Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.1810 Fall 2025
Quiz IT Solutions

Mean 81.65 Median 82 Standard deviation 14.34 Maximum 113 (out of 113)

I Threads

Ben Bitdiddle discovers that the C compiler he uses to compile the xv6 kernel generates code that never
uses the s11 register. He decides to optimize swtch by removing the lines that save and restore s11
from swtch.S. However, Ben compiles the user-space applications running on top of his xv6 kernel with
a different compiler that does make use of s11.

1. [10 points]: Would this be a safe change to make, assuming that the kernel itself is always
compiled with Ben’s compiler that never uses s11?

Answer: Yes, this will not affect any kernel code execution, since it does not depend on s11, and
user-space code that might use s11 will also not be affected because the user-space s11 register is
saved and restored by uservec and userret.

II Coordination

Ben is extending the xv6 kernel to support a new pipe-like abstraction, the bipe. A bipe has just one reading
and one writing process, which are known in advance when the bipe is created. Only a single byte is ever
written to a bipe.

Ben would like a bipe’s reading process to wait for the one byte if the writer hasn’t written it yet, and he’d
like the reader to wait without spinning. He realizes that xv6’s sleep and wakeup could be used here, but he
believes he can use simpler code that’s specialized to his use case.

On the next page is part of Ben’s kernel bipe implementation (what’s missing is initialization, freeing when
no longer in use, and glue code to allow user system calls to use the functions). In Ben’s application there’s
no need for a bipe reader to worry about being killed while waiting.

struct bipe {
struct spinlock lock;
char data; // just one character
int ready; // has data been written?
struct proc *dst; // the one reader

}i

int biperead(struct bipe x*b) {
struct proc xp = myproc();
while (1) {
acquire (&b->1lock);
if (b—->ready) {
char ¢ = b->data;
release (&b—->1ock);
return c;
}

release (&b—>1lock) ;
// RAAA

acquire (&p—->1lock);
p—>state = SLEEPING;
sched () ;

release (&p—>lock);

void bipewrite (struct bipe *b, char c) {
acquire (&b->1lock);
b->data = c;
b->ready = 1;
release (&b—>1lock);

// BBB

acquire (&b->dst->1ock) ;

if (b->dst->state == SLEEPING)
b->dst—->state = RUNNABLE;

release (&b—->dst—->1lock) ;

2. [10 points]: Ben’s bipe implementation has a serious correctness problem. What is it?
(Circle the one best choice; we subtract points for incorrect answers.)

A. xv6 forbids kernel code from holding locks when calling sched (), but biperead () holds
p—>lock.

B. if biperead () executes entirely while bipewrite () is at line BBB, the reader may never
see the data.

C. biperead () should hold b—>1ock for the entire time, acquiring it at the start of the function,
and only releasing it just before returning.

D. if bipewrite () executes entirely while biperead () is at line AAA, the reader may never
see the data.

E. bipewrite () acquires b->dst->1lock, but it should instead acquire its own lock (i.e.
myproc () —>1lock).

Answer: D is correct: in this situation, the reader would put itself to sleep after the writer had decided
that it didn’t need to wake up the reader. A is wrong because xv6 allows (indeed requires) a process to
hold p—>1ock when it puts itself to sleep. B is wrong because the reader in that situation will see the
data, and won’t put itself to sleep. C is wrong because then the writer may never be able to acquire
b->1lock and set b->data and b->ready. E is wrong.

III Networking lecture/reading

Consider Eliminating Receive Livelock in an Interrupt-driven Kernel, by Mogul et al., and Lecture 15.

Ben Bitdiddle runs xv6 just like in the net lab (with 3 CPUs), but configures the hardware to deliver the
network card interrupt only to CPU 0. Ben’s xv6 network stack does not use transmit interrupts.

3. [10 points]: Could Ben’s system experience receive livelock? Briefly explain your answer.

Answer: No, because other CPUs can make progress, even if CPU 0 spends all of its time processing
network receive interrupts.

IV Shenango

Which of the following are true statements about Shenango as described in “Shenango: achieving high CPU
efficiency for latency-sensitive datacenter workloads”?

(Circle True or False for each choice; we subtract points for incorrect answers.)

4. [12 points]:

A.

B.
. True / False A 99.9% tail latency of 37usec means 999 out of 1000 requests take more than

D.

True / False To get high performance, Shenango allows the IOKernel to read and write de-
scriptors in the NIC queues from user space.

True / False Shenango may run an application on cores guaranteed to another application.

37 usec.

True / False Even when memcached is under high load from clients Shenango manages to
run a batch processing application occasionally.

Answer: A and D are correct. B is wrong because Shenango allows bursting onto extra burstable
cores, not onto guaranteed ones. C is wrong because tail latency is the opposite.

V File System Layout in xv6

Alyssais using xv6 with triply-indirect blocks, and her file system has 10 million 1024-byte blocks (FSSIZE
in param.h is 10000000). In one directory, Alyssa creates one file whose size is nearly 10 million blocks
(so it almost fills the disk, but not quite). In another directory, that starts out empty, Alyssa creates a new
file called x with this shell command:

echo hello > x

No other file-system-related actions occur.

5. [10 points]: Approximately how many blocks will Alice’s echo shell command cause the
kernel’s file-system code to read from the disk?
(Circle the one best choice; we subtract points for incorrect answers.)

A. 2
B. 10
C. 600
D. 1300
E. 2600

Answer: The correct answer is D, 1300. The command requires the allocation of a block to hold
“hello”. Since most blocks were already allocated when Alyssa created the initial huge file, and no
block has been freed since then, balloc () will need to scan nearly all of the bitmap blocks before
it finds a free block. 10,000,000 bits require 1220 1024-byte blocks, so balloc () will need to read
roughly that many blocks. Plus a few more to read the directory and allocate the i-node.

VI EXT3

Recall the Linux EXT3 journaling file system from Journaling the Linux ext2fs Filesystem and Lecture 19.
The paper’s “ext2fs” is the same as EXT3, and we are referring to the file system running with ordered data
(as opposed to journal data) mode.

6. [10 points]: Which of the following are true statements about EXT3.
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False EXT3 can combine changes from multiple system calls in a single log/journal
commit.

B. True / False When writing 1MB of data to a file, EXT3 will write roughly 2MB of data to
disk (writing 1MB to the log/journal, and then installing that IMB to the file’s data blocks).

C. True / False After a crash, EXT3 might be missing the last few file changes.

D. True / False In EXT3, a system call can be modifying a directory /d while EXT3 is in the
process of writing previous changes to directory /d to its on-disk journal.

E. True / False EXT3 can evict cached disk blocks that have been committed to the journal but
not yet installed.
Answer: A is true.
B is not true: EXT3 does not journal data writes.
C is true.

D is true: EXT3 will use copy-on-write to keep track of changes to /d’s blocks if they are modified before
the previous dirty blocks are written to the journal.

E is not true. The blocks will eventually be needed in order to install them. In principle perhaps EXT3 could
read them from the log, but it doesn’t do that, since it would be slow. Instead EXT3 takes the more efficient
approach of always leaving dirty blocks in the cache until it has installed them.

Suppose you run the following application on EXT3, where, before this program ran, the files /a and /b
never existed, and ccc never appeared anywhere on disk:

int main () {
int fd;

fd = open("/a", O_CREAT|O_RDWR, 0666);
if (fd < 0)
exit (1);

for (int 1 = 0; 1 < 3; i++)
write (fd, "a", 1);
close (£d);

fd = open("/b", O_CREAT|O_RDWR, 0666);
if (£d < 0)
exit (1);

for (int 1 = 0; 1 < 3; i++)
write (fd, "b", 1);
close (f£d);

fd = open("/a", O_RDWR, 0666);
if (fd < 0)
exit (1);

for (int 1 = 0; 1 < 3; i++)
c

write (fd, ", 1);
close (£d) ;

exit (0);
Assume the program exits with exit status 0, and the system crashes after that.

7. [12 points]: What could you see in the file system after the system boots up and recovers?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False You could see that /a and /b both exist and are both empty.

Answer: This is not possible: EXT3 commits meta-data updates to the journal in the order
that the system calls executed, so if /b exists, the operation that extended /a must have also
committed.

10

B. True / False You could see that neither /a nor /b exist, but ccc appears somewhere on
disk.

Answer: This is possible: EXT3 writes file content blocks to disk before committing the asso-
ciated meta-data to the on-disk log, so ccc could be on the disk before any of the log has been
committed.

C. True / False You could see that /a contains aaa and /b is empty.
Answer: This is possible: the system could have committed the journal through the operation
creating /b, but before the write to /b, and then crashed before committing the rest of the
journal to disk.

D. True / False You could see that /a does not exist, and /b contains bbb.

Answer: This is not possible: if the transaction creating /b committed, it must have also com-
mitted the creation of /a.

11

VII Multicore scalability and RCU

Ben implements his read-write lock for the lock lab as follows:

struct rwspinlock {
int32_t n;
}i

void rwlock_r_acquire (struct rwspinlock =*rwlk) {

while (1) {
int32_t v = __ _atomic_load_n(&rwlk->n, _ ATOMIC_ACQUIRE) ;
if (v < 0) { // does a writer have the lock?
continue;
}
// __atomic_compare_exchange_n returns true if the value at &rwlk->n
// matched v and the value was successfully updated to v+1.
// It returns false otherwise. You can ignore the last 3 arguments.
if (__atomic_compare_exchange_n (&rwlk->n, &v, v+1,

0, _ ATOMIC_ACQUIRE, _ ATOMIC_RELAXED)) {
break;

void rwlock_r_release(struct rwspinlock xrwlk) {

// atomically subtract 1 from rwlk->n
__atomic_sub_fetch(&rwlk->n, 1, _ ATOMIC_RELEASE) ;
}

void rwlock_w_acquire (struct rwspinlock =*rwlk) {
while (1) {
// if rwlk->n is 0, set it to -1, and return true; otherwise
// return false
int32_t v = 0;
if (__atomic_compare_exchange_n (&rwlk->n, &v, -1,
0, __ATOMIC_ACQUIRE, _ ATOMIC_RELAXED)) {
break;

void rwlock_w_release (struct rwspinlock =*rwlk) {
__atomic_store_n(&rwlk->n, 0, _ ATOMIC_RELEASE);
}

12

8. [8 points]: Which of the following statements are true about Ben’s implementation?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False The lock can never be held by a reader and a writer at the same time
B. True / False The lock can be held by many readers

C. True / False A writer may never be able to acquire the lock

232

D. True / False The lock can be acquired in read mode — 1 times without releasing the lock

Answer: A, B, and C. C is correct because even if every reader holds the lock for a finite time and
then releases, it could be that a collection of reading threads overlap their critical sections and cause
n to be continuously greater than zero. D is wrong, because a signed-integer can count up to 23! — 1
readers; the next one overflows the signed integer. (Some real-world read-write lock implementations
must handle overflow.)

Consider a multithreaded program in which n threads acquire a read-write lock in read mode, compute for
some time ¢, and then release the lock. None of the threads acquire the lock in write mode. The program is
running on a 16-CPU x86 processor as used in the RCU paper “RCU Usage in the Linux kernel: one decade
later”.

9. [8 points]: Which of the following are true statements?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False If nislarge and ¢ is 1s, the lock will be a performance bottleneck.

B. True / False If n islarge and ¢ is Os, the lock will be a performance bottleneck.

Answer: B is correct: the atomic operations in rwlock_r_acquire become a bottleneck, because
all cores will continuously invoke them and the hardware will execute them serially. A is wrong
because if the critical section is one second, there will be very little contention on the read lock.

13

VIII Containers and VMs

Consider the reading “Blending Containers and Virtual Machines: a study of Firecracker and gVisor (2020)”.
Suppose an adversary discovers that calling close (-1) causes the Linux kernel to crash, and writes a
program to invoke close (—-1). Assume there are no other bugs.

10. [9 points]: Which of the following are true statements?
(Circle True or False for each choice; we subtract points for incorrect answers.)

A. True / False If the program is running on gVisor, the program causes a crash in the host
kernel shown in Figure 2, if the host kernel is the buggy Linux kernel.

B. True / False If the program is running on Firecracker, the program causes a crash in the
Linux kernel shown at the bottom of Figure 3 (assuming it is a buggy Linux kernel).

C. True / False If the program is running in a LXC container on top of a Linux kernel, the
program causes a crash in the Linux kernel (assuming close is on the allowed syscall list).

Answer: C is correct, because an application inside an LXC container directly invokes the system
calls of the buggy Linux kernel. B is false, because the application cannot directly invoke a system
call of the host kernel: it can only invoke system calls of the guest kernel. A is false because the
Sentry implements the c1ose system call and doesn’t relay it to the host kernel.

14

VEE 20, March 17, 2020, Lausanne, Switzerland

Sandbox

Sentry (userspace kemel)

Container Gofer

User

Kernel

Figure 2. gVisor architecture

N Block "
[vCPU] [Storage] {MLIUUI’}] [VNIC]

microVM

I Hardware
Emulation

[KVM |

e Firecracker
[Filesystem and Network] VMM

Linux Kernel

Figure 3. Firecracker architecture

IX Meltdown

The paper Meltdown: Reading Kernel Memory from User Space, by Lipp et al., mentions that KAISER is
an effective defense against Meltdown.

11. [10 points]: Why does KAISER prevent Meltdown from working?
(Circle the one best choice; we subtract points for incorrect answers.)
A. KAISER marks each page of physical RAM as inaccessible to user code.
B. KAISER clears the PTE_U bits of PTEs for kernel virtual addresses in user page tables.

C. KAISER causes kernel virtual addresses to all be mapped to physical page zero, so that Melt-
down loads the wrong data.

D. KAISER causes user memory not be be mapped when the kernel is executing, so that kernel
activity cannot affect user space.

E. KAISER enables kernel address space layout randomization (KASLR), which makes Meltdown
impossible.

15

F. None of the above.

Answer: F is the correct answer. What KAISER does is set up user page tables so that they have
no PTEs for kernel addresses. Pre-KAISER kernels mapped the kernel into user page tables but
with PTE_U clear; the mere presence of the mappings, even without permissions, is what Meltdown
exploits. A is wrong because even if there were a mechanism to protect physical pages, that would
prevent the program from accessing its own memory. B is wrong because the kernel clears those
PTE_U bits even without KAISER: and much of the point of Meltdown is that it can extract kernel
data despite the PTE_U bits being clear. C is wrong because it’s not what KAISER does (though
it would prevent Meltdown from working). D is wrong because, though KAISER does indeed omit
user mappings from the kernel’s page table, that doesn’t have any effect on Meltdown. E is wrong
because, as the paper points out, KASLR does not prevent Meltdown from working (also KAISER
doesn’t enable KASLR).

16

X 6.1810

12. [2 points]: What lab did you learn the least from (net, lock, fs, or mmap), and why?

Answer: net (x62): more about hardware than xv6, want more guidance, poor alignment with
lectures. lock (x49): simple, didn’t dig into code, overlap with other classes. fs (x27): straightforward,
didn’t touch the hard parts about logging. mmap (x26): just more VM stuff that was already covered
in many labs, lots of debugging.

13. [2 points]: Which of the papers (Livelock, Shenango, ext3, RCU, containers, BPF, Meltdown)
do you think we should delete next year, and why?

Answer: Containers (x44). Shenango (x42). BPF (x35). Meltdown (x23): already read the paper in
other classes. ext3 (x11). RCU (x8). Livelock (x2).

Livelock and Shenango are a bit redundant because they’re both networking (x3).

End of Quiz II — Happy holidays!

17

