
6.S081: Locking
Adam Belay <abelay@mit.edu>

Plan for today

• Examples of code that needs locks
• Lock abstraction + Deadlocks
• Atomic instructions and how to implement locks

Kfree() example in xv6

Why locks?

• Apps want to use multiple cores for parallel
speedups
• Kernel must handle parallel system calls too

• Implication: parallel access to datastructures
• Pro: Locks can enforce correct access to data
• Con: Locks limit parallel speedup

Why multiple cores?

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

Parallelism is unavoidable

• ILP wall: Increasingly difficult to find enough parallelism in
instruction stream to keep a powerful single thread busy
• Use multiple hardware threads (harts) instead

Locking example: Hash table

• Parallel operations
• Put() and Get()
• Collisions resolved

with chaining

struct entry {
int key, value;
struct entry *next;

};

…

Could keys go missing?

• Suppose put(5) and
put(10) run in parallel
• Both threads read and

write to table[0], but
in what order?
• When a possible

ordering could cause
incorrect behavior, it’s
known as a race
condition

put(5)

put(10)
Race condition

Race condition example

Thread 1: put(5)
READ table[0] -> tmp

WRITE tmp -> e->next

WRITE e -> table[0]

Thread 2: put(10)

READ table[0] -> tmp

WRITE tmp -> e->next

WRITE e -> table[0]

Time Last writer wins!

Big lock
Lock

Bucket locks

Lock #0

Lock #1

Lock #2

Lock #3

Lock #4

The lock abstraction

Using locks:
lock l;
acquire(&l);

x = x + 1; // ”critical section”
release(&l);

• A lock itself is an object
• Suppose multiple threads call acquire(&l):

• Only one returns right away
• The others must wait for release(&l)

• Protect different data with different locks
• Allows independent critical sections to run in parallel

• Locks not implicitly tied to data, programmer must plan

When to lock?

1. Do two or more threads touch a memory location?
2. Does at least one thread write to the memory

location?
If so, you need a lock!

Too conservative: Sometimes deliberate races are fine!
Too liberal: Think about invariants of entire data
structure, not just single memory locations (e.g. console)

Could locking be automatic?

• Idea: The language could associate a lock with
every object
• Compiler adds acquire() and release() around every use
• No room for programmer to forget!

• Can be awkward in practice
• E.g. rename(“d1/foo”, ”d2/foo”);
• Acquire d1; erase foo; release d1
• Acquire d2; add foo; release d2
• At one point, foo doesn’t exist at all!

• Programmer needs explicit control to hide
intermediate states

Perspectives on what locks
achieve
• Locks help avoid lost updates
• Locks help you create atomic multi-step operations,

hiding intermediate states
• Locks help maintain invariants on a data structure
• Assume: Invariants are true at start of critical region
• Intermediate states may violate invariants
• Restore invariants before releasing lock

Problem: Locks can cause
deadlock
What if:

CPU 0:
rename(”a/f1”, “b/f1”);
acquire(&a);
…
acquire(&b);
…

CPU 1:
Rename(“b/f2”, “a/f2”);
acquire(&b);
…
acquire(&a);
…

Hangs forever!

Solution to lock deadlocks

• Programmer works out an order in which locks are
acquired
• One idea: Use the VA of the lock, least to greatest

• Always acquire locks in the same order
• Complex!

Reality: There’s a tradeoff
between locking and modularity
• Locks make it hard to hide details inside modules
• E.g.: to avoid deadlock, you have to know which

locks are acquired by each function
• Locks aren’t necessarily the private business of

each individual module
• Too much abstraction can make it hard to write

correct, well-performing locking

Where to place locks?

One strategy: Top down
1. Write the module to be correct under serial

execution
2. Then add locks to force serial execution

Each locked section can only be executed by one CPU
at a time, so you can reason about it as serial code!

Where to place locks?

Another strategy: Bottom up
1. Look at the data (e.g., structs, globals, etc.)
2. Ask yourself, is this data shared?
3. If so, then ask yourself which lock protects access

to it?

What about
performance?
Otherwise, run on a single core

Locks prevent parallelism!

• To maintain parallelism split up data and locks
• Choosing the best split is a design challenge
• Whole ph.c table, each table[] row, or each entry?
• Whole FS, each file/directory, or each disk block?

• May need to make design changes to promote
parallelism
• Example: Break single free list into per-core free list

Lock granularity

• Start with big locks --- one per module perhaps
• Less opportunity for deadlock
• Less reasoning about invariants

• Then measure to see if there’s a problem
• Big locks could be enough, maybe little time is spent in

the module
• Redesign only if you have to

How to implement locks?

struct lock { int locked; };
acquire(l){
while(1){
if(l->locked == 0){ // A
l->locked = 1; // B
return;

}
}

}

Memory ordering

• The compiler and CPU can reorder reads and
writes!
• They do not have to obey the source program’s order of

memory references
• Legal behaviors are referred to as a “memory model”

• If you use locks, you don’t have to understand
memory ordering
• For exotic lock-free code, you’ll need to know every

detail

RISC-V Atomic Instructions

• AMO* instructions
1. v1 = *addr
2. *addr = OP(v1, v2)

• Supported operations:
• SWAP, ADD, AND, OR, XOR, MAX, MIN

• Read and write to memory location happens
atomically

RISC-V Fences

• fence instruction constrains ordering between
reads and writes
• fence(predecessor, successor): cannot observe any

operation in the successor set following a FENCE
before any operation in the predecessor set
• Example: FENCE(r, rw)

Special instruction for locks

• Combines ideas from fences and atomics
• Why did the designers choose this approach?

• amoswap.w.aq: no later memory operations can be
observed to take place before the swap
• amoswap.w.rl: the swap will not be observed before

any memory operations that happen before it

See C/C++ acquire and release semantics for a more
detailed discussion….

How to really implement a lock

li t0, 1 # Initialize swap value.

again:

amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.

bnez t0, again # Retry if held.

...

Critical section.

...

amoswap.w.rl x0, x0, (a0) # Release lock by storing
0.

Excerpted from The RISC-V Instruction Set Manual.

spinlock.c
xv6 support for locks

Why spin locks

• CPU cycles wasted while lock is waiting
• Idea: give up the CPU and switch to another

process
• Guidelines:
• Spin locks for very short critical sections
• What about longer critical sections?

• Blocking locks available in most systems
• Higher overheads typically
• But ability to yield the CPU

Are spin locks the only option?

• No!
• Don’t share (e.g., per-core data)
• Deliberate races
• Read-copy-update (later in this class)
• Read-write locks
• Lock-free algorithms (use atomics)
• Etc.

• Consider taking 6.823
• Cache coherence
• Cache consistency
• Link-load, store-conditional

Conclusion

• Don’t share if you don’t have to
• Start with coarse-grained locking
• Don’t assume, measure! Which locks prevent

parallelism?
• Insert fine-grained locking only when you need

more parallelism
• Use automatized tools like race detectors to find

locking bugs

