
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2018

Quiz II Solutions

Mean 55.4 Median 58 Standard deviation 13.0

0

5

10

15

0 25 50 75

score (max possible: 85)

st
ud

en
ts

0

4

8

12

16
count

1



I Lab 4

You just completed the user-level implementation of fork() using sys exofork() for Lab 4. Your friend
who is also taking 6.828 is advertising her idea for even faster COW page allocation; only duplicate the
writable pages during COW. This is her implementation:

envid_t
fork(void)
{

envid_t envid;
set_pgfault_handler(pgfault);

// Create a child.
envid = sys_exofork();
if (envid < 0)

return envid;
if (envid == 0) {

thisenv = &envs[ENVX(sys_getenvid())];
return 0;

}

// My COW opt starts here!
int pn, end_pn, r;

for (pn = 0; pn < PGNUM(UTOP); ) {
if (!(uvpd[pn >> 10] & PTE_P)) {

pn += NPTENTRIES;
continue;

}
for (end_pn = pn + NPTENTRIES; pn < end_pn; pn++) {

// Here: skip non-writeable pages
if ((uvpt[pn] & (PTE_P|PTE_U|PTE_W)) != (PTE_P|PTE_U|PTE_W))

continue;
if (pn == PGNUM(UXSTACKTOP - 1))

continue;
duppage(envid, pn);

}
}

1. [5 points]: Briefly explain what problems you see with her solution and how you would address
them.

Answer: Her implementation doesn’t map the RO pages at all (or COW pages, for that matter). Those
should be mapped too, with the proper permissions, otherwise the child won’t be able to execute.

2



II Lab 5

In Lab 5, the file server services requests in a loop (see serve() in fs/serv.c):

while (1) {
perm = 0;
req = ipc_recv((int32_t *) &whom, fsreq, &perm);

// service request

sys_page_unmap(0, fsreq);
}

Note that the ipc recv() call and sys page unmap() call reference the same hard-coded fsreq address
(0x0ffff000).

2. [2 points]: If we omit the call to sys page unmap(), will the code still behave correctly?
That is, will the file server still correctly satisfy requests? Explain briefly your answer. (If not, make
sure to explain what will go wrong.)

Answer: Yes, it will work correctly.

3. [5 points]: If we omit the call to sys page unmap(), will the kernel leak physical memory?
Explain briefly why or why not?

Answer: Th kernel won’t leak memory. A correct kernel wouldn’t let any user process leak physical
memory. Here, when ipc recv() maps a new physical page onto an already-mapped virtual address,
page insert() calls page remove(), which calls page decref(), which frees the physical page if neces-
sary.

3



III Journaling ext2fs

This question is based on the paper Journaling the Linux ext2fs Filesystem by Tweedie.

4. [5 points]: Give an example of a file system call that does not need journaling and briefly
explain why.

Answer: Any file system call that doesn’t modify the file system (e.g., stat).

5. [5 points]: When an new transaction overwrites data written by a previous transaction that
is committing, ext2fs journaling causes a page fault and makes new copy of the page. Describe a
concrete scenario what could go wrong (i.e., the on-disk file system ends up in an incorrect state) if
extfs journaling didn’t do this.

Answer: A directory may contain data of the new transaction, even if the new transaction doesn’t
commit. In general, if tx1 and tx2 both modify page X. now, when tx data is getting written to disk,
tx1’s page X is the modified tx2 version. then, tx1 commits (and tx2 does not), system crashes, and
replaying the log uses the bad copy of page X (because it has been modified by tx2).

4



IV OS organization

6. [8 points]: Which of the following statements are true about kernel organizations, based on
Exokernel: an operating system architecture for application-level resource management by Engler et
al.?

(Circle True or False for each choice.)

• True / False The JOS file system is implemented in monolithic style

• True / False The UVPT trick in JOS is an example use of an exokernel-style interface

• True / False A monolithic kernel implements fork in the kernel

• True / False User programs in an exokernel can modify other user program’s kernel state

Answer: False; the JOS file runs as a user-level server. True; the page tables are directly exposed to user
space for UVPT. True; for example, see xv6. False; user programs cannot directly modify kernel state
without permission.

V Biscuit

7. [8 points]:

Which of the following statements are true about Biscuit, according to The benefits and costs of
writing a POSIX kernel in a high-level language by Cutler et al.?

(Circle True or False for each choice.)

• True / False Interrupt handlers can use any Go feature

• True / False Lock-free code can call functions that may cause the caller to be put to sleep

• True / False Biscuit needs less kernel memory than Linux to run efficiently

• True / False A Biscuit system call returns an error when the system call exhausts the available
kernel memory.

Answer: False; to avoid deadlock Biscuit interrupt handlers just set a a flag to wake up a go routine. True;
Biscuit can go to sleep in an RCU section. False; Biscuit needs headroom. False; Biscuit will block in a
system call until enough memory is available.

5



VI IX

This question is based on the paper IX: A Protected Dataplane Operating System for High Throughput and
Low Latency by Tweedie.

8. [5 points]: The Linux kernel is in the control plane instead of in one of the data planes. Briefly
explain why it is not in the data plane and what its function is in the control plane.

Answer: Linux kernel is too slow to be in the data plane but is necessary to set up the data planes.

9. [5 points]: Explain why the design of the JOS network stack is unable to achieve the performance
that IX delivers. In your explanation identify a concrete design aspect and explain why that aspect
limits performance.

Answer: Many system calls per packet, many IPCs per packet, one NIC queue, no parallel processing
of connections, etc.

6



Consider a machine with 12 cores and 10 Gbit/s NIC. Assume an IX configuration with 8 NIC queues and
8 cores, each associated with one queue. Ben writes a server using IX that receives small images (32 Kbyte
in size) and that writes each image into a separate file. He tests this configuration with 8 clients, each doing
one image transfer per second. You can assume that each client hashes to a different NIC queue. He also
runs a computationally-intensive image processing application on Linux that takes a few seconds to process
each file in parallel with receiving them; the application uses the remaining 4 cores in Ben’s machine.

10. [5 points]: Ben compares the performance of the IX setup with stock Linux (i.e., without IX)
on the same hardware. To his surprise, he finds that stock Linux achieves higher CPU utilization than
IX and processes images at higher rate than IX. Explain why.

Answer: The IX cores will be busy-spinning waiting for an image to arrive on the network, so they
cannot be used for image processing. By contrast, in Linux any cores that are not needed for net-
work handling can be used for image processing. The image processing is computationally-intensive
enough for Linux to get higher throughput by leveraging these extra cores.

7



VII Synchronization

For these questions, refer to McKenny et al. RCU Usage In The Linux Kernel: One Decade Later.

For the next question, consider the following simplified banking application, which includes total(), a
function to calculate the bank’s total assets, and transfer(), a function to move money from one account
to another.

rwlock_t lock;

struct account {
const char *name;
int balance;

};

struct account *accs[N];

int total(void) {
int n, total = 0;
read_lock(&lock);
for (i = 0; i < N; i++)

total += accs[i]->balance;
read_unlock(&lock);
return total;

}

void transfer(int fromidx, int toidx, int amount) {
write_lock(&lock);
accs[fromidx]->balance -= amount;
accs[toidx]->balance += amount;
write_unlock(&lock);

}

8



11. [5 points]: Alyssa suggests that RCU can sometimes be a more optimal alternative to read-
write locks. In terms of frequency of total() and transfer() API usage, which load patterns
would benefit the most from this potential optimization? Justify your answer.

Answer: RCU would improve performance the most when total() is called very often and transfer()
is called infrequently.

Recall the Linux RCU API you learned about in lecture. A summary is as follows:

• rcu read lock() Begin an RCU critical section.

• rcu read unlock() End an RCU critical section.

• synchronize rcu() Wait for pending RCU critical sections to finish.

• rcu dereference() Signal the intent to dereference a pointer inside an RCU critical section.

• rcu assign pointer() Assign a value to a pointer that is read in RCU critical sections.

9



So far, Ben has modified the banking application to use RCU as follows:

spinlock_t lock;

struct account {
const char *name;
int balance;

};

__rcu struct account *accs[N];

int total(void) {
int n, total = 0;
rcu_read_lock();
for (i = 0; i < N; i++)

total += rcu_dereference(accs[i])->balance;
rcu_read_unlock();
return total;

}

void transfer(int fromidx, int toidx, int amount) {
struct account *newfrom = malloc(sizeof(*newfrom));
struct account *newto = malloc(sizeof(*newto));
struct account *oldfrom, *oldto;

spin_lock(&lock);
// make a copy of the RCU objects
oldfrom = rcu_dereference(accs[fromidx]);
oldto = rcu_dereference(accs[toidx]);

*newfrom = *oldfrom;

*newto = *oldto;

// update the balances
newfrom->balance -= amount;
newto->balance += amount;

// update the RCU objects
rcu_assign_pointer(accs[fromidx], newfrom);
rcu_assign_pointer(accs[toidx], newto);
spin_unlock(&lock);

// free the previous version of the RCU objects
synchronize_rcu();
free(oldfrom);
free(oldto);

}

10



12. [5 points]: One invariant of the banking application is that the precise output of total()
should never be changed by transfer() because it only moves money between accounts within the
same bank. Surprisingly, Ben discovers that total() returns several different values during testing
it against concurrent invocations of transfer(). Explain what went wrong with Ben’s RCU-based
implementation. How could you fix it?

Answer: Unlike read-write locks, RCU doesn’t provide atomicity across updates to different objects.
One workaround might be to allocate an entirely new accs table during each transfer() opera-
tion. accs could be managed as a single RCU pointer. Another option is to use sequence locks.

11



VIII Virtualization

For these questions, refer to Adams and Agesen’s A Comparison of Software and Hardware Techniques for
x86 Virtualizationi and Dune: Safe User-level Access to Privileged CPU Features.

13. [5 points]: Ben is using Baker’s algorithm to enable concurrent garbage collection for
an application that runs inside a VM. The application primarily accesses a small working set but it
frequently allocates new memory from the heap. Assuming Ben is using a VMM with support for
both hardware and software virtualization, is Ben better off using Intel’s EPT hardware or shadow
paging to virtualize the page table? Justify your answer.

Answer: The EPT allows the guest OS to directly manipulate its page table, improving ptemod
performance dramatically. Since Baker’s algorithm requires frequent page table manipulation, it’s
best to optimize for this case.

14. [5 points]: Recall that VMware’s binary translator uses segmentation (and translation for the
%GS segment) to prevent access to the top of the address space (usually a 4MB region). Normally,
most operating systems don’t access that region of memory, but suppose a new guest operating system
did. Could VMware still support it? Carefully explain your answer.

Answer: Yes, one option would be to trap-and-emulate access to the top region. The VMM could
allocate 4MBs of physical memory and then emulate reads and writes to pretend it was being accessed
directly.

12



15. [5 points]: The Dune paper mentions that transitioning a process to Dune mode is irreversible.
In a more recent version of Dune, support for reversing Dune mode was added to allow for the refer-
ence count on the Dune file descriptor to be dropped, eliminating a memory leak. Suppose you had
a process that configured the page table with a very different virtual address-space layout than Linux
and Dune are currently providing at the guest-physical layer. What would the process have to ensure
before leaving Dune mode to prevent a crash?

Answer: The currently executing code and its stack must be stored in an identity mapped region, such
that their guest-virtual address is the same as their guest-physical address.

13



16. [5 points]: Ben is using Dune to add support for hardware isolation to a web browser. His code
includes a security sandbox that uses ring protection to enforce security checks, performing system
calls on the behalf of untrusted code. Suppose the untrusted code is executing the following code in
ring 3:

int foo(int fd)
{

return read(fd, (void *)0x10000, 0x2000); // read two pages into 0x10000
}

A partial listing of the address translations currently programmed into the page table and EPT is as
follows:

guest-virtual guest-physical host-physical
0x10000 0x20000 0x10000
0x11000 0x31000 0x0A000
0x20000 0x10000 0x1B000
0x21000 0x11000 0x11000

Assuming the security checks pass, provide the read system call(s) that the sandbox would have to
perform on the behalf of the untrusted code:

Answer:
read(fd, (void *)0x20000, 0x1000);
read(fd, (void *)0x31000, 0x1000);

14



IX 6.828

17. [1 points]: What was your favorite topic in 6.828?

Answer:

A. Virtual memory

B. Networking

C. Scalable locks

D. Dune

E. Biscuit

F. Exokernels

G. RCU

H. File System

I. Logging

18. [1 points]: Which 6.828 topic should we discard next year?

Answer:

A. Networking

B. Dune

C. IX

D. Biscuit

E. Binary translation

15



End of Quiz II — Happy holidays!

16


