers
very fast integrated circuits used in teractively for instruction processing
e Automatic priority processing
four-line, muiti-level system is dynamically alterable
e Vectored interrupts
fast interrupt response without device polling
¢ Single & double operand instructions
powerful and convenient set of micro-programmed instructions

DEC References
The following publications contain supplementary and useful information:

Title

PDP-11 Peripherals and Interfacing
Handbook

PDP-11 UNIBUS Interface Manual
Introduction to Programming

Small Computer Handbook

1.2 GENERAL CHARACTERISTICS
1.2.1 The UNIBUS

All computer system components and peripherals connect to and com-
municate with each other on a single high-speed bus known as the
UNIBUS—the key to the PDP-11's many strengths. Since all system ele-
ments, including the central processor, communicate with each other in
identical fashion via the UNIBUS, the processor has the same easy ac-
cess to peripherals as it has to memory.

7/ >

N R S B

cPU veaggy | | 170 10 1/0 10

7]

Figure 1-1 PDP-11 System Simplified Block Diagram

With bidirectional and asynchronous communications on the UNIBUS,
devices can send, receive, and exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because it is asynchronous, the UNIBUS is com-
patible with devices operating over a wide range of speeds.

Device communications on the UNIBUS are interlocked. For each com-
mand issued by a ‘“‘master’’ device, a response signal is received from a

1-2

‘“slave’ completing the data transfer. Device-to-device communication
is completely independent of physical bus length and the response times
of master and slave devices.

Interfaces to the UNIBUS are not time-dependent; there are no pulse-
width or rise-time restrictions to worry about. The maximum transfer rate
on the UNIBUS is one 16-bit word every 400 nanoseconds, or 2,500,000
words per second.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem-
ory cycles during instruction operations. The processor resumes opera-
tion immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
‘“‘stealing’’ bus cycles.

1.2.2 Central Processor

The central processor, connected to the UNIBUS as a subsystem, con-
trols the time allocation of the UNIBUS for peripherals and performs
arithmetic and logic operations and instruction decoding. It contains
multiple high-speed general-purpose registers which can be used as accu-
mulators, address pointers, index registers, and other specialized func-
tions. The processor can perform data transfers directly between 1/O
devices and memory without disturbing the processor registers; does
both single- and double-operand addressing and handles both 16-bit word
and 8-bit byte data.

Instruction Set

The instruction complement uses the flexibility of the general-purpose
registers to provide over 400 powerful hard-wired instructions—the most
comprehensive and powerful instruction repertoire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have three classes of instructions (memory reference instructions, oper-
ate or AC control instructions and 1/O instructions) all operations in the
PDP-11 are accomplished with one set of instructions. Since peripheral
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally well for data in peripheral device registers.
For example, data in an external device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg-
ister, or compare logically or arithmetically contents with a mask and
branch. Thus all PDP-11 instructions can be used to create a new dimen-
sion in the treatment of computer 1/O and the need for a special class of
1/0 instructions is eliminated.

The basic order code of the PDP-11 uses both single and double operand
address instructions for words or bytes. The PDP-11 therefore performs
very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

PDP-11 Approach

ADD A,B ;add contents of location A to loca-
tion B, store result at location B

1-3

Conventional Approach

LDA A ;load contents of memory location A
into AC

ADD B ;add contents of memory location B to
AC

STA B ;store result at location B

Priority Interrupts

A multi-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system. Any number
of separate devices can be attached to each level.

Each peripheral device in the PDP-11 system has a hardware pointer to
its own pair of memory words (one points to the devices's service rou-
tine, and the other contains the new processor status information). This
unique identification eliminates the need for polling of devices to identify
an interrupt, since the interrupt servicing hardware selects and begins
executing the appropriate service routine after having automatically
saved the status of the interrupted program segment.

The devices’ interrupt priority and service routine priority are independ-
ent. This allows adjustment of system behavior in response to_real-time

conditions, by dynamically changing the priority level of the service
routine.

The interrupt system allows the processor to continually compare its
own programmable priority with the priority of any interrupting devices
and to acknowledge the device with the highest level above the proces-
sors priority level. Servicing an interrupt for a device can be interrupted
for servicing a higher priority device. Service to the lower priority device
is resumed automatically upon completion of the higher level servicing.
Such a process, called nested interrupt servicing, can be carried out to
any level without requiring the software to save and restore processor
status at each level.

Reentrant Code

Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-11. This type of code allows
a single copy of a given subroutine or program to be shared by more
than one process or task. This reduces the amount of core needed for
multi-task applications such as the concurrent servicing of many peri-
pheral devices.

Addressing

Much of the power of the PDP-11 is derived from its wide range of ad-
dressing capabilities. PDP-11 addressing modes include sequential ad-
dressing forwards or backwards, address indexing, indirect addressing,
16-bit word addressing, 8-bit byte addressing, and stack addressing.
Variable length instruction formating allows a minimum number of bits
to be used for each addressing mode. This results in efficient use of
program storage space.

14

Stacks

In the PDP-11, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. The stack is
used automatically by program interrupts, subroutine calls, and trap in-
structions. When the processor is interrupted, the central processor
status word and the program counter are saved (pushed) onto the stack
areay while the processor services the interrupting device. A new status
word is then automatically acquired from an area in core memory which
is reserved for interrupt instructions (vector area). A return from the
interrupt instruction restores the original processor status and returns to
the interrupted program without software intervention.

Direct Memory Access

All PDP-11's provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices thus allowing memory data storage or retrieval'at memory
cycle speeds. Latency is minimized by the organization and logic of the
UNIBUS, which samples requests and priorities in parallel with data
transfers.

Power Fail and Restart

The PDP-11's power fail and restart system not only protects memory
when power fails, but also allows the user to save the existing program
location and status (including all dynamic registers), thus preventing
harm to devices, and eliminating the need for reloading programs. Auto-
matic restart is accomplished when power returns to safe operating
levels, enabling remote or unattended operations of PDP-11 systems. All
standard peripherals in the PDP-11 family are included in the systemized
power-fail protect/restart feature.

1.2.3 Memories

Memories with different ranges of speeds and various characteristics can
be freely mixed and interchanged in a single PDP-11 system. Thus as
memory needs expand and as memory technology grows, a PDP-11 can
evolve with none of the growing pains and obsolescence associated with
conventional computers.

1.2.4 Floating Point (optional)

A Floating Point Unit functions as an integral part of the PDP-11/40
processor, not as a bus device.

1.2.5 Memory Management (optional)

PDP-11/40 Memory Management is an advanced memory extension,
relocation, and protection feature which will:

extend memory space from 28K to 124K words

allow efficient segmentation of core for multi-user environments
provide effective protection of memory segments in multi-user en-
vironments

1.3 Peripherals/Options

Digital Equipment Corporation (DEC) designs and manufactures many of
the peripheral devices offered with PDP-11's. As a designer and manu-

1.5

facturer of peripherals, DEC can offer extremely reliable equipment, lower
prices, more choice and quantity discounts.

1.3.1 1/0 Devices

All PDP-11 systems are available with Teletypes as standard equipment.
However, their 1/O capabilities can be increased with high speed paper
tape reader-punches, line printers, card readers or alphanumeric display
terminals. The LA30 DECwriter, a totally DEC-designed and built tele-
printer, can serve as an alternative to the Teletype. It has several ad-
vantages over standard electromechanical typewriter terminals, including
higher speed, fewer mechanical parts and very quiet operation.

PDP-11 1/O devices include:

DECterminal alphanumeric display

DECwriter teleprinter

High Speed Line Printers

High Speed Paper Tape Reader and Punch

Teletypes

Card Readers

Synchronous and Asynchronous Communications Interfaces

1.3.2 Storage Devices

Storage devices range from convenient, small-reel magnetic tape (DEC-
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDP-11 system. TU56 DECtapes, highly reliable tape units
with small tape reels, designed and built by DEC, are ideal for applica-
tions with modest storage requirements. Each DECtape provides storage
for 144K 16-bit words. For applications which require handling of large
volumes of data, DEC offers the industry compatible TU10 Magtape.

Disk storage include fixed-head disk. units and moving-head removable
cartridge and disk pack units. These devices range from the 64K RS64
DECdisk memory, to the RPO2 Disk Pack system which can store up to
93.6 million words.

PDP-11 storage devices include:

DECtape

Magtape

RS64 64K-256K word fixed-head disk
RS11 256K-2M word fixed-head disk
RKO5 1-2M word moving-head disk
RP0O2 10M word moving-head disk

1.3.3 Bus Options

Several options (bus switches, bus extenders) are available for extgnding
the UNIBUS or for configuring multi-processor or shared-peripheral
systems.

1.4 SOFTWARE
Extensive software, consisting of disk and paper tape systems, is avail-

1-6

able for PDP-11 Family systems. The larger the PDP-11 configuration, the
larger and more comprehensive the software package that comes with it.

1.4.1 Paper Tape Software
The Paper Tape Software system includes:

Editor (ED11)

Assembler (PAL11)

Loaders

On-line Debugging Technique (ODT11)
Input-Output Executive (10X)

Math Package (FPP11)

1.4.2 Disk Operating System Software
The Disk Operating System software includes:

Text Editor (ED11)

MACRO Assembler (MACRO-11)

Linker (LINK11)

File Utilities Packages (PIP)

On Line Debugging Technique (ODT11)
Librarian (LIBR11)

1.4.3 Higher Level Languages

PDP-11 users needing an interactive conversational language can use
BASIC which can be run on the paper tape software system with only
4,096 words of core memory. A multi-user extension of BASIC is avail-
able so up to eight users can access a PDP-11 with only 8K of core.
BATCH

The BATCH System adds job stream processing to the DOS System.

RSTS-11

The PDP-11 Resource Timesharing System (RSTS-11) with BASIC-PLUS,
an enriched version of BASIC, is available for up to 16 terminal users.
FORTRAN

PDP-11 FORTRAN is an ANSI-standard FORTRAN IV compiler.

1.5 NUMBER SYSTEMS

Throughout this Handbook, 3 number systems will be used; octal, binary,
and decimal. So as not to clutter all numbers with subscripted bases,
the following general convention will be used:

Octal—for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of 6
octal digits

Binary—for describing a single binary element; when referring to
a PDP-11 word it will be 16 bits long

Decimal—for all normal referencing to quantities

1.7

Octal Representation

-

-
i |
1 |
[S . 1 1 1

O O O O O [e-digit octal

The 16-bit PDP-11 word can be represented conveniently as a 6-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
the MSB of the octal word. The other 5 octal digits are formed from the
corresponding groups of 3 bits in the binary word.

['5I'4|'3.'2]"|'°19l°|7|s]5|4 3|z 1 OWPDP-IIWOFd
— [—

When an extended address of 18 bits is used (shown later in the Hand-
book), the MSB of the octal word is formed from bits 17, 16, and 15.
For unsigned numbers, the correspondence between decimal and octal is:

Decimal Octal
0 000000
(216—~1)= 65,535 177777 (16-bit limit)
(218—-1)=262,143 777777 (18-bit limit)

2’'s Complement Numbers
In this system, the first bit (bit 15) is used to indicate the sign;

O—=positive
1=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the re-
maining 15 bits. (The 2's complement is equal to the 1's complement
plus one.) The ordering of numbers is shown below:

Decimal 2's Complement (Octal)
Sign Bit Magnitude Bits

largest positive 432,767 0 77777
+32,766 0 77776
+1 0 00001
0 0 00000
—1 1 77777
-2 1 77776
—32,767 1 00001
most negative —32,768 1 00000

1-8

CHAPTER 2
SYSTEM ARCHITECTURE

2.1 SYSTEM DEFINITION

The PDP-11/40 is a 16-bit, general-purpose, parallel logic computer using
2's complement arithmetic. The processor can directly address 32,768
16-bit words or 65,536 8-bit bytes.

The Central Processing Unit performs all arithmetic and logical opera-
tions required in the system. A Floating Point Unit mounts integrally into
the Central Processor as does a Memory Management Unit which pro-
vides a full memory managemnt facility through relocation and protec-
tion.

The PDP-11/40 hardware has been optimized towards a multi-program-
ming environment and the processor therefore operates in two modes
(Kernel and User). By taking full advantage of this feature, a software
operating system can insure that no user (who is operating in User
mode) can cause a failure (crash) of the entire system. Full control of
the entire system is retained at the console or by an operator who is in
Kernel mode.

2.2 UNIBUS

The UNIBUS is a single, common path that connects the central proces-
sor, memory, and all peripherals. Addresses, data, and control informa-
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with mem-
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe-
ripheral devices. Each device, including memory locations, processor
registers, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex-
ibly as core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDP-11 instructions to process data
in any memory location as though it were an accumulator.

2.2.1 Bidirectional Lines

Most UNIBUS lines are bidirectional, so that the same signals that are
received as input can be driven as output. This means that a peripheral
device register can be either read or loaded by the central processor or

2-1

other peripheral devices; thus, the same register can be used for both
input and output functions.

2.2.2 Master-Slave Relation

Communication between two devices on the bus is in the form of a
master-slave relationship. At any point in time, there is one device that
has control of the bus. This controlling device is termed the ‘‘bus mas-
ter’”. The master device controls the bus when communicating with
another device on the bus, termed the ‘‘slave”. A typical example of
this relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is the disk, as
master, transferring data to memory, as slave. Master-slave relation-
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by the processor and all I/O devices, there is
a priority structure to determine which device gets control of the bus.
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive control.

2.2.3 Interlocked Communication

Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the response time of the master and slave devices. This asynchron-
ous operation precludes the need for synchronizing with, and waiting
for, clock pulses. Thus, each device is allowed to operate at its maximum
possible speed.

2.3 CENTRAL PROCESSOR

The PDP-11/40 performs all arithmetic and logical operations required
in the system. It also acts as the arbitration unit for UNIBUS control by
regulating bus requests and transferring control of the bus to the re-
questing device with the highest priority.

Space is provided within the central processor for the following options:

Extended Instruction Set
Floating Point Unit
Memory Management Unit
Programmable Stack Limit

The machine operates in two modes; Kernel and User. When the machine
is in Kernel mode a program has complete control of the machine;
when in User mode the processor is inhibited from executing certain
instructions and can be denied direct access to the peripherals on the
system. This hardware feature can be used to provide complete execu-
tive protection in a multi-programming environment.

The central processor contains 8 general registers which can be used
as accumulators, index registers, or as stack pointers. A stack, as used

2-2

in the PDP-11, is an area of memory set aside by the programmer for
temporary storage or subroutine/interrupt service linkage. A program can
add or delete words or bytes within the stack. The stack uses the ‘‘last-
in, first-out” concept; that is, various items may be added to a stack
in sequential order and retrieved or deleted from the stack in reverse
order. On the PDP-11, a stack starts at the highest location reserved for
it and expands linearly downward to the lowest address as items are
added. Stacks are extremely useful for nesting programs, creating re-
entrant Coding, and as temporary storage where a Last-In, First-Out
structure is desirable. One of the general registers is used as the PDP-
11/40’s Program Counter. Two others are used as Processor Stack
Pointers, one for each operational mode.

The CPU performs all of the computer’s computation and logic opera-
tions in a parallel binary mode through step by step execution of indi-
vidual instructions.

2.3.1 General Registers

The general registers can be used for a variety of purposes; the uses
varying with requirements. The general registers can be used as accumu-
lators, index registers, autoincrement registers, autodecrement registers,
or as stack pointers for temporary storage of data. Chapter 3 on Ad-
dressing describes these uses of the general registers in more detail.
Arithmetic operations can be from one general register to another, from
one memory or device register to another, or between memory or a de-
vice register and a general register.

REGTERS RO
R
R2
R3
R4
RS

| R6 Jso [me |

KERNEL USER
STACK POINTER STACK POINTER
(WITH MEMORY

(PC) MANAGEMENT OPTION)

PROGRAM COUNTER
Figure 2-1 The General Registers

R7 is used as the machine’s program- counter (PC) and contains the
address of the next instruction to be executed. It is a general register

2-3

normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat-
ing the last entry in the appropriate stack (a common temporary storage
area with ‘‘Last-in First-Out’’ characteristics). The two stacks (with the
Memory Management option) are called the Kernel Stack and the User
Stack. When the Central Processor is operating in Kernel mode it uses
the Kernel Stack and in User mode, the User Stack. When an interrupt
or trap occurs, the PDP-11/40 automatically saves its current status on
the Processor Stack selected by the service routine. This stack-based
architecture facilitates reentrant programming.

2.3.2 Processor Status Word

NN,/ EEEuDunn

*MODE: @@=KERNEL
11=USER

Figure 2-2 Processor Status Word

The Processor Status Word (PS), located at location 777776, contains
information on the current status of the PDP-11/40. This information in-
cludes the current processor priority: current and previous operational
modes; the condition codes describing the results of the last instruction;
and an indicator for detecting the execution of an instruction to be
trapped during program debugging.

Modes (with Memory Management Option)

Mode information includes the present mode, either User or Kernel (bits
15, 14) and the mode the machine was in prior to the last interrupt or
trap (bits 13, 12).

The two modes permit a fully protected environment for a multi-
programming system by providing the user with two distinct sets of
Pracessor Stacks and Memory Management Registers for memory map-
ping. In User mode a program is inhibited from executing a “HALT" in-
struction and the processor will trap through location 10 if an attempt
is made to execute this instruction. Furthermore, the processor will
ignore the “RESET” instruction. In Kernel mode, the processor will ex-
ecute all instructions.

A program operating in Kernel mode can map users’ programs aqywhere
in core and thus explicitly protect key areas (including the‘dewce.reg-
isters and the Processor Status Word) from the User operating environ-
ment.

24

Processor Priority

The Central Processor operates at any one of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor must be operating
at a lower priority than the external device’s request in order for the
interruption to take effect. The current priority is maintained in the
processor status word (bits 5-7). The 8 processor levels provide an ef-
fective interrupt mask.

Condition Codes
The condition codes contain information on the result of the last CPU
operation.

The bits are set as follows:

Z = 1, if the result was zero

N = 1, if the result was negative

C =1, if the operation resulted in a carry from the MSB

V =1, if the operation resulted in an- arithmetic overflow

Trap

The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through location 14 on completion of instruc-
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previous
Processor Status Word and Program Counter to be saved and replaced
by the new values corresponding to those required by the routine ser-
vicing the interrupt or trap. The user can, thus, cause the central proces-
sor to automatically switch modes, or disable the Trap Bit whenever a
trap or interrupt occurs.

2.3.3 Stack Register (with Memory Management option)

All PDP-11's have a Stack Overflow Boundary at location 400,. The Ker-
nel Stack Boundary, in the PDP-11/40 is a variable boundary set through
the Stack Limit Register found at location 777774.

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation). If, for some reason, the program persists beyond the
16-word limit, the processor will abort the offending instruction, set the

stack point (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola-
tion).

2.4 EXTENDED INSTRUCTION SET & FLOATING POINT

The Extended Instruction Set (EIS) option fits within the Central Pro-
cessor mounting assembly. It provides the capability of performing hard-
ware fixed point arithmetic and allows direct implementation of multiply,
divide, and multiple shifting. A double-precision 32-bit word can be
handled.

The Floating Point Unit, which uses the EIS as a prerequisite, fits within
the CPU mounting assembly. This option enables the execution of 4

2-5

s.pecial instructions for floating point addition, subtraction, multiplica-
tion, apd division. The EIS and Floating Point hardware provide signifi-
cant time and coding improvement over comparable software routines.

2.5 CORE MEMORY
Memory Organization
A memory can be viewed as a series of locations, with a number (ad-

dress) assigned to each location. Thus a 4096-word PDP-11 memory
could be shown as in Figure 2-3.

LOCATIONS

r000000
000001
000002
000003
000004

OCTAL . ~/——~4——-ﬂ§/~
ADDRESSES . —~ I

017774
017775
017776
Lot7777

Figure 2-3 Memory Addresses

Because PDP-11 memories are designed to accommodate both 16-bit
words and 8-bit bytes, the total number of addresses does not corre-
spond to the number of words. A 4096-word memory can contain 8,192
bytes and consists of 017777 octal locations. Words always start at even-
numbered locations.

A PDP-11 word is divided into a high byte and a low byte as shown in
Figure 2-4.

| HIGH BYTE I LOW BYTE I
1 1 e | 1 L | 1 | L 1 |)
15

8 7 o
Figure 2-4 High & Low Byte

Low bytes are stored at even-numbered memory locations and high
bytes at odd-numbered memory locations. Thus it is convenient to view
the PDP-11 memory as shown in Figure 2-5.

2-6

16-BIT WORD 8 BIT BYTE

4 BYTE BYTE
000001 HIGH LoW 000000 WoRD { Low 000000
000003 HIGH Low 000002 HIGH 000001
000005 HIGH Low 000004 WORD { Low 000002
HIGH 000003
{ LoW 000004

L ———L oR

M M
037773 HIGH Low 037772 { HIGH 037775
037775 HIGH Low 037774 { LOW 037776
037777 HIGH Low 037776 HIGH 037777

WORD ORGANIZATION BYTE ORGANIZATION

Figure 2-5 Word and Byte Addresses

Certain memory locations have been reserved by the system for inter-
rupt and trap handling, processor stacks, general registers, and peripheral
device registers. Kernel virtual addresses from O to 370, are always re-
served and those to 777, are reserved on large system configurations for
traps and interrupt handling. The top 4,096 word addresses (from

770000, up) have been reserved for general registers and peripheral
devices.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are traditionally reserved
for peripheral and register addresses and the user therefore has 28K of
core to program. To expand above 28K the user must use the Memory
Management Unit. This device provides an 18-bit effective memory ad-
dress which permits addressing up to 124K words of actual memory.
The unit also provides a facility which permits individual user programs

up to 32K in length and provides a relocation and protection facility
through two sets of 8 registers.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

‘2.6 AUTOMATIC PRIORITY INTERRUPTS
When a device (other than the central processor) is capable of becom-

ing bus master and requests use of the bus, it is generally for one of
two purposes:

1. to make a non-processor transfer of data directly to or from
memory

2-7

2. to interrupt a program execution and force the processor to
Igo to a specific address where an interrupt service routine is
ocated.

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision. These non-processor
request transfers, called NPR level data transfers, are usually made for
Direct Memory Access (memory to/from mass storage) or direct device
transfers (disk refreshing a CRT display).

The PDP-11 has a multi-line, multi-level priority interrupt structure.
DEVICE
cP REQUEST

PRIORITY LINE
«—NPR

«—BR6

<«—BRS

=
.

INCREASING PRIOR!

<«—BR4
HSR HSP l KB I l T I

INCREASING PRIORITY

O eee

Figure 2-6 UNIBUS Priority

Bus requests from external devices can be made on one of five request
lines. Highest priority is assigned to non-processor request (NPR). These
are direct memory access type transfers, and are honored by the pro-
cessor between bus cycles of an instruction execution.

Bus request 7 (BR7) is the next highest priority, and BR4 is the lowest.
Levels below BR4 are not implemented in the PDP-11/40. They are used
in larger machines (PDP-11/45). Thus, a processor priority of 3, 2, 1, or
0 will have the same effect, i.e. all interrupt requests will be granted.

BR7 through BR4 priority requests are honored by the processor between
instructions. The priority is hardwired into each device except for the
processor, which is programmable. For example, Teletypes are normally
assigned to Bus Request line 4.

The processor’s priority can be set under program control to one of eight
levels using bits 7, 6, and 5 in the processor status register. These bits
set a priority level that inhibits granting of bus requests on lower levels

2-8

or on the same level. When the processor's priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignored.

When more than one device is connected to the same bus request (BR)
line, a device nearer the central processor has a higher priority than a
device farther away. Any number of devices can be connected to a given
BR or NPR line.

Thus the priority system is two-dimensional and provides each device
with a unique priority. Although its priority level is fixed, its actual
priority changes as the processor priority varies. Also, each device may
be dynamically, selectively enabled or disabled under program control.

Once a device other than the processor has control of the bus, it may
do one of two types of operations: data transfers or interrupt operations.

NPR Data Transfers - NPR data transfers can be made between any two
peripheral devices without the supervision of the processor. Normally,
NPR transfers are between a mass storage device, such as a disk, and
core memory. The structure of the bus also permits device-to-device
transfers, allowing customer-designed peripheral controllers to access
other devices, such as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates once it has control. The processor state is not affected by
the transfer; therefore the processor can relinquish control while an in-
struction is in progress. This can occur at the end of any bus cycles
except in between a read-modify-write sequence. An NPR device can gain
control of the bus in 2.6 microseconds or less. An NPR device in control
of the bus may transfer 16-bit words from memory at memory speed.

2.6.1 Using the Interrupts

Devices that gain bus control with one of the Bus Request lines
(BR 7 - BR 4), can take full advantage of the Central Processor by re-
questing an interrupt. In this way, the entire instruction set is available
for manipulating data and status registers.

When a service routine is to be run, the current task being performed
by the central processor is interrupted, and the device service routine is
initiated. Once the request has been satisfied, the Processor returns to
its former task.

2.6.2 Interrupt Procedure

Interrupt handling is automatic in the PDP-11/40. No device polling is
required to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt com-
mand and an unique memory address which contains the address of
the device's service routine in Kernel virtual address space, called
the interrupt vector address. Immediately following this pointer ad-
dress is a word (located at vector address +2) which is to be used
as a new Processor Status Word.

3. The processor stores the current Processor Status Word (PS) and the
current Program Counter (PC) into CPU temporary registers.

2-9

4. The new PC and PS (the interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current stack
as indicated by bits 15,14 of the new PS and the previous mode in
effect is stored in bits 13,12 of the new PS. The service routine is then
initiated.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt (RTI or
RTT) instruction, described in Chapter 4, which pops the two top

words from the current processor stack and uses them to load the
PC and PS registers.

This instruction requires 2.9 usec providing there is no NPR request.

A device routine can be interrupted by a higher priority bus request any
time after the new PC and PS have been loaded. If such an interrupt
occurs, the PC and the PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

2.6.3 Interrupt Servicing

Every hardware device capable of interrupting the processor has a unique
set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device’s service routine, and the second, the
Processor Status Word that is to be used by the service routine. Through
proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor’s Priority level to mask out
lower level interrupts.

2.7 PROCESSOR TRAPS

There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Memory Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of Reserved Instructions, Use of
the T bit in the Processor Status Word, and use of the I0T, EMT, and
TRAP instructions.

2.7.1 Power Failure

Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save
all volatile information (data in registers), and condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

2.7.2 0dd Addressing Errors
This error occurs whenever a program attempts to execute a word instruc-

2-10

tion on an odd address (in the middie of a word boundary). The in-
struction is aborted and the CPU traps through location 4.

2.7.3 Time-out Errors

These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 15usec. This error usually
occurs in attempts to address non-existent memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

2.7.4 Reserved Instructions

There is a set of illegal and reserved instructions which cause the pro-
cessor to trap through location 10.

2.7.5 Trap Handling

Appendix B includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc-
curs, the processor follows the same procedure for traps as it does for
interrupts (saving the PC and PS on the new Processor Stack etc. . . .)

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the following priority sequence.

Odd Addressing Error

Fatal Stack Violations (Red)
Memory Management Violations
Timeout Errors

Trap Instructions

Trace Trap

Warning Stack Violation (Yellow)
Power Failure

Processor Priority level 7
Floating Point Exception Trap
BR7

Processor O

2-11

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDP-11 instruction (MOV, ADD etc.) which usually indicates:

the function (operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDP-11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au-
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro-
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP-11's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the ** stack.”

In the PDP-11 any register can be used as a *‘stack pointer’’'under program con-
trol, however, certain instructions associated with subroutine linkage and inter-
rupt service automatically use Register 6 as a ‘‘hardware stack pointer’’. For this
reason R6 is frequently referred to as the ‘‘SP"

R7 is used by the processor as its program counter (PC). It is recommended that
R7 not be used as a stack pointer.

An important PDP-11/40 feature, which must be considered in conjunction with
the addressing modes, is the register arrangement;

31

Six general purpose registers (RO-R5)
A hardware stack pointer (R6), (2 with Memory Management)
A Program Counter (PC) register (R7).

Instruction mnemonics and address mode symbols are sufficient for
writing machine language programs. The programmer need not be con-
cerned about conversion to binary digits; this is accomplished auto-
matically by the PDP-11 MACRO Assembler.

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear,
increment, test) is:

L MODEI Rn I
5 6,5 a4 3 2 0

op cOpE ————+ 1
DESTINATION ADDRESS

Bits 15 through 6 specify the operation code that defines the type of in-
struction to be executed.

Bits. 5 through O form a six-bit field called the destination address field.
This consists of two subfields:

a) Bits O through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b) Bits 3 through 5 specify how the selected register will be used (ad-
dress mode). Bit 3 indicates direct or deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING

Operations which imply two operands (such as add, subtract, move and
compare) are handled by instructions that specify two addresses. The
first operand is called the source operand, the second the destination
operand. Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

3-2

OP CODE l MODE T Rn l MODE] Rn]

15 2 M_10 9 8 6, 5 4 3 2 0,
SOURCE ADDRESS ——————— T
DESTINATION ADDRESS

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second op-
erand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-11 instructions:

Mnemonic Description Octal Code

CLR clear (zero the specified destination) 0050DD

CLRB clear byte (zero the byte in the specified 1050DD
destination)

INC increment (add 1 to contents of destination) 0052DD

INCB increment byte (add 1 to the contents of 1052DD

destination byte)

COM complement (replace the contents of the 0051DD
destination by their logical complement;
each O bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 1051DD
destination byte by their logical complement;
each O bit is set and each 1 bit is cleared).

ADD add (add source operand to destination 06SSDD
operand and store the result at destination
address)

DD = destination field (6 bits)
SS = source field (6 bits)

() = contents of

33

3.3 DIRECT ADDRESSING

The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES

Syntax

Mode Name Assembler
0 Register Rn

2 Autoincrement (Rn) +

4 Autodecrement -(Rn)

6 Index X(Rn)

3.3.1 Register Mode

OPR Rn

Function

Register contains operand

Register is used as a pointer to
sequential data then in-
cremented

Register is decremented and
then used as a pointer.

Value X is added to (Rn) to pro-
duce address of operand. Nei-
ther X nor (Rn) are modified.

With register mode any of the general registers may be used as simple accumula-
tors and the operand is contained in the selected register. Since they are hard-
ware registers, within the processor, the general registers operate at high speeds
and provide speed advantages when used for operating on frequently-accessed
variables. The PDP-11 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As-
sembler syntax requires that a general register be defined as follows:

RO = %0 (% sign indicates register definition)

R1=%1
R2 = %2, etc.

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and PC, respectively.

Register Mode Examples
(all numbers in octal)

Symbolic Octal Code Instruction Name
1. INCR3 005203 Increment
Operation: Add one to the contents of general register 3

34

RO
R1
R2

loooo‘o101oloo.:010|\?':J:E_CT_H ”3
B 7 3

2 9 R4

LU'

¢ RS
o s o) !
R7 (PC)
2. ADD R2,R4 060204 Add
Operation: Add the contents of R2 to the contents of R4.
BEFORE AFTER
R2 [e A | 000002 |
ra| ooooo4 | me] 000006 |
3. COMB R4 105104 Complement Byte
Operation: One's complement bits 0-7 (byte) in R4. (When
general registers are used, byte instructions only
operate on bits 0-7; i.e. byte O of the register)
BEFORE AFTER
ra [o222z | me| 022155]

3.3.2 Autoincrement Mode

OPR (Rn) +

This mode provides for automatic stepping of a pointer through sequential ele-
ments of a table of operands. It assumes the contents of the selected general reg-
ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se-
quential location. The autoincrement mode is especially useful for array process-
ing and stacks. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handling,
this mode is completely general and may be used for a variety of purposes.

3-5

Autoincrement Mode Examples

Symbolic
1. CLR (R5) +

Operation:

Octal Code Instruction Name

005025 Clear

Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [oos02s] s [03000]eooco [oosces | ms[__ osoo0z |
2. CLRB (R5) + 105025 Clear Byte
Operation: Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment
the contents of R5 by one.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [105025 | Rs[030000 20000 [105025] rs[03000t]
30000 [111 1 116 30000 [11 [000
30002] 30002 i
3. ADD (R2) +,R4 062204 Add
Operation: The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.
BE;%?)%ESS SPACE REGISTERS AFZET)RESS SPACES REGISTERS
o000 [oe2204 | Re [100002] toooo [oe2204a | me [100004 |

e

R4 010000 R4 020000

100002 010000

3-6

3.3.3 Autodecrement Mode

OPR-(Rn)

This mode is useful for processing data in a list in reverse direction. The contents
of the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
choice of postincrement, predecrement features for the PDP-11 were not arbitrary
decisions, but were intended to facilitate hardware/software stack operations.

Autodecrement Mode Examples

Symbolic Octal Code Instruction Name
1. INC-(RO) 005240 Increment
Operation: The contents of RO are decremented by two and
used as the address of the operand. The operand is
increased by one.
BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000[oosea0 | Re| ot7776 | 1000[ooses0 | me[otrrra |
17774 17774
2. INCB-(RO) 105240 Increment Byte
Operation: The contents of RO are decremented by one then
used as the address of the operand. The operand
byte is increased by one.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1000 [105240 | me[otrzze | woo[rosee0] me[otr7rs]
17774 000 | 000 17774 001 | 000
17776 B 17776 L
3. ADD-(R3).RO 064300 Add
Operation: The contents of R3 are decremented by 2 then

used as a pointer to an operand (source) which is
added to the contents of RO (destination operand).

3-7

BEFORE

AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
w020 [oe4300] me[ooooz0 | 10020 [osaz00] me[oooooro]
77774 000050 77774 000050
77776 77776

3.3.4 Index Mode

OPR X(Rn)

The contents of the selected general register, and an index word following the in-
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be modified by program to access data in the table. Index addressing in-
structions are of the form OPR X(Rn) where X is the indexed word and is located

in the memory location

following the instruction word and Rn is the selected gen-

eral register.
Index Mode Examples
Symbolic Octal Code Instruction Name
1. CLR 200(R4) 005064 Clear
000200
Operation: The address of the operand is determined by ad-
ding 200 to the contents of R4. The location is
then cleared.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 005064 Ra [ooto00 | 1020 005064 Ra [oot000 |
1022 000200 1022 000200
1024 1000 1024
- %00
1200 177777 1200 000000
1202
2. COMB 200(R1) 105161 Complement Byte
000200
Operation: The contents of a location which is determined by

adding 200 to the contents of R1 are one’s com-
plemented. (i.e. logically complemented)

3-8

3o
2020 000001

1130

2020

39

000001
000002

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 105161 m [oz] 1020 105161 ri [owrrir]
1022 000200 1022 000200
P
020177
20176 0111000 20176 166,000
20200 i 20200 !
3. ADD 30(R2),20(R5) 066265 Add
000030
000020
Operation: The contents of a location which is determined by
adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad-
ding 20 to the contents of R5. The result is stored
at the destination address, i.e. 20(R%)
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 re [oottoc | 1020 066265 re [oott00]
1022 000030 1022 000030
1024 000020 RS 1024 000020 RS

3.4 DEFERRED (INDIRECT) ADDRESSING

The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is ‘@' (or *‘()" when this not ambiguous). The
following table summarizes the deferred versions of the basic modes:

Mode Name Assembler Function
Syntax
1 Register Deferred @Rn or (Rn)
Register contains the address of
the operand
3 Autoincrement Deferred @(Rn)+ Register is first used as a

pointer to a word containing the
address of the operand, then in-
cremented (always by 2; even
for byte instructions).

5 Autodecrement Deferred @-(Rn) Register is decremented (always
by two; even for byte instruc-
tions) and then used as a
pointer to a word containing the
address of the operand

7 Index Deferred @X(Rn) Value X (stored in a word follow-
ing the instruction) and (Rn) are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified.

Since each deferred mode is similar to its basic mode counterpart, separate de-
scriptions of each deferred mode are not necessary. However, the following exam-
ples illustrate the deferred modes.

Register Deferred Mode Example

Symbolic Octal Code Instruction Name
CLR @RS 005015 Clear
Operation: The contents of location specified in RS are
cleared.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1677 rs [ootroo]| 1677 s [001700 |
1700 000100 1700 000000

Autoincrement Deferred Mode Example

Symbolic Octal Code Instruction Name
INC@(R2) + 005232 Increment
Operation: The contents of R2 are used as the address of the
address of the operand.
Operand is increased by one. Contents of R2 is in-
cremented by 2.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
re [otosoo | re [o030z |
1010 000025 1010 000026
1012 1012
—
VOS‘Q 001010 10300 001010

Autodecrement Deferred Mode Example

Symbolic Octal Code Complement
COM @-(RO) 005150
Operation: The contents of RO are decremented by two and
then used as the address of the address of the op-
erand. Operand is one’s complemented. (i.e. logi-
cally complemented)
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 ro| otor7e | 10100 165432 rRo [otor7a]
10102 10102
10774 010100 10774 010100
10776 10776

Index Deferred Mode Example

Symbolic

ADD @ 1000(R2),R1

Operation:

Octal Code Instruction Name

067201 Add
001000

1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in R1.

3-11

BEFORE AFTER
ADDRESS SPACE KEGISTER ADDRESS SPACE REGISTER

1020 067201 Rt | 001234 | 1020 067201 ri [oor23e |

1022 001000 2 500100 1022 001000 R2 000100
1024

1024

1050 000002 41050 000002

1100 001050 1000 1100 001050
+100
1100

3.5 USE OF THE PC AS A GENERAL REGISTER

Although Register 7 is a general purpose register, it doubles in function as the
Program Counter for the PDP-11. Whenever the processor uses the program
counter to acquire a word from memory, the program counter is automatically in-
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next instruction to be executed. (When the pro-
gram uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard PDP-11 addressing modes. However, there
are four of these modes with which the PC can provide advantages for handling
position independent code (PIC - seeChapter 5) and unstructured data. When re-
garding the PC these modes are termed immediate, absolute (or immediate de-
ferred), relative and relative deferred, and are summarized below:

Mode Name - Assembler Function
Syntax
2 Immediate #n Operand follows instruction
3 Absolute @#A Absolute Address follows in-
struction
6 Relative A Relative Address (index value)

follows the instruction.

7 Relative Deferred @A Index value (stored in the
word following the instruction)
is the relative address for the
address of the operand.

The reader should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but the general register selected is R7, the program
counter.

When a standard program is available for different users, it often is helpful to be
able to load it into different areas of core and run it there. PDP-11's can accompl-
ish the relocation of a program very efficiently through the use of position inde-

3-12

pendent code (PIC) which is written by using the PC addressing modes. If an in-
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

The PC also greatly facilitates the handling of unstructured data. This is partic-
ularly true of the immediate and relative modes.

3.5.1 Immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word.

Immediate Mode Example

Symbolic Octal Code Instruction Name
ADD #10,RO 062700 Add
000010
Operation: The value 10 is located in the second word of the

instruction and is added to the contents of RO.
Just before this instruction is fetched and exe-
cuted, the PC points to the first word of the in-
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as a pointer to fetch the operand (the sec-
ond word of the instruction) before being in-
cremented by two to point to the next instruction.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 \RO [ooooz0] 1020 062700 ro [oooozo |
1022 000010 o 1022 000010 e
1024 1024

3.5.2 Absolute Addressing
OPR @ #A

This mode is the equivalent of immediate deferred or autoincrement deferred us-
ing the PC. The contents of the location following the instruction are taken as the
address of the operand. Immediate data is interpreted as an absolute address
(i.e., an address that remains constant no matter where in memory the as-
sembled instruction is executed).

3-13

Absolute Mode Examples

Symbolic Octal Code Instruction Name
1. CLR @ #1100 005037 Clear
001100
Operation: Clear the contents of location 1100.
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
20 005037 20 005037
22 001100 PC 22 001100 PC
24 /
1100 1777777 1100 000000
1102 1102
2. ADD @ # 2000,R3 063703
002000
Operation: Add contents of location 2000 to R3.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20 063703 \Rs [ooosoo | 20 063703 rs [oowoo |
22 002000 pC 22 002000 pC
24 24 r
2000 000300 2000 000300

3.5.3 Relative Addressing
OPR A or
OPR X(PC) , where X is the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu-
lation, which is stored in the second or third word of the instruction, is not the ad-
dress of the operand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is useful for writing position independent
code (see Chapter 5) since the location refererced is always fixed relative to the
PC. When instructions are to be relocated, the operand is moved by the same
amount.

3-14

Relative Addressing Example

Symbolic Octal Code Instruction Name
INC A 005267 Increment
000054
Operation: To increment location A, contents of memory loca-
tion immediately following instruction word are ad-
ded to (PC) to produce address A. Contents of A
are increased by one.
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005267 1020 0005267
1022 000054 \ 1022 000054
1024 PC 1024 «——PC
1026 1026
1024
T

N

3.5.4 Relative Deferred Addressing

OPR@A or

OPR@X(PC), where x is location containing address of A, relative to the in-

struction.

This mode is similar to the relative mode, except that the second word of the in-
struction, when added to the PC, contains the address of the address of the oper-
and, rather than the address of the operand.

Relative Deferred Mode Example

Symbolic

CLR @A

Operation:

BEFORE
ADDRESS SPACE

1020
1022
1024

005077
000020

.

PC

1044 Jozd

1044

010100

100001

10100

Octal Code Instruction Name
005077 Clear
000020

Add second word of instruction to PC to produce
address of address. of operand. Clear operand.

AFTER
ADDRESS SPACE

1020
1022
1024

005077
000020

.010100
10100 000000

3-15

\\

PC

1044

3.6 USE OF STACK POINTER AS GENERAL REGISTER

The processor stack pointer (SP, Register 6) is in most cases the general
register used for the stack operations related to program nesting. Auto-
decrement with Register 6 ‘‘pushes’’ data on to the stack and autoincre-
ment with Register 6 ‘‘pops’’ data off the stack. Index mode with SP
permits random access of items on the stack. Since the SP is used by
the processor for interrupt handling, it has a special attribute: autoin-
crements and autodecrements are always done in steps of two. Byte
operations using the SP in this way leave odd addresses unmodified.

With the Memory Management option there are two R6 registers se-
lected by the PS; but at any given time there is only one in operation.

3.7 SUMMARY OF ADDRESSING MODES
3.7.1 General Register Addressing

R is a general register, 0 to 7
(R) is the contents of that register

Mode 0 Register OPR R R contains operand

R
| wstrRucTion f———o opERAND |

Mode 1 Register deferred OPR (R) R contains address

R
[nsTrucTion |+ aooress | “operand]

Mode 2 Auto-increment OPR (R)+
R contains address, then increment (R)

R

[NsTRUCTION j———-{iADDREi"——-—-[OPERAND |

(2 FOR_WORD,
+1FOR BYTE

3-16

Mode 3 Auto-increment OPR @(R)+ R contains address of address,
deferred then increment (R) by 2

R
[strRucTion }——+{ ADDRESS |—¢—| ADORESS | o OPERAND |

Sy M

Mode 4 Auto-decrement OPR —(R)

Decrement (R), then R contains address

R

INSTRUCTION ADDRESS -2 FOR WORD,
J
Mode 5 Auto-decrement OPR @—(R) Decrement (R) by 2,
deferred then R contains

address of address

R
[nstRuction }——— aooress ——-+ -2 }—Jr—-L ADDRESS |———{ operano |
T

Mode 6 Index OPR X(R) (R) + X is address

R
pc [nstRuction | aooress
O
PC+2 I X 'l

Mode 7 Index deferred OPR @X(R) (R) + X is address of address

R
pe | msmucnon—l—_i ADDRESS
ADDRESS H OPERAND J

PC+2 | X IL

3-17

3.7.2 Program Counter Addressing
Register =7

Mode 2 Immediate OPR #n Operand n follows instruction

PC | INSTRUCTION i
S

Mode 3 Absolute OPR @#A Address A follows instruction

pc [nsTRuCTION
pce2 [A] orerano |

Mode 6 Relative OPR A PC 4+ 4 + X is address
\‘r./
updated PC
e
S — g
OPERAND
. .

Mode 7 Relative deferred OPR @A
PC + 4 4 X is address of address
\q{—-/
updated PC
e

PC+2

aporess |—| operano |

3-18

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and bit assignments. (Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:

() = contents of

SS or src = source address
DD or dst = destination address
loc = location

< = becomes

1+ = “is popped from stack’
{ = “is pushed onto stack"
A = boolean AND

v = boolean OR
+ = exclusive OR

~ == boolean not

Reg or R = register

B = Byte

0 for word
"= { 1 for byte
4-1

4.2 INSTRUCTION FORMATS
The major instruction formats are:

Single Operand Group

OP Code dst
l 1 1 l 1 1 I 1 1 1 I 1
15
Double Operand Group
OP Code src | dst
1 i 1 1 1 1 1 l 1 1
15 2 1"
Register-Source or Destination
OP Code Treg Src/dst
1 1 1 | 1 s ! 1 1 | Y 1
15 9 8
Branch
Base Code offset
l L 1 1 1 l 1 1l | L L
15 8 7

42

Byte Instructions

The PDP-11 processor includes a full complement of instructions that
manipulate byte operands. Since all PDP-11 addressing is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified
register to be modified by one to point to the next byte of data. Byte
operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word
or byte processor. The numbering scheme for word and byte addresses
in core memory is:

HIGH BYTE WORD OR BYTE
ADDRESS ADDRESS
002001 BYTE 1 BYTE O 002000
002003 BYTE 3 BYTE 2 002002

The most significant bit (Bit 15) of the instruction word is set to indicate
a byte instruction.

Example:
Symbolic Octal
CLR 0050DD Clear Word
CLRB 1050DD Clear Byte

43

4.3 LIST OF INSTRUCTIONS
The PDP-11/40 instruction set is shown in the following sequence.

SINGLE OPERAND

Mnemonic

General
CLR(B)
COM(B)
INC(B)
DEC(B)
NEG(B)
TST(B)

Shift & Rotate
ASR(B)
ASL(B)
ROR(B)
ROL(B)
SWAB

Instruction

clear destination
complement dst
increment dst
decrement dst
negate dst
test dst

arithmetic shift right
arithmetic shift left
rotate right
rotate left
swap bytes

Mulitiple Precision

ADC(B)
SBC(B)
SXT

add carry ...
subtract carry
sign extend

DOUBLE OPERAND

General
MOV(B)
CMP(B)
ADD
SuUB

Logical
BIT(B)
BIC(B)
BIS(B)

Register
MUL
DIV
ASH
ASHC
XOR

move source to destination
compare src to dst
add srctodst
subtract src from dst

bittest ...
bit clear
bit set

multiply .
divide ...
shift arithmetically
arithmetic shift combined ...
exclusive OR

Op Code

m050DD
m051DD
m052DD
m053DD
=054DD
m057DD

=062DD
=063DD
=060DD
m061DD
0003DD

=055DD
=056DD
0067DD

w1SSDD
m2SSDD
06SSDD
16SSDD

=3SSDD
m4SSDD
u5SSDD

O70RSS
O071RSS
072RSS
073RSS

Page

4-6
4.7
4.8
4-9
410
4-11

4-19
4-20
4-21

4-23
4-24
4-25
4-26

4-28
4-29
4-30

4-31
4-32
4-33

4-35

PROGRAM CONTROL

Mnemonic Instruction Op Code
or
Base Code
Branch
BR branch (unconditional) 000400
BNE branch if not equal (to zero) ... 001000
BEQ branch if equal (to zero) 001400
BPL branch if plus 100000
BMI branch if minus ... 100400
BvVC branch if overflow is clear 102000
BvVS branch if overflow isset 102400
BCC branch if carry is clear 103000
BCS branch if carry is set 103400
Signed Conditional Branch
BGE branch if greater than or equal
(to zero) ... 002000
BLT branch if less than (zero) 002400
BGT branch if greater than (zero) 003000
BLE branch if less than or equal (to zero).... 003400
Unsigned Conditional Branch
BHI branch if higher ... 101000
BLOS branch if lower or same 101400
BHIS branch if higher or same 103000
BLO branch if lower ... 103400
Jump & Subroutine
JMP JUMPp 0001DD
JSR jump to subroutine 004RDD
RTS return from subroutine 00020R
MARK Mark ... 006400
SOB subtract one and branch (if # 0) 077R00

Trap & Interrupt

EMT emulator trap 104000—104377

TRAP trap ... 104400—104777
BPT breakpoint trap ... 000003
10T input/output trap 000004
RTI return from interrupt 000002
RTT return from interrupt 000006
MISCELLANEOUS
HALT halt ... 000000
WAIT wait for interrupt 000001
RESET reset external bus 000005
MFPI move from previous instruction space .. 0065SS
MTPI move to previous instruction space 0066DD
Condition Code Operation
CLC, CLV, CLZ, CLN, CCC clear 000240

SEC, SEV, SEZ, SEN, SCC set 000260

Page

4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45

4-47
448
4-49
4.50

4-52
4-53
4-54
4.55

4-56
4-58
4-60
4-61
4-63

4-65
4-66
4-67
4-68
4-69
4-70

4-74
4-75
4-76
4-77
4-78

4-79
4-79

4.4 SINGLE OPERAND INSTRUCTIONS

clear destination =050DD
o4 0 0 o 4 O 1 O0'o O[d d d d4 d d
[l L 1 l 1 1 I 1 1] - 1 l A 1 J
15 6 5 0
Operation: (dst)<0
Condition Codes: N: cleared
Z: set
V: cleared
C: cleared
Description: Word: Contents of specified destination are replaced with ze-
roes.
Byte: Same
Example: CLR R1
Before After
(R1)=177777 (R1) = 000000
NZVC NzZvC
1111 0100

46

coMm
COMB

complement dst m051DD
Ion 0O 0 0 + 0 1 0'0 1[]d d d d d d]
i L 1 J 1 L I 1 1 1 1 J 1 1
15 6 5 o
Operation: (dst)e~(dst)
Condition Codes: N: set if most significant bit of result is set; cleared otherwise

Description:

Example:

Z: set if result is O; cleared otherwise
V: cleared
C: set

Replaces the contents of the destination address by their log-
ical complement (each bit equal to O is set and each bit equal
to 1 is cleared)

Byte: Same
COM RO
Before After
(RO)=013333 (RO) = 164444
NZvVC NzZvC
0110 1001

INC

increment dst m052DD
lon o o o t o t oti o [d d d d d d l
| ! s | ! N | | L 1 | I
15 6 5 0
Operation: (dst)e(dst) +1

Condition Codes: N: set if result is <O; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if (dst) held 077777; cleared otherwise

C: not affected
Description: Word: Add one to contents of destination
Byte: Same
Example: INC R2
Before After
(R2) =000333 (R2) =000334
NZVC NZVC
0000 0000

4.8

DEC
DECB

decrement dst m053DD

E/‘I 0 0
1 .
15

Operation:
Condition Codes:

Description:

Example:

0O 1 0 1 071 1Jd d d d d d]
ALI 141‘41; - | i S | l 1 1
6 5 0

(dst)<(dst)-1

N: set if result is <O; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if (dst) was 100000; cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the destination
Byte: Same

DEC R5
Before After
(R5) = 000001 (R5) = 000000
NZVC NZvVC
1000 0100

4.9

NEG
NEGB

negate dst u054DD
o/t 0 0 0 t 0 1 1t '0 O0]d d d d d 4
[l 1 1 l 1 L l 1 1 L L I 1 1 _l
15 6 5 0
Operation: (dst)« -(dst)

Condition Codes: N: set if the result is <O; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if the result is 100000; cleared otherwise
C: cleared if the result is O; set otherwise

Description: Word: Replaces the contents of the destination address by its
two's complement. Note that 100000 is replaced by itself -(in
two’'s complement notation the most negative number has
no positive counterpart).

Byte: Same
Example: NEG RO
Before After
(RO) = 000010 (RO)=177770
NZvVC NZvC
0000 1001

4-10

TST

test dst m057DD
[0/10001011'11dddddd]
l 1 A J A1 1 1 1 1 1 1 l 1 1
15 6 5 [}
Operation: (dst)<«(dst)
Condition Codes: N: set if the result is <O; cleared otherwise
Z: set if result is O; cleared otherwise
V: cleared
C: cleared
Description: Word: Sets the condition codes N and Z according to the con-
tents of the destination address
Byte: Same
Example: TST R1
Before After
(R1) =012340 (R1) =012340
NZvVC NzZVC
0011 0000

4-11

Shifts
Scaling data by factors of two is accomplished by the shift instructions:
ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The low
order bit is filled with O in shifts to the left. Bits shifted out of the C bit, as shown
in the following examples, are lost.

Rotates

The rotate instructions operate on the destination word and the C bit as though
they formed a 17-bit *‘circular buffer’. These instructions facilitate sequential bit
testing and detailed bit manipulation.

4-12

arithmetic shift right

ASR
ASRB

=062DD

0/1| o o

15
Operation:
Condition Codes:
Description:

(dst)«(dst) shifted one place to the right

N: set if the high-order bit of the result is set (result < 0);
cleared otherwise

Z: set if the result =0; cleared otherwise

V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)

C: loaded from low-order bit of the destination

Word: Shifts all bits of the destination right one place. Bit 15
is replicated. The C-bit is loaded from bit O of the destination.
ASR performs signed division of the destination by two.
Word:

T
| N | L 4 | s . | 1 i l—.m_’
o

Byte:

d_; | - 1 | 1 " 1 I d} 1 | L 1 | L 1]
L) 00D ADDRESS 8 EVEN ADDRESS

[

413

ASL
ASLB

arithmetic shift left =063DD
[ou 0o 0 0 1t 1t 0 O0'1t 1]d d ¢ d d d
Lo L | - ! | L] PTG B |]
15 6 5 0
Operation: (dst)«(dst) shifted one place to the left

Condition Codes: N: set if high-order bit of the result is set (result < 0); cleared
otherwise
Z: set if the result =0; cleared otherwise
V: loaded with the exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded with the high-order bit of the destination

Description: Word: Shifts all bits of the destination left one place. Bit O is
loaded with an 0. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in-
dication.
Word:

.—[| VN S S SR N SRS N S SR J+—0

15 0

Byte:

[I o I
1 l l e
8 o

15 ODD ADDRESS 7 EVEN ADDRESS

414

ROR
RORB

rotate right =060DD

¥
d d
F)/tlolo]ol1|1lololololul ldldl ld
15 6 5

Condition Codes: N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if all bits of result =0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the low-order bit of the destination

Descripticn: Rotates all bits of the destination right one place. Bit O is
loaded into the C-bit and the previous contents of the C-bit
are loaded into bit 15 of the destination.

Byte: Same
Exampile:
Word:
—‘{ l i i I 1 L] . 1 | i 1 J 1 1 J
[] 15 10
Byte:

4-15

ROL
ROLB

rotate left =061DD
FA o 0 0 1 1 0 O'0O 4|d d d d d d
I L 1 l Nt 1 l 1 1 1 1 J i J
15 6 5 0

Condition Codes: N: set if the high-order bit of the result word is set
(result < 0): cleared otherwise
Z: set if all bits of the result word = O; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the high-order bit of the destination

Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit O of the destination.
Byte: Same

Example:
Word:

‘_Lllll.llz,l..L..l
L%

Bytes:

4-16

SWAB

swap bytes 0003DD
1
[OIOLOIOIOIOLOIOJ1I1Jdldldld¢deJ
15 6 5 0
Operation: Byte 1/Byte O «Byte 0/Byte 1
Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise
Z: set if low-order byte of result =0; cleared otherwise
V: cleared
C: cleared
Description: Exchanges high-order byte and low-order byte of the destina-
tion word (destination must be a word address).
Example: SWAB R1
Before After
(R1)=077777 (R1)=177577
NZvVC NZvVC
1111 0000

Multiple Precision
It is sometimes necessary to do arithmetic on operands considered as muitiple
words or bytes. The PDP-11 makes special provision for such operations with the

instructions ADC (Add Carry) and SBC (Subtract Carry) and their byte equiva-
lents.

For example two 16-bit words may be combined into a 32-bit double precision
word and added or subtracted as shown below:

32 81T WORD
— R
OPERAND r A1] [Ao j
31 W 5 g
— Al
operano [81 | ! B]
Y € % 5
RESULT [] [J
3 % 5 g

Example:

The addition of -1 and -1 could be performed as follows:
-1 = 37777777777

(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD R1,R2
ADC R3
ADD R4R3

1. After (R1) and (R2) are added, 1 is loaded into the C bit
2. ADC instruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added

4. Result is 37777777776 or -2

4-18

ADC
ADCB

add carry =055DD
l?;n o o o t o 1t 1t'o 1 J d d d d d d]
| ! N 1 ! n 1 1 n) s | ! i
15 6 5 0

Operation:

Condition Codes:

Description:

Example:

(dst)«(dst) + (C)

N: set if result <O; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if (dst) was 077777 and (C) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Adds the contents of the C-bit into the destination. This per-
mits the carry from the addition of the low-order words to be
carried into the high-order result.

Byte: Same

Double precision addition may be done with the following in-
struction sequence:

ADD A0,BO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al1,Bl ; add high order parts

4-19

SBC
SBCB

subtract carry

m056DD

o/t o 0 0o 1 O 1 1'4 0]|d d d d d dJ
I A l 1 i l 1 1 1 1 J 1 o
15 6 5 0
Operation: (dst)=(dst)-(C)

Condition Codes:

Description:

Example:

N: set if result <O; cleared otherwise

Z: set if result O; cleared otherwise

V: set if (dst) was 100000; cleared otherwise

C: cleared if(dst)was 0-and Cwas 1; set otherwise

Word: Subtracts the contents of the C-bit from the destina-
tion. This permits the carry from the subtraction of two low-
order words to be subtracted from the high order part of the
result.

Byte: Same

Double precision subtraction is done by:

SUB A0,BO
SBC Bl
sSuB AlBl1

4-20

sign extend

SXT

0067DD

15 6 5 0
Opération: (dst)« O if N bit is clear
(dst)« -1 N bit is set
Condition Codes: N: unaffected
Z: set if N bit clear
V: unaffected
C: unaffected
Description: If the condition code bit N is set then a -1 is placed in the
destination operand: if N bit is clear, then a O is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through multiple words.
Example: SXT A
Before After
(A)=012345 (A)=177777
NZVC NZVC
1000 1000

4-21

4.5 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for ‘‘load’’and ‘‘save’’ sequences such as those
used in accumulator-oriented machines.

4-22

MOV
MOvB

move source to destination m1SSDD

Oliooilssssﬁssdddddd—]
[|) RN S I T

L

-

15
Operation:

Condition Codes:

Description:

Example:

L
12 1 6 5 o

(dst)«(src)

N: set if (src) <O; cleared otherwise
Z: set if (src) =0; cleared otherwise
V: cleared

C: not affected

Word: Moves the source operand to the destination location.
The previous contents of the destination are lost. The con-
tents of the source address are not affected.

Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

MOV XXX,R1 ; loads Register 1 with the con-
tents of memory location; XXX represents a programmer-de-
fined mnemonic used to represent a memory location

MOV #20,RO ; loads the number 20 into
Register O; ** # "indicates that the value 20 is the operand

MOV @ # 20,-(R6) . pushes the operand con-
tained in location 20 onto the stack

MOV (R6)+.@ # 177566 : pops the operand off a stack
and moves it into memory location 177566 (terminal print
buffer)

MOV R1,R3 , performs an inter
register transfer

MOVB @# 177562, @# 177566 ; moves a character
from terminal keyboard buffer to terminal buffer

4-23

CMP
CMPB

compare src to dst 12SSDD
T
o/4. 0 1 0 d
I | L l s L s i ° 1 s . ° i s l d 1 ‘ 1 ¢ 1 4 1 1 d1
15 2 1 6 5 o
Operation: (src)—(dst) [in detail, (src) +~ (dst) + 1]

Condition Codes: N: set if result <O; cleared otherwise
Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow; that is, operands-were
of opposite signs and the sign of the destination was the

same as the sign of the result; cleared otherwise

C: cleared if there was a carry from the most significant bit of

the result; set otherwise

Description: Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is

customarily followed by a conditional branch instruction.

Note that unlike the subtract instruction the order of oper-

ation is (src)-(dst), not (dst)-(src).

4-24

ADD

add src to dst 06SSDD

Operation:

Condition Codes:

Description:

Examples:

(dst)<(src) + (dst)

N: set if result <O; cleared otherwise

Z: set if result = O; cleared otherwise

V: set if there was arithmetic overflow as a result of the oper-
ation; that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise

C: set if there was a carry from the most significant bit of the
result; cleared otherwise

Adds the source operand to the destination operand and
stores the result at the destination address. The original con-
tents of the destination are lost. The contents of the source
are not affected. Two's complement addition is performed.

Add to register: ADD 20,RO
Add to memory: ADD RI1,XXX
Add register to register: ADD R1,R2

Add memory to memory: ADD@ # 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca-
tion.

4-25

SuB

subtract src from dst 16SSDD

' d d d d
F l 1 L ! 1 ° * 1 © 1 * l ¢ 1 ¢ 1 ° ¢ 1 ¢ 1 ' 1 1 J

15 12 1N 6 5 0
Operation: (dst)<(dst)-(src) [in detail (dst)«(dst) + ~(src) + 1]

Condition Codes: N: set if result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if there was arithmetic overflow as a result of the oper-
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared
otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C-
bit, when set, indicates a “borrow''.

Example: SUB R1,R2
Before After
(R1)=011111 (R1)=011111
(R2) =012345 (R2) =001234
NZVC NZVC
1111 0000

4-26

Logical
These instructions have the same format as the double operand arithmetic group.
They permit operations on data at the bit level.

4-27

BIT
BITB

bit test =3SSDD
o1 0 1 1]s s s s 's s] d d d d d a
1 ! ! 1 L 1) ! ! 1 | 1 1
15 2 1 € 5 0
Operation: (src) A (dst)

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not affected

Description: Performs logical ‘*and''comparison of the source and desti-
nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des-

tination are clear in the source.

Example: BIT #30.R3 ; test bits 3 and 4 of R3 to see

. if both are off

(30)s=0 000 000 000 011 000

4-28

BIC

bit clear m4SSDD
P/s 1 0 Ofs s s s's s|d d d d d d I
1 ! ! L L 1 ! L ' 1 | L
15 2 i 6 5 0
Operation: (dst)e~(src)A(dst)

Condition Codes:

Description:

Example:

N: set if high order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise

V: cleared

C: not affected

Clears each bit in the destination that corresponds to a set
bit in the source. The original contents of the destination are
lost. The contents of the source are unaffected.

BIC R3,R4
Before After
(R3)=001234 (R3)=001234
(R4)=001111 (R4) =000101
NZvVC NZVC
1111 0001
Before: (R3)=0 000 001 010 011 100

(R4)=0 000 001 DO1 001 001

After: (R4)=0 000 000 001 000 001

4-29

BIS

bit set m5SSDD
[0/1 1 0 1]|s s s s's s 1 d d d d d d]
1 L L L L | L N T B | 1 L
15 12 1 6 5 o)
Operation: (dst)<(src) v (dst)

Condition Codes: N: set if high-order bit of result set, cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not affected

Description: Performs ““Inclusive OR''operation between the source and
destination operands and leaves the result at the destination
address; that is, corresponding bits set in the source are set
in the destination. The contents of the destination are lost.

Example: BIS RO,R1
Before After
(RO)=001234 (RO) =001234
(R1)=001111 (R1) =001335
NZvVC NZvC
0000 0000
Before: (RO)=0 000 001 010 011 100

(R1)=0 000 001 001 001 001

After: (R1)=0 000 001 011 011 101

4-30

(eis optionyMUL

multiply 070RSS
L
[0111111lolololrJ'J"J;sLs#slsAstJ
15 9 8 6 5 [9)
Operation: R, Rvl<R x(src)

Condition Codes: N: set if product is <O; cleared otherwise
Z: set if product is O; cleared otherwise
V: cleared
C: set if the result is less than-2'" or greater than or equal to
21"

Description: The contents of the destination register and source taken as
two’s complement integers are muitiplied and stored in the
destination register and the succeeding register (if R is even).
If R is odd only the low order product is stored. Assembler
syntax is : MUL S,R.

(Note that the actual destination is R, Rvl which reduces to
just R when R is odd.)

Example: 16-bit product (R is odd)
CLC ;Clear carry condition code
MOV #400,R1
MUL #10,R1
BCS ERROR ;Carry will be set if

;product is less than
;-2'* or greater than or equal to 2"
;no significance lost

Before After

(R1) = 000400 (R1) = 004000

4-31

DIV (eis option)

divide 071RSS
v S
[T) 1 ! . ! 1 ! lo A ° A ! ! A f 1 ’] S 1 s 1 s ls 1 hd i
15 9 8 6 5 0
Operation: R. Rvl<R, Rvl /(src)

Condition Codes: N: set if quotient <O; cleared otherwise
Z: set if quotient =0; cleared otherwise

V: set if source =0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is aborted because the quotient would exceed 15

bits.)
C: set if divide O attempted; cleared otherwise

Description: The 32-bit two’s complement integer in R andRvl1 is divided
by the source operand. The quotient is left in R: the remain-
der in Rv1. Division will be performed so that the remainder

is of the same sign as the dividend. R must be even.

Example: CLR RO
MOV # 20001,R1
DIV #2,R0

Before After

(RO) = 000000 (RO) =010000 Quotient
(R1)=020001 (R1) = 000001 Remainder

4-32

shift arithmetically

(E1s option) ASH

072RSS

o, 1
Loy ' ',
15

t,0 1t 0
| 1 L rgLr]rlslslst‘s‘s]
9

Operation:
Condition Codes:

Description:

R« R Shifted arithmetically NN places to right or left
Where NN = low order 6 bits of source

N: set if result <O; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if sign of register changed during shift; cleared other-
wise

C: loaded from last bit shifted out of register

The contents of the register are shifted right or left the num-
ber of times specified by the shift count. The shift count is
taken as the low order 6 bits of the source operand. This
number ranges from -32 to + 31. Negative is a a right shift
and positive is a left shift.

[t

I R

)[4
15

1 L | L 1 | 1 1 | !

6 LSB of source

011111
000001
111111
100000

Example:

Action. in general register
Shift left 31 places

shift left 1 place

shift right 1 place

shift right 32 places

ASH RO, R3

Before
(R3)=001234
(RO)=000003

After
(R3)=012340
(RO)=000003

4-33

ASHC (&is option)

arithmetic shift combined 073RSS

BN

T
1 1 1 r Is H H S s sJ
1%, lTrl L PR AR B R

15

Operation:

Condition Codes:

Description:

9 8 6 5 0

R, Rvl<«R, Rvl The double word is shifted NN places to the
right or left, where NN =low order six bits or source

N: set if result <O; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if sign bit changes during the shift; cleared otherwise
C: loaded with high order bit when left Shift ; loaded with low
order bit when right shift (loaded with the last bit shifted out
of the 32-bit operand)

The contents of the register and the register ORed with one
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits
16-31) are shifted right or left the number of times specified
by the shift count. The shift count is taken as the low order 6
bits of the source operand. This number ranges from -32 to
+ 31. Negative is a right shift and positive is a left shift.
When the register chosen is an odd number the register
and the register OR'ed with one are the same. In this case the
right shift becomes a rotate (for up to a shift of 16). The 16
bit word is rotated right the number of bits specified by the
shift count.

| I L | 1 L | Il L | L

-

4-34

XOR

exclusive OR 074RDD
T
[011111111'0‘0 oo dld'djdldjd]
15 9 8 6 5 [4)
Operation: (dst)<Rv(dst)

Condition Codes: N: set if the result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: unaffected

Description: The exclusive OR of the register and destination operand is
stored in the destination address. Contents of register are
unaffected. Assembler format is: XOR R,D

Example: XOR RO,R2
Before After
(RO)=001234 (RO)=001234
(R2)=001111 (R2) = 000325
Before: (RO)=0 000 001 010 011 100

(R2)=0 000 001 001 001 001

After: (R2)=0 000 000 011 010 101

4-35

4.6 PROGRAM CONTROL INSTRUCTIONS
Branches

The instruction causes a branch to a location defined by the sum of the offset
(multiplied by 2) and the current contents of the Program Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing the condition
codes (status word).

The offset is the number of words from the current contents of the PC. Note that
the current contents of the PC point to the word following the branch instruction.

Although the PC expresses a byte address, the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branch
is done in the backward direction. Similarly if it is not set, the offset is positive
and the branch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200. words (400.
bytes) from the current PC, and in the forward direction by 177, words (376
bytes) from the current PC.

The PDP-11 assembler handles address arithmetic for the user and computes and
assembles the proper offset field for branch instructions in the form:

Bxx loc
Where “‘Bxx" is the branch instruction and “loc" is the address to which the
branch is to be made. The assembler gives an error indication in the instruction if

the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

4-36

BR

branch (unconditional) 000400 Plus offset
I © 0 0 0 0 0 O ¢ l OFFSET l
L L 1 n s 1 " 1 ! 1 | i 1
15 8 7)
Operation: PC « PC + (2 x offset)
Description: Provides a way of transferring program control within a

range of -128 to + 127 words with a one word instruction.

New PC address — updated PC + (2 X offset)

Updated PC = address of branch instruction + 2

Example: With the Branch instruction at location 500, the following off-

sets apply.
New PC Address Offset Code Offset (decimal)
474 375 -3
476 376 -2
500 377 —1
502 000 0
504 001 +1
506 002 +2

4-37

BNE

branch if not equal (to zero) 001000 Plus offset
0 0 0 0O 0O 0 1 0O

[l 1 | ' | L I 1 l OFIFSET 1 l J
15 8 7 o}

Operation:
Condition Codes:

Description:

Example:

PC «PC + (2xoffset)ifZ =0
Unaffected

Tests the state of the Z-bit and causes a branch if the Z-bit is
clear. BNE is the complementary operation to BEQ. It is used
to test inequality following a CMP, to test that some bits set
in the destination were also in the source, following a BIT,
and generally, to test that the result of the previous oper-
ation was not zero.

CMP AB ,compare A and B
BNE C ; branch if they are not equal

willbranchto Cif A £ B

and the sequence

ADD AB ;addAtoB
BNE C . Branch if the result is not
equal to O

will branch to Cif A + B# 0

4-38

BEQ

branch if equal (to zero) 001400 Plus offset
0 0 0 0 0 O 1 f [OFFSET
L A L I A A l — - 1 s L
15 8 7 0
Operation: PC « PC + (2 x offset) if Z=1

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper-
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

Example: CMP AB ; compare A and B
BEQ C ; branch if they are equal
willbranchtoCitA = B A-B=0)
and the sequence
ADD AB ;addAtoB
BEQ C ; branch if the result =0

will branchto CifA + B = 0.

4-39

BPL

branch if plus 100000 Plus offset

1 (o] o o o o o] [¢] OFFSET
L 1 PO | B 1 [I ' B .]
15 8 7 o}

Operation: PC «PC + (2 x offset) if N=0

Description: Tests the state of the N-bit and causes a branch if N is
clear, (positive resuit).

4-40

branch if minus 100400 Plus offset
I ' l o L o L o l 0 L 0 1 o l ' [4 l L“‘Sg l il L]
15 8 7 ¢}
Operation: PC «PC + (2 xoffset)if N=1

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if N is
set. It is used to test the sign (most significant bit) of
the result of the previous operation), branching if neg-
ative.

4-41

BVC

branch if overflow is clear 102000 Plus offset
t, 0 0 0,0 t 0,0 OFFSET
[I 1 1 I i 1 I L 1 1 1 i l e I]
15 8 7 o
Operation: PC « PC + (2 x offset) if V=0
Description: Tests the state of the V bit and causes a branch if the V bit is

clear. BVC is complementary operation to BVS.

442

BVS

branch if overflow is set 102400 Plus offset
1 0 0 0 O 1 ©
['j0o000 1o o ooeeser |
15 8 7)
Operation: PC « PC + (2 x offset) if V=1
Description: Tests the state of V bit (overflow) and causes a branch if the

V bit is set. BVS is used to detect arithmetic overflow in the
previous operation.

443

BCC

branch if carry is clear 103000 Plus offset
F
Lae.e oo, vyl ooy |
15 8 7 0
Operation: PC « PC + (2 x offset) if C=0

Description:

Tests the state of the C-bit and causes a branch if C is clear.
BCC is the complementary operation to BCS

4-44

BCS

branch if carry is set 103400 Plus offset
1 1 1 OFFSET
[' 1 ° L ° L ° 1 ° L 1 1 1 i " I | 1 1]
15 8 7 o)
Operation: PC «PC + (2 x offset) if C=1
Description: Tests the state of the C-bit and causes a branch if C is set. It
is used to test for a carry in the result of a previous oper-
ation.

4-45

Signed Conditional Branches

Particular combinations of the condition code bits are tested with the signed con-
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned com-
parisons in that in signed 16-bit, two's complement arithmetic the sequence of
values is as follows:

largest 077777
077776
positive
000001
000000
177777
177776
negative
100001
smallest 100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be
highest 177777

000002
000001
lowest 000000

4-46

BGE

branch if greater than or equal 002000 Plus offset
(to zero)
FSET
[ejo,0,040 v oyof goreser | |
15 8 7 0
Operation: PC«PC + (2xoffse)if NvV =0
Description: Causes a branch if N and V are either both clear or both set.

BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that
caused addition of two positive numbers. BGE will also cause
a branch on a zero result.

4-47

BLT

branch if less than (zero) 002400 Plus offset
[o l 0 L o 1 OJ 0 1 ! L o l 1 1 L OFFSEIT l] 1 I
15 8 7 [}
Operation: PC<«PC + (2xoffset)if NvV =1
Description: Causes a branch-if the *‘Exclusive Or’’of the N and V bits are

1. Thus BLT will always branch following an operation that
added two negative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a
CMP instruction operating on a negative source and a posi-
tive destination (even if overflow occurred). Further, BLT will
never cause a branch when it follows a CMP instruction oper-
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was
zero (without overflow).

4-48

BGT

branch if greater than (zero) 003000 Plus offset

000001101 T]
lege .0 040 " 1 P Bl

15 8 7 0
Operation: PC«PC + (2xoffset)ifZv(NwvwV) =0
Description: Operation of BGT is similar to BGE, except BGT will not cause

a branch on a zero result

4-49

BLE

branch if less than or equal (to zero) 003400 Plus offset
0,0 0 0,0 1 FFSET
logo o 0ogo vovy | oqoreser |
15 8 7 ¢}
Operation: PC<«PC + (2xoffset)if ZV(INwv V)=1
Description: Operation is similar to BLT but in addition will cause a

branch if the result of the previous operation was zero.

4-50

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4-51

BHI

branch if higher 101000 Plus offset
['jo,0,0y0 0 tjof joeeser | |
15 8 7 o}
Operation: PC <« PC + (2 xoffset)if C=0and Z=0
Description: Causes a branch if the previous operation caused neither a

carry nor a zero result. This will happen in comparison (CMP)
operations as long as the source has a higher unsigned value
than the destination.

4-52

BLOS

branch if lower or same 101400 Plus offset
1,0 O 0,0 O 1,1
Lye.0. 00,0 1) OFFSET
15 8 7 ¢}
Operation: PC<«PC + (2xoffset)ifCvZ =1
Description: Causes a branch if the previous operation caused either a

carry or a zero result. BLOS is the complementary operation
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination.

4-53

BHIS

branch if higher or same 103000 Plus offset

1t 0 0 0,0 1 1.0 l OFFSET 1
[I — i L A 1 L 1 l A I l 1 1
8 7 [+)

Operation: PC<«PC + (2xoffset)ifC = 0

Description: BHIS is the same instruction as BCC. This mnemonic is in-
cluded only for convenience.

4-54

BLO

branch if lower 103400 Plus offset
t 0 0 0 0 1 1 1
| PR RS P | OTFSE.T | I
15 8 7 0
Operation: PC <« PC + (2 xoffset)if C=1
Description: BLO is same instruction as BCS. This mnemonic is included

only for convenience.

4-55

JMP

jump 0001DD

[0 o 0 o 0o O [o] o o 1 d d d d d d
| b 1 JE— | L A i e | 1 i
15

Operation: PC<(dst)
Condition Codes: not affected

Description: JMP provides more flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory (no range limitation) and can be ac-
complished with the full flexibility of the addressing modes,
with the exception of register mode O. Execution of a jump
with mode O will cause an ‘illegal instruction’ condition.
(Program control cannot be transferred to a register.) Regis-
ter deferred mode is legal and will cause program control to
be transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from an even-numbered address. A 'boundary er-
ror’'trap condition will result when the processor attempts to
fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of

control to the address contained in a selectable element of a
table of dispatch vectors.

4-56

Subroutine Instructions

The subroutine call in the PDP-11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutine call. The subroutine call-
ing mechanism does not modify any fixed location in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among several in-
terrupting processes. For more detailed description of subroutine programming-
see Chapter 5.

4-57

JSR

jump to subroutine 004RDD

[o o 0 0,1 o O]r r r]d d d 4 d d—l
| L L | - L L N L L | . N
® 3 5 0

Operation:

Description:

(tmp)e(dst) (tmp is an internal processor register)
v (SP)<reg (push reg contents onto processor stack)

reg<PC (PC helds location following JSR; this address
now put in reg)

PC<«(tmp) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified reg-
ister (the “LINKAGE POINTER'") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc-
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in-
terrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) +, (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or-
der). These addressing modes may also be deferred,
@(reg) + and @X(reg) if the parameters are operand ad-
dresses rather than the operands themselves.

4-58

Example:

Before:

After:

JSR PC, dst is a special case of the PDP-11 subroutine call
suitable for subroutine calls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP) + which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resume operation when recalled where they left off. Such rou-
tines are called ‘‘co-routines."”

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR R5, SBR

(PC) R7 Stack

(SP) R6 l-_—___":::l_’ DATA 0
G

v [sR]

R6 n—2 DATA 0O
\ o
R5 PC+2

4-59

RTS

return from subroutine 00020R
0 0 0,0 0 0,0 1 o o
Lo, 0. °. 00, v 0400 ofc r]
15 2 (o]
Operation: PCereg
reg< (SP)A
Description: Loads contents of reg into PC and pops the top element of
the processor stack into the specified register.
Return from a non-reentrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR RS, dst, may pick up para-
meters with addressing modes (R5)+, X(R5), or @X(R5)
and finally exits, with an RTS R5
Example: RTS R5
Before: (PC) R7 Stack
#1
w
R6 n+42 ———i DATA O
ws

4-60

mark 00 64 NN
0,0 0 0.1 1 0,1 0 o0]
l l L i l A l A " A " 1 " l " A " L "
15 8 7 5 0
Operation: SP«SP + 2xnn nn =number of parameters
PC «R5
R5«(SP) A

Condition Codes: unaffected

Description: Used as part of the standard PDP-11 subroutine return con-
vention. MARK facilitates the stack clean up procedures in-
volved in subroutine exit. Assembler format is: MARK N

Example: MOV R5,-(SP) ;place old R5 on stack
MOV P1,-(SP) ;place N parameters
MOV P2,-(SP) ;on the stack to be

;used there by the
:subroutine
MOV PN,-(SP)
MOV #MARKN,-(SP) ;places the instruction
;MARK N on the stack
MOV SP ,R5 ;set up address at Mark N in-
struction
JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD RS
P1

PN

MARK N

OLD PC

4-61

And the program is at the address SUB which is the beginning

of the subroutine.

SUB: ;execution of the subroutine it-
self

RTSR5 ;the return begins: this causes

the contents of RS to be placed in the PC which then results
in the execution of the instruction MARK N. The contents of
old PC are placed in RS

MARK N causes: (1) the stack pointer to be adjusted to point
to the old R5 value; (2) the value now in R5 (the old PC) to be
placed in the PC; and (3) contents of the the old R5 to be
popped into R5 thus completing the return from subroutine.

462

SOB

subtract one and branch {if # 9J) 077R00 Plus offset
T
4 OFFSET
[0 | ' ! ' 1 ! | !) 1 ' ' s ! 1 ! 1 N 1 N 1]

15 9 8 6 5 0
Operation: R« R -1 if this result # 0 then PC « PC -(2 x offset)
Condition Codes: unaffected
Description: The register is decremented. If it is not equal to O, twice the

offset is subtracted from the PC (now pointing to the follow-
ing word). The offset is interpreted as a sixbit positive num-
ber. This instruction’provides a fast, efficient method of loop
control. Assembler syntax is:

SOB RA
Where A is the address to which transfer is to be made if the
decremented R is not equal to 0. Note that the SOB instruc-

tion can not be used to transfer control in the forward direc-
tion.

4-63

Traps

Trap instructions provide for calls to emulators, |/0 monitors, debugging pack-
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and re-
placed by the contents of a two-word trap vector containing a new PC and new
PS. The return sequence from a trap involves executing an RT| or RTT instruc-
tion which restores the old PC and old PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

4-64

emulator trap

EMT

104000—104377

Operation:.

Condition Codes:

Description:

Before:

After:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are EMT instruc-
tions and may be used to transmit information to the emulat-
ing routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

R7, PC DATA 1
R6, SP I n l/
PS (32)
PC (30) DATA 1
PS 1
SP n—4 B —— PC 1

trap 104400—104777
XK T
15 8 7 (o]
Operation: ¥ (SP)«PS
¥ (SP)<PC
PC«(34)
PS«(36)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Operation codes from 104400 to 104777 are TRAP instruc-

tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

4-66

breakpoint trap

000003
1
FJO.Ololo.o.oloJo.OLOAOLOIO.'.']
5 0
Operation: ¥ (SP)«PS
v (SP)<«PC
PC «(14)
PS «(16)

Condition Codes: N: loaded from trap vector
2. loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector
Description: Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de-
bugging aids.

(no information is transmitted in the low byte.)

4-67

10T

input/output trap 000004
¥
|°j°4°40L°.°.°l°.0:10.0.011 .olo"l
15)
Operation: ¥ (SP)«PS
v(SP)<PC
PC«(20)
PS«(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20.
Used to call the |70 Executive routine 10X in the paper tape
software system, and for error reporting in the Disk Oper-
ating System.

(no information is transmitted in the low byte)

4-68

RTI

return from interrupt 000002

Al
0000000000000010J
Ijllljlll JUEE T B
15

Operation: PC<(SPW
PS «(SP)a

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service routine. The
PC and PS are restored (popped) from the processor stack.

4-69

RTT

return from interrupt 000006

Operation: PC«(SPYA
PS<(SP) A

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: This is the same as the RTI instruction except that it inhibits
a trace trap, while RTI permits a trace trap. If a trace trap is
pending, the first instruction after the RTT will be executed
prior to the next “T''trap. In the case of the RTI instruction
the “T'" trap will occur immediately after the RTI.

4-70

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor expansion (reserved instructions) or instruc-
tions with illegal addressing modes (illegal instructions). Order codes not corre-
sponding to any of the instructions described are considered to be reserved in-
structions. JMP and JSR with register mode destinations are illegal instructions.
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at addresses 10 and 4 respectively.

Stack Overflow Trap
Bus Error Traps - Bus Error Traps are:

1. Boundary Errors - attempts to reference instructions or word operands
at odd addresses.

2. Time-Out Errors - attempts to reference addresses on the bus that made
no response within15us in the PDP-11/40. In general, these are caused by
attempts to reference non-existent memory, and attempts to reference
non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in-
struction that set the T-bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The following are special cases and are detailed in subsequent paragraphs.
1. The traced instruction cleared the T-bit.
2. The traced instruction set the T-bit.
3. The traced instruction caused an instruction trap.
4. The traced instruction caused a bus error trap.
5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the T-bit was set and the
fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT.
8. The traced instruction was a HALT.

9. The traced instruction was a Return from Trap

Note: The traced instruction is the instruction after the one that sets the T-bit.

An instruction that cleared the T-bit - Upon fetching the traced instruction an in-
tema] flag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word, however, will have a clear T-bit.

An instruction that set the T-bit - Since the T-bit was already set, setting it again
has no effect. The trap will occur.

4-71

An instruction that caused an Instruction Trap - The instruction trap is sprung and
the entire routine for the service trap is executed. If the service routine exists with
an RTl or in any other way restores the stacked status word, the T-bit is set again,
the instruction following the traced instruction is executed and, unless it is one of
the special cases noted above, a trace trap occurs.

An instruction that caused a Bus Error Trap - This is treated as an Instruction
Trap. The only difference is that the error service is not as likely to exit with an
RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow - The instruction completes execution
as usual - the Stack Overflow does not cause a trap. The Trace Trap Vector is
loaded into the PC and PS, and the old PC and PS are pushed onto the stack.
Stack Overflow occurs again, and this time the trap is made.

An interrupt between setting of the T-bit and fetch of the traced instruction - The
entire interrupt service routine is executed and then the T-bit is set again by the
exiting RTI. The traced instruction is executed (if there have been no other inter-
rupts) and, unless it is a special case noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading of the
new PC and PS at the trap vector location. To lock out all interrupts, the PS at
the trap vector should raise the processor priority to level 7.

A WAIT - The trap occurs immediately.

A HALT - The processor halts. When the continue key on the console is pressed,
the instruction following the HALT is fetched and executed. Unless it is one of the
exceptions noted above, the trap occurs immediately following execution.

A Return from Trap - The return from trap instruction either clears or sets the T
bit. It inhibits the trace trap. If the T-bit was set and RTT is the traced instruction
the trap is delayed until completion of the next instruction.

Power Failure Trap - is a standard PDP-11 feature. Trap occurs whenever the AC
power drops below 95 volts or outside 47 to 63 Hertz. Two milliseconds are then

allowed for power down processing. Trap vector for power failure is at locations
24 and 26.

Trap priorities - in case multiple processor trap conditions occur simultaneously
the following order of priorities is observed (from high to low):

Odd Address

Fatal Stack Violation

Memory Management Violation
Timeout

Trap Instructions

Trace Trap

Warning Stack Violation

Power Failure

The details on the trace trap process have been described in thg trace'trap oper-
ational description which includes cases in which an instruction being traced
causes a bus error, instruction trap, or a stack overflow trap.

472

If a bus error is caused by the trap process handling instruction traps, trace traps,
stack overflow traps, or a previous bus error, the processor is haited.

If a stack overflow is caused by the trap process in handling bus errors, instruc-
tion traps, or trace traps, the process is completed and then the stack overflow
trap is sprung.

4-73

4.7 MISCELLANEOUS

HALT

halt 000000

RS T SN IR I

[olooo'ooooooooooooo\
0 °

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the console address lights display the ad-
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC points to the next instruc-
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
given.

Note: A halt issued in User Mode will generate a trap..

4-74

WAIT

wait for interrupt 000001

|0 o ©
1 n n
15

olooolo'oooooooa]

Condition Codes:

Description:

not affected

Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits higher trans-
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in-
structions, the PC points to the next instruction fol-
lowing the WAIT operation. Thus when an interrupt
causes the PC and PS to be pushed onto the pro-
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in-
terrupt routine (i.e. execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

4-75

RESET

reset external bus 000005
| |
0.0 0 0,0 0O O O O 0,0 © 1
r l J de 1 . ol J A 1 l i 1 0 l il ° 1 ‘—I
15 0

Condition Codes: not affected

Description:: Sends INIT on the UNIBUS for 10 ms. All devices on the UNI-
BUS are reset to their state at power up.

4-76

(Memory Management option) MFP'

move from previous instruction space 006588
T
[ololgol1l'lol,lol‘ slsluslsls]
15 6 5 (o]
Operation: (temp) < (src)

Condition Codes:

Description:

A (SP)<(temp)

N: set if the source <O; otherwise cleared
Z: set if the source =O0; otherwise cleared
V: cleared

C: unaffected

This instruction is provided in order to allow inter-
address space communication when the PDP-11/40
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory segments determined by
PS (bits 15, 14). The address itself is then used in
the previous mode (as determined by PS (bits 13,
12) to get the source operand). This operand is then
pushed on to the current R6 stack.

4-77

MTP' (Memory Management option)

move to previous instruction space 0066DD
. LB
ololololil1lol1 I'JOIdldldldldld\l
15 6 b5)
Operation: (temp)«(SPA
(dst)<(temp)
Condition Codes: N: set if the source <O; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected
Description: The address of the destination operand is determined in the

current address space. MTPI then pops a word off the current
stack and stores that word in the destination address in the
previous mode's (bits 13, 12 of PS).

478

Condition Code Operators

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC ScCC

condition code operators 0002XX

Description: Set and clear condition code bits. Selectable combinations of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O-
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit0, 1, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4 =0.

Mnemonic
Operation OP Code
CLC ClearC 000241
CLv ClearV 000242
CLz Clear 2 000244
CLN ClearN 000250
SEC SetC 000261
SEV SetV 000262
SEZ Set Z 000264
SEN SetN 000270
SCC Set all CC's 000277
CCC ClearaliCC's 000257
ClearVand C 000243
NOP No Operation 000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

4-79

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
PDP-11, the reader should become familiar with the various programming tech-
niques which are part of the basic design philosophy of the PDP-11. Although it is
possible to program the PDP-11 along traditional lines such as “‘accumulator ori-

entation’ this approach does not fully exploit the architecture and instruction set
of the PDP-11.

5.1 THE STACK

A “stack', as used on the PDP-11, is an area of memory set aside by the pro-
grammer for temporary storage or subroutine/interrupt service linkage. The in-
structions which facilitate ‘“stack’”’ handling are useful features not normally
found in low-cost computers. They allow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the “last-in, first-out"
concept, that is, various items may be added to a stack in sequential order Qnd re-
trieved or deleted from the stack in reverse order. On the PDP-11, a stack starts
at the highest location reserved for it and expands linearly downward to the low-
est address as items are added to the stack.

HIGH ADDRESSES

LOW ADDRESSES

Figure 5-1: Stack Addresses

The programmer does not need to keep track of the actual locations his data is
being stacked into. This is done automatically through a *‘stack pointer.” To keep
track of the last item added to the stack (or “‘where we are” in the stack) a Gen-
eral Register always contains the memory address where the last item is stored in
the stack. In the PDP-11 any register except Register 7 (the Program Counter-PC)
may be used as a ‘'stack pointer'' under program control; however, instructions
associated with subroutine linkage and interrupt service automatically use Regis-
ter 6 (R6) as a hardware “'Stack Pointer.”" For this reason R6 is frequently re-
ferred to as the system *‘SP.”

5-1

Stacks in the PDP-11 may be maintained in either full word or byte units. This is
true for a stack pointed to by any register except R6, which must be organized in
full word units only.

WORD STACK
007100 ITEM #1
007078 ITEM #2
007074 ITEM #3
007072 ITEM #4 «—SP
007070
007066
007064
NOTE: BYTES ARE
BYTE STACK WORDS AS FOLLOWING:
BYTE 3 | BYTE 2
007100 ITEM #1 BYTE { |BYTE O
007077 ITEM #2
007076 ITEM #3
007075 ITEM #4 *«—SP

Figure 5-2: Word and Byte Stacks

Items are added to a stack using the autodecrement addressing mode with the
appropriate pointer register. (See Chapter 3 for description of the autoincre-
ment/decrement modes).

This operation is accomplished as follows;

MOV Source,-(SP) ;MOV Source Word onto the stack
or
MOVB Source,-(SP) ;MOVB Source Byte onto the stack

This is called a “‘push’” because data is “‘pushed onto the stack.”

5-2

To remove an item from stack the autoincrement addressing mode with the ap-
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + ,Destination ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is cailed a *'pop'’ for “‘popping from the stack."
After an item has been "‘popped,’ its stack location is considered free and avai-
lable for other use. The stack pointer points to the last-used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share-
able temporary storage locations.

HIGH MEMORY
[« SP
‘ €0 -sp €0
K 4 £1 le-sP
O MO ENPTY STACK 2 PUSHING A DATUM 3 PUSHING ANOTHER
AREA ONTO THE STACK DATUM ONTO THE
STACKS
EQ@ EQ ’EZ EQ
E1 EY *SP EY
E2 <SP ‘ E3 -SP
4 ANOTHER PUSH 5 POP 6 PUSH
E3
EQ
E1 -sp
7 POP

Figure 5-3: Illustration of Push and Pop Operations

5-3

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro-
gram with their contents unchanged. The subroutine could be written as follows:

Address Octal Code Assembler Syntax

076322 010167 SUBR: MOV R1,TEMP1 ;save R1
076324 000074 *

076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *

076410 016701 MOV TEMP1, R1 ;Restore R1
076412 000006 * ‘

076414 016702 MOV TEMP2, R2 ;Restore R2
076416 000002 *

076420 000207 RTSPC

076422 000000 TEMP1: 0

076424 000000 TEMP2: 0

index Constants

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address Octal Code Assembler Syntax
010020 010143 SUBR: MOV R1, -(R3) ;push R1
010022 010243 MOV R2, -(R3) ;push R2
010130 012301 MOV (R3) +, R2 :pop R2
010132 012302 MOV (R3) +,R1 :pop R1
010134 000207 RTSPC

Note: In this case R3 was used as a Stack Pointer

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary *‘stack’ storage. Another routine could use the same stack space at
some later point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5-4

As a further example of stack usage, consider the task of managing an input buf-
fer from a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters. Whenever a backspace is received a char-
acter is ‘‘popped’” off the stack and eliminated from consideration. In this ex-
ample, a programmer has the choice of ‘‘popping'’ characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

00101t
001010
001007
001006
001005
001004
001003
001002
001001

INC R3

vimizlof 4julcto

«=r3 [oowoz]

NliofmiZ]lol 4]lwujcto

| oc1001 |

Figure 5-6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer (R6) because R6 may only point to word (even) locations.

5.2 SUBROUTINE LINKAGE

5.2.1 Subroutine Calls

Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange

between subroutines and calling programs. The PDP-11 instruction set contains
several useful instructions for this purpose.

PDP-11 subroutines are called by using the JSR instruction which has the follow-
ing format.

a general register (R) for linkage ——m———
JSR R,SUBR
an entry location (SUBR) for the subroutine —

5-5

When a JSR is executed, the contents of the linkage register are saved on the sys-
tem R6 stack as if a MOV reg,-(SP) had been performed. Then the same register
is loaded with the memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified.

Address Assembler Syntax Octai Code
001000 JSRR5 SUBR 004567
001002 index constant for SUBR 000064
001064 SUBR: MOVAB Oinnmm

Figure 5-7: JSR using RS

BEFORE AFTER
(RS): 000132 (RS% 001004
(R6):001776 (R6)=001774
(PC)=(RT)=001000 (PC)=(R7):00106 4

002000 nnnnnn 002000 nannnn

001776 mmmmmm |+ [oot776] oo1778 mmmmmm

001774 001774 000132 s 001774]

001772 001772

Figure 5-8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean-
ingful combination.

5.2.2 Argument Transmission

The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac-
cessed from the subroutine in several ways. Using Register 5 as the linkage regis-
ter, the first argument could be obtained by using the addressing modes in-
dicated by (R5), (R5) + ,X(R5) for actual data, or @(R5) +, etc. for the address of
data. If the autoincrement mode is used, the linkage register is automatically up-
dated to point to the next argument.

Figures 5-9 and 5-10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400 JSR R5,SUBR

010402 Index constant for SUBR SUBROUTINE CALL
010404 arg #1 ARGUMENTS

010406 arg #2

020306 SUBR: MOV (R5)+ Rl get arg #1

020310 MOV (R5) +,R2 ;get arg # 2 Retrieve Arguments

from SUB

Figure 5-9; Argument Transmission -Register Autoincrement Mode

5-6

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL

010404 077722 Address of Arg #1
010406 077724 Address of Arg. #2

010410 077726 Address of Arg. #3

077722 Arg #1
077724 arg #2 arguments
077726 arg #3

020306 SUBR: MOV @(R5) + RI :getarg #1
020301 MOV @(R5) + ,R2 :get arg #2

Figure 5-10: Argument Transmission-Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine call.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV POINTER, R1
JSR PC,SUBR

SUBROUTINE ADD (R1)+ ,(R1) ;Add item #1 to item #2, place
result in item #2, R1 points
to item #2 now

etc.
or
ADD (R1),2(R1) ;Same effect as above except that

R1 still points to item #1
etc.

TEM #1 Je—ri []
ITEM #2

Figure 5-11: Transmitting Stacks as Arguments

5-7

Because the PDP-11 hardware already uses general purpose register R6 to point
to. a stack for saving and restoring PC and PS (processor status word) informa-
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines. Using R6 in this

manner permits extreme flexibility in nesting subroutines and interrupt service
routines.

Since arguments may be obtained from the stack by using some form of register
indexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout-
ine. In the previous example RS may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer. If R6 had been used directly as the base for indexing and not “‘copied”, it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrement/decrement which occurs.

arg #1 org #1
arg #2 arg #2
SP—» arg #3 org #3
but when another item
TO is pushed SP—= To
arg#2 is at source arg#2 is ot source
-2(SP) -4(sP)

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any arguments are
pushed onto the stack, the position relative to R5 would remain constant.

arg #1 *—R5 arg #1 <«RS
SP—= arg #2 arg #2
SP—= arg #3
arg#2 is ot 2 (R5) arg #2 s still ot 2(R5)

Figure 5-13: Constant Index Base Using ‘‘R6 Copy"

5-8

5.2.3 Subroutine Return

In order to provide for a return from a subroutine to the calling program an RTS
instruction is executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine call. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of re-
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al-
ways used with a JSR; there is no linkage register with a JMP and no way to re-
turn to the calling program.

When a subroutine finishes, it is necessary to ‘‘clean-up’ the stack by eliminating
or skipping over the subroutine arguments. One way this can be done is by insist-
ing that the subroutine keep the number of arguments as its first stack item. Re-
turns from subroutines would then involve calculating the amount by which to re-
set the stack pointer, resetting the stack pointer, then restoring the original
contents of the register which was used as the copy of the stack pointer. The PDP-
11/40, however, has a much faster and simpler method of performing these
tasks. The MARK instruction which is stored on a stack in place of ‘*‘number of ar-
gument” information may be used to automatically perform these ‘‘clean-up”
chores.

5.2.4 PDP-11 Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling procedure.

a. arguments can be quickly passed between the calling program and the subr-
outine.

b. if the user has no arguments or the arguments are in a general register or on
the stack the JSR PC,DST mode can be used so that none of the general pur-
pose registers are taken up for linkage.

c. many JSR's can be executed without the need to provide any saving procedure
for the linkage information since all linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
automatically popping this information from the stack in the opposite order of
the JSR's.

Such linkage address bookkeeping is called automatic *'nesting’” of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, flexible manner. It even permits a routine to call itself in those cases
where this is meaningful. Other ramifications will appear after we examine the
PDP-11 interrrupt procedures.

5.3 INTERRUPTS

5.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occurring because
of some external and program-independent e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>