
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

The benefits and costs of writing a
POSIX kernel in a high-level language

Cody Cutler, M. Frans Kaashoek, and Robert T. Morris, MIT CSAIL

https://www.usenix.org/conference/osdi18/presentation/cutler

The benefits and costs of writing a POSIX kernel in a high-level language

Cody Cutler, M. Frans Kaashoek, Robert T. Morris
MIT CSAIL

Abstract
This paper presents an evaluation of the use of a high-level
language (HLL) with garbage collection to implement a
monolithic POSIX-style kernel. The goal is to explore
if it is reasonable to use an HLL instead of C for such
kernels, by examining performance costs, implementation
challenges, and programmability and safety benefits.

The paper contributes Biscuit, a kernel written in
Go that implements enough of POSIX (virtual memory,
mmap, TCP/IP sockets, a logging file system, poll, etc.)
to execute significant applications. Biscuit makes lib-
eral use of Go’s HLL features (closures, channels, maps,
interfaces, garbage collected heap allocation), which sub-
jectively made programming easier. The most challenging
puzzle was handling the possibility of running out of ker-
nel heap memory; Biscuit benefited from the analyzability
of Go source to address this challenge.

On a set of kernel-intensive benchmarks (including NG-
INX and Redis) the fraction of kernel CPU time Biscuit
spends on HLL features (primarily garbage collection and
thread stack expansion checks) ranges up to 13%. The
longest single GC-related pause suffered by NGINX was
115 microseconds; the longest observed sum of GC delays
to a complete NGINX client request was 600 microsec-
onds. In experiments comparing nearly identical system
call, page fault, and context switch code paths written in
Go and C, the Go version was 5% to 15% slower.

1 Introduction

The default language for operating system kernels is C:
Linux, macOS, and Windows all use C. C is popular for
kernels because it can deliver high performance via flexi-
ble low-level access to memory and control over memory
management (allocation and freeing). C, however, re-
quires care and experience to use safely, and even then
low-level bugs are common. For example, in 2017 at least
50 Linux kernel security vulnerabilities were reported
that involved buffer overflow or use-after-free bugs in C
code [34].

High-level languages (HLLs) provide type- and
memory-safety and convenient abstractions such as
threads. Many HLLs provide garbage collection to fur-
ther reduce programmer burden and memory bugs. It is

well-known that HLLs can be used in kernels: multiple
kernels have been written in HLLs, often as platforms to
explore innovative ideas (§2). On the other hand, leading
OS designers have been skeptical that HLLs’ memory
management and abstractions are compatible with high-
performance production kernels [51][47, p. 71].

While it would probably not make sense to re-write an
existing C kernel in an HLL, it is worth considering what
languages new kernel projects should use. Since kernels
impose different constraints and requirements than typical
applications, it makes sense to explore this question in the
context of a kernel.

We built a new kernel, Biscuit, written in Go [15] for
x86-64 hardware. Go is a type-safe language with garbage
collection. Biscuit runs significant existing applications
such as NGINX and Redis without source modification
by exposing a POSIX-subset system call interface. Sup-
ported features include multi-core, kernel-supported user
threads, futexes, IPC, mmap, copy-on-write fork, vnode
and name caches, a logging file system, and TCP/IP sock-
ets. Biscuit implements two significant device drivers in
Go: one for AHCI SATA disk controllers and one for Intel
82599-based Ethernet controllers. Biscuit has nearly 28
thousand lines of Go, 1546 lines of assembler, and no C.
We report lessons learned about use of Go in Biscuit, in-
cluding ways in which the language helped development,
and situations in which it was less helpful.

In most ways the design of Biscuit is that of a traditional
monolithic POSIX/Unix kernel, and Go was a comfort-
able language for that approach. In one respect the design
of Biscuit is novel: its mechanism for coping with kernel
heap exhaustion. We use static analysis of the Biscuit
source to determine how much heap memory each system
call (and other kernel activity) might need, and each sys-
tem call waits (if needed) when it starts until it can reserve
that much heap. Once a system call is allowed to continue,
its allocations are guaranteed to succeed without blocking.
This obviates the need for complex allocation failure re-
covery or deadlock-prone waiting for free memory in the
allocator. The use of an HLL that is conducive to static
analysis made this approach possible.

We run several kernel-intensive applications on Biscuit
and measure the effects of Go’s type safety and garbage
collection on kernel performance. For our benchmarks,
GC costs up to 3% of CPU. For NGINX, the longest single

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 89

GC-related pause was 115 microseconds, and the longest
a single NGINX client request was delayed (by many
individual pauses) was a total of 600 microseconds. Other
identifiable HLL performance costs amount to about 10%
of CPU.

To shed light on the specific question of C versus Go
performance in the kernel, we modify Biscuit and a C
kernel to have nearly identical source-level code paths for
two benchmarks that stress system calls, page faults, and
context switches. The C versions are about 5% and 15%
faster than the Go versions.

Finally, we compare the performance of Biscuit and
Linux on our kernel-intensive application benchmarks,
finding that Linux is up to 10% faster than Biscuit. This
result is not very illuminating about choice of language,
since performance is also affected by differences in the
features, design and implementation of Biscuit and Linux.
However, the results do provide an idea of whether the
absolute performance of Biscuit is in the same league as
that of a C kernel.

In summary, the main contributions of this paper are:
(1) Biscuit, a kernel written in Go with good performance;
(2) a novel scheme for coping with kernel heap exhaus-
tion; (3) a discussion of qualitative ways in which use
of an HLL in a kernel was and was not helpful; (4) mea-
surements of the performance tax imposed by use of an
HLL; and (5) a direct Go-vs-C performance comparison
of equivalent code typical of that found in a kernel.

This paper does not draw any top-level conclusion
about C versus an HLL as a kernel implementation lan-
guage. Instead, it presents experience and measurements
that may be helpful for others making this decision, who
have specific goals and requirements with respect to pro-
grammability, safety and performance. Section 9 summa-
rizes the key factors in this decision.

2 Related work

Biscuit builds on multiple areas of previous work: high-
level languages in operating systems, high-level systems
programming languages, and memory allocation in the
kernel. As far as we know the question of the impact of
language choice on kernel performance, all else being
equal, has not been explored.

Kernels in high-level languages. The Pilot [44] kernel
and the Lisp machine [17] are early examples of use of
a high-level language (Mesa [14] and Lisp, respectively)
in an operating system. Mesa lacked garbage-collection,
but it was a high-priority requirement for its successor
language Cedar [48]. The Lisp machine had a real-time
garbage collector [5].

A number of research kernels are written in high-level
languages (e.g., Taos [49], Spin [7], Singularity [23], J-

kernel [19], and KaffeOS [3, 4], House [18], the Mirage
unikernel [29], and Tock [27]). The main thrust of these
projects was to explore new ideas in operating system
architecture, often enabled by the use of a type-safe high-
level language. While performance was often a concern,
usually the performance in question related to the new
ideas, rather than to the choice of language. Singular-
ity quantified the cost of hardware and software isola-
tion [22], which is related to the use of a HLL, but didn’t
quantify the cost of safety features of a HLL language, as
we do in §8.4.

High-level systems programming languages. A num-
ber of systems-oriented high-level programming lan-
guages with type safety and garbage collection seem suit-
able for kernels, including Go, Java, C#, and Cyclone [25]
(and, less recently, Cedar [48] and Modula-3 [37]). Other
systems HLLs are less compatible with existing kernel
designs. For example, Erlang [2] is a “shared-nothing”
language with immutable objects, which would likely
result in a kernel design that is quite different from tradi-
tional C shared-memory kernels.

Frampton et al. introduce a framework for language
extensions to support low-level programming features in
Java, applying it to a GC toolkit [13]. Biscuit’s goal is
efficiency for kernels without modifying Go. Kernels have
additional challenges such as dealing with user/kernel
space, page tables, interrupts, and system calls.

A number of new languages have recently emerged for
systems programming: D [11], Nim(rod) [42], Go [15],
and Rust [36]. There are a number of kernels in
Rust [12, 26, 27, 28, 39, 50], but none were written with
the goal of comparing with C as an implementation lan-
guage. Gopher OS is a Go kernel with a similar goal as
Biscuit, but the project is at an early stage of develop-
ment [1]. Other Go kernels exists but they don’t target the
questions that Biscuit answers. For example, Clive [6]
is a unikernel and doesn’t run on the bare metal. The
Ethos OS uses C for the kernel and Go for user-space
programs, with a design focused on security [41]. gVisor
is a user-space kernel, written in Go, that implements a
substantial portion of the Linux system API to sandbox
containers [16].

Memory allocation. There is no consensus about
whether a systems programming language should have
automatic garbage-collection. For example, Rust is par-
tially motivated by the idea that garbage collection cannot
be made efficient; instead, the Rust compiler analyzes the
program to partially automate freeing of memory. This
approach can make sharing data among multiple threads
or closures awkward [26].

Concurrent garbage collectors [5, 24, 30] reduce pause
times by collecting while the application runs. Go 1.10
has such a collector [21], which Biscuit uses.

90 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Several papers have studied manual memory allocation
versus automatic garbage collection [20, 52], focusing
on heap headroom memory’s effect in reducing garbage
collection costs in user-level programs. Headroom is also
important for Biscuit’s performance (§5 and §8.6).

Rafkind et al. added garbage collection to parts of
Linux through automatic translation of C source [43]. The
authors observe that the kernel environment made this task
difficult and adapted a fraction of a uniprocessor Linux
kernel to be compatible with garbage collection. Biscuit
required a fresh start in a new language, but as a result
required less programmer effort for GC compatibility and
benefited from a concurrent and parallel collector.

Linux’s slab allocators [8] are specifically tuned for use
in the kernel; they segregate free objects by type to avoid
re-initialization costs and fragmentation. A hypothesis in
the design of Biscuit is that Go’s single general-purpose
allocator and garbage collector are suitable for a wide
range of different kernel objects.

Kernel heap exhaustion. All kernels have to cope with
the possibility of running out of memory for the kernel
heap. Linux optimistically lets system calls proceed up
until the point where an allocation fails. In some cases
code waits and re-tries the allocation a few times, to give
an “out-of-memory” killer thread time to find and destroy
an abusive process to free memory. However, the allo-
cating thread cannot generally wait indefinitely: it may
hold locks, so there is a risk of deadlock if the victim
of the killer thread is itself waiting for a lock [9]. As a
result Linux system calls must contain code to recover
from allocation failures, undoing any changes made so
far, perhaps unwinding through many function calls. This
undo code has a history of bugs [10]. Worse, the final
result will be an error return from a system call. Once
the heap is exhausted, any system call that allocates will
likely fail; few programs continue to operate correctly
in the face of unexpected errors from system calls, so
the end effect may be application-level failure even if the
kernel code handles heap exhaustion correctly.

Biscuit’s reservation approach yields simpler code than
Linux’s. Biscuit kernel heap allocations do not fail (much
as with Linux’s contentious “too small to fail” rule [9,
10]), eliminating a whole class of complex error recovery
code. Instead, each Biscuit system call reserves kernel
heap memory when it starts (waiting if necessary), using
a static analysis system to decide how much to reserve.
Further, Biscuit applications don’t see system call failures
when the heap is exhausted; instead, they see delays.

3 Motivation

This section outlines our view of the main considerations
in the choice between C and an HLL for the kernel.

3.1 Why C?
A major reason for C’s popularity in kernels is that it
supports low-level techniques that can help performance,
particularly pointer arithmetic, easy escape from type
enforcement, explicit memory allocation, and custom al-
locators [51][47, p. 71]. There are other reasons too (e.g.
C can manipulate hardware registers and doesn’t depend
on a complex runtime), but performance seems most im-
portant.

3.2 Why an HLL?
The potential benefits of high-level languages are well
understood. Automatic memory management reduces
programmer effort and use-after-free bugs; type-safety
detects bugs; runtime typing and method dispatch help
with abstraction; and language support for threads and
synchronization eases concurrent programming.

Certain kinds of bugs seem much less likely in an HLL
than in C: buffer overruns, use-after-free bugs [40], and
bugs caused by reliance on C’s relaxed type enforcement.
Even C code written with care by expert programmers
has C-related bugs [40]. The CVE database for the Linux
kernel [34] lists 40 execute-code vulnerabilities for 2017
which would be wholly or partially ameliorated by use of
an HLL (see §8.2).

Use-after-free bugs are notoriously difficult to debug,
yet occur often enough that the Linux kernel includes
a memory checker that detects some use-after-free and
buffer overrun bugs at runtime [46]. Nevertheless, Linux
developers routinely discover and fix use-after-free bugs:
Linux has at least 36 commits from January to April of
2018 for the specific purpose of fixing use-after-free bugs.

Another area of kernel programming that would benefit
from HLLs is concurrency. Transient worker threads can
be cumbersome in C because the code must decide when
the last thread has stopped using any shared objects that
need to be freed; this is easier in a garbage collected
language.

However, use of a garbage-collected HLL is not free.
The garbage collector and safety checks consume CPU
time and can cause delays; the expense of high-level fea-
tures may deter their use; the language’s runtime layer
hides important mechanisms such as memory allocation;
and enforced abstraction and safety may reduce develop-
ers’ implementation options.

4 Overview

Biscuit’s main purpose is to help evaluate the practicality
of writing a kernel in a high-level language. Its design is
similar to common practice in monolithic UNIX-like ker-
nels, to facilitate comparison. Biscuit runs on 64-bit x86
hardware and is written in Go. It uses a modified version
of the Go 1.10 runtime implementation; the runtime is

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 91

process process

Shim

Go runtime

Biscuit

User
space

Kernel
space

Figure 1: Biscuit’s overall structure.

written in Go with some assembly. Biscuit adds more as-
sembly to handle boot and entry/exit for system calls and
interrupts. There is no C. This section briefly describes
Biscuit’s components, focusing on areas in which use of
Go affected the design and implementation.

Boot and Go Runtime. The boot block loads Biscuit,
the Go runtime, and a “shim” layer (as shown in Figure 1).
The Go runtime, which we use mostly unmodified, ex-
pects to be able to call an underlying kernel for certain
services, particularly memory allocation and control of
execution contexts (cores, or in Go terminology, threads).
The shim layer provides these functions, since there is
no underlying kernel. Most of the shim layer’s activity
occurs during initialization, for example to pre-allocate
memory for the Go kernel heap.

Processes and Kernel Goroutines. Biscuit provides
user processes with a POSIX interface: fork, exec,
and so on, including kernel-supported threads and futexes.
A user process has one address space and one or more
threads. Biscuit uses hardware page protection to isolate
user processes. A user program can be written in any
language; we have implemented them only in C and C++
(not Go). Biscuit maintains a kernel goroutine correspond-
ing to each user thread; that goroutine executes system
calls and handlers for page faults and exceptions for the
user thread. “goroutine” is Go’s name for a thread, and in
this paper refers only to threads running inside the kernel.

Biscuit’s runtime schedules the kernel goroutines of
user processes, each executing its own user thread in user-
mode when necessary. Biscuit uses timer interrupts to
switch pre-emptively away from user threads. It relies
on pre-emption checks generated by the Go compiler to
switch among kernel goroutines.

Interrupts. A Biscuit device interrupt handler marks an
associated device-driver goroutine as runnable and then
returns, as previous kernels have done [35, 45]. Interrupt
handlers cannot do much more without risk of deadlock,
because the Go runtime does not turn off interrupts during
sensitive operations such as goroutine context switch.

Handlers for system calls and faults from user space
can execute any Go code. Biscuit executes this code in

the context of the goroutine that is associated with the
current user thread.

Multi-Core and Synchronization. Biscuit runs in par-
allel on multi-core hardware. It guards its data structures
using Go’s mutexes, and synchronizes using Go’s chan-
nels and condition variables. The locking is fine-grained
enough that system calls from threads on different cores
can execute in parallel in many common situations, for
example when operating on different files, pipes, sockets,
or when forking or execing in different processes. Biscuit
uses read-lock-free lookups in some performance-critical
code (see below).

Virtual Memory. Biscuit uses page-table hardware to
implement zero-fill-on-demand memory allocation, copy-
on-write fork, and lazy mapping of files (e.g., for exec)
in which the PTEs are populated only when the process
page-faults, and mmap.

Biscuit records contiguous memory mappings com-
pactly, so in the common case large numbers of mapping
objects aren’t needed. Physical pages can have multiple
references; Biscuit tracks these using reference counts.

File System. Biscuit implements a file system supporting
the core POSIX file system calls. The file system has a
file name lookup cache, a vnode cache, and a block cache.
Biscuit guards each vnode with a mutex and resolves
pathnames by first attempting each lookup in a read-lock-
free directory cache before falling back to locking each
directory named in the path, one after the other. Biscuit
runs each file system call as a transaction and has a journal
to commit updates to disk atomically. The journal batches
transactions through deferred group commit, and allows
file content writes to bypass the journal. Biscuit has an
AHCI disk driver that uses DMA, command coalescing,
native command queuing, and MSI interrupts.

Network Stack. Biscuit implements a TCP/IP stack and
a driver for Intel PCI-Express Ethernet NICs in Go. The
driver uses DMA and MSI interrupts. The system-call
API provides POSIX sockets.

Limitations. Although Biscuit can run many Linux C
programs without source modification, it is a research pro-
totype and lacks many features. Biscuit does not support
scheduling priority because it relies on the Go runtime
scheduler. Biscuit is optimized for a small number of
cores, but not for large multicore machines or NUMA.
Biscuit does not swap or page out to disk, and does not
implement the reverse mapping that would be required to
steal mapped pages. Biscuit lacks many security features
like users, access control lists, or address space random-
ization.

92 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Garbage collection

Biscuit’s use of garbage collection is a clear threat to its
performance. This section outlines the Go collector’s
design and describes how Biscuit configures the collector;
§8 evaluates performance costs.

5.1 Go’s collector
Go 1.10 has a concurrent parallel mark-and-sweep
garbage collector [21]. The concurrent aspect is critical
for Biscuit, since it minimizes the collector’s “stop-the-
world” pauses.

When the Go collector is idle, the runtime allocates
from the free lists built by the last collection. When
the free space falls below a threshold, the runtime en-
ables concurrent collection. When collection is enabled,
the work of following (“tracing”) pointers to find and
mark reachable (“live”) objects is interleaved with execu-
tion: each allocator call does a small amount of tracing
and marking. Writes to already-traced objects are de-
tected with compiler-generated “write barriers” so that
any newly installed pointers will be traced. Once all point-
ers have been traced, the collector turns off write barriers
and resumes ordinary execution. The collector suspends
ordinary execution on all cores (a “stop-the-world” pause)
twice during a collection: at the beginning to enable the
write barrier on all cores and at the end to check that all
objects have been marked. These stop-the-world pauses
typically last dozens of microseconds. The collector re-
builds the free lists from the unmarked parts of memory
(“sweeps”), again interleaved with Biscuit execution, and
then becomes idle when all free heap memory has been
swept. The collector does not move objects, so it does not
reduce fragmentation.

The fraction of CPU time spent collecting is roughly
proportional to the number of live objects, and inversely
proportional to the interval between collections [20, 52].
This interval can be made large by devoting enough RAM
to the heap that a substantial amount of space (“head-
room”) is freed by each collection.

The Go collector does most of its work during calls to
the heap allocator, spreading out this work roughly evenly
among calls. Thus goroutines see delays proportional to
the amount that they allocate; §8.5 presents measurements
of these delays for Biscuit.

5.2 Biscuit’s heap size
At boot time, Biscuit allocates a fixed amount of RAM for
its Go heap, defaulting to 1/32nd of total RAM. Go’s col-
lector ordinarily expands the heap memory when live data
exceeds half the existing heap memory; Biscuit disables
this expansion. The next section (§6) explains how Bis-
cuit copes with situations where the heap space is nearly
filled with live data.

6 Avoiding heap exhaustion

Biscuit must address the possibility of live kernel data
completely filling the RAM allocated for the heap (“heap
exhaustion”). This is a difficult area that existing kernels
struggle with (§2).

6.1 Approach: reservations
Biscuit is designed to tolerate heap exhaustion without
kernel failure. In addition, it can take corrective action
when there are identifiable “bad citizen” processes that al-
locate excessive kernel resources implemented with heap
objects, such as the structures describing open files and
pipes. Biscuit tries to identify bad citizens and kill them,
in order to free kernel heap space and allow good citizens
to make progress.

Biscuit’s approach to kernel heap exhaustion has three
elements. First, it purges caches and soft state as the
heap nears exhaustion. Second, code at the start of each
system call waits until it can reserve enough heap space
to complete the call; the reservation ensures that the heap
allocations made in the call will succeed once the wait (if
any) is over. Third, a kernel “killer” thread watches for
processes that are consuming lots of kernel heap when
the heap is near exhaustion, and kills them.

This approach has some good properties. Applications
do not have to cope with system call failures due to kernel
heap exhaustion. Kernel code does not see heap alloca-
tion failure (with a few exceptions), and need not include
logic to recover from such failures midway through a sys-
tem call. System calls may have to wait for reservations,
but they wait at their entry points without locks held, so
deadlock is avoided.

The killer thread must distinguish between good and
bad citizens, since killing a critical process (e.g., init)
can make the system unusable. If there is no obvious
“bad citizen,” this approach may block and/or kill valuable
processes. Lack of a way within POSIX for the kernel to
gracefully revoke resources causes there to be no good
solution in some out-of-memory situations.

The mechanisms in this section do not apply to non-
heap allocations. In particular, Biscuit allocates physical
memory pages from a separate allocator, not from the
Go heap; page allocations can fail, and kernel code must
check for failure and recover (typically by returning an
error to a system call).

6.2 How Biscuit reserves
Biscuit dedicates a fixed amount of RAM M for the kernel
heap. A system call only starts if it can reserve enough
heap memory for the maximum amount of simultaneously
live data that it uses, called s. A system call may allocate
more than s from the heap, but the amount over s must
be dead and can be freed by the collector. This means
that, even in the extreme case in which all but s of the

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 93

reserve(s):
g := last GC live bytes
c := used bytes
n := reserved bytes
L := g + c + n
M := heap RAM bytes
if L + s < M:

reserved bytes += s
else:

wake killer thread
wait for OK from killer thread

release(s):
a := bytes allocated by syscall
if a < s:

used bytes += a
else:

used bytes += s
reserved bytes -= s

Figure 2: Pseudo code for heap reservations in Biscuit.

heap RAM is used by live data or is already reserved, the
system call can execute, with collections as needed to
recover the call’s own dead data in excess of s.

Ideally, a reservation should check that M minus the
amount of live and reserved data in the heap is greater
than or equal to s. However, except immediately after a
collection, the amount of live heap data is not known. Bis-
cuit maintains a conservative over-estimate of live heap
data using three counters: g, c, and n. g is the amount of
live data marked by the previous garbage collection. c is
the total amount of reservations made by system calls that
have completed. n is the total outstanding reservations of
system calls that are executing but not finished. Let L be
the sum of g, c, and n.

Figure 2 presents pseudo code for reserving and re-
leasing the reservation of heap RAM in Biscuit. Before
starting a system call, a thread checks that L+ s < M.
If L+ s < M, the thread reserves by adding s to n, oth-
erwise the thread wakes up the killer thread and sleeps.
When finished, a system call calculates a, the total amount
actually allocated, and uses a to (partially) release any
over-reservation: if a <s, the system call adds a to c and
subtracts s from n. Otherwise, a≥ s and the system call
adds s to c and subtracts s from n.

The reason for separate c and n is to carry over reser-
vations of system calls that span a garbage collection; a
collection sets c to zero but leaves n unchanged.

If heap memory is plentiful (live data � M), the
amount of live+dead data in the heap usually grows faster
than L, so collections are triggered by heap free list ex-
haustion rather than by L+ s≥M. Thus system calls do
not wait for memory, and do not trigger the killer thread.
As live heap data increases, and g+ n gets close to M,
L+ s may reach M before a collection would ordinarily
be triggered. For this reason the killer thread performs a
collection before deciding whether to kill processes.

6.3 Static analysis to find s
We have developed a tool, MAXLIVE, that analyzes the
Biscuit source code and the Go packages Biscuit uses
to find s for each system call. The core challenge is
detecting statically when allocated memory can no longer
be live, since many system calls allocate memory for
transient uses. Other challenges include analyzing loops
with non-constant bounds, and determining reservations
for background kernel activities that are not associated
with a specific system call.

We address these challenges by exploiting the charac-
teristic event-handler-style structure of most kernel code,
which does a modest amount of work and then returns
(or goes idle); system call implementations, for example,
work this way. Furthermore, we are willing to change
the kernel code to make it amenable to the reservation
approach, for example to avoid recursion (we changed
a few functions). Two modifications were required to
standard Go packages that Biscuit uses (packages time
and fmt).

6.3.1 Basic MAXLIVE operation
MAXLIVE examines the call graph (using Go’s ssa and
callgraph packages) to detect all allocations a system call
may perform. It uses escape and pointer analysis (Go’s
pointer package) to detect when an allocation does not
“escape” above a certain point in the call graph, meaning
that the allocation must be dead on return from that point.

MAXLIVE handles a few kinds of allocation specially:
go, defer, maps, and slices. go (which creates a goroutine)
is treated as an escaping allocation of the maximum kernel
stack size (the new goroutine itself must reserve memory
when it starts, much as if it were itself a system call). defer
is a non-escaping allocation, but is not represented by an
object in the SSA so MAXLIVE specifically considers it
an allocation. Every insertion into a map or slice could
double its allocated size; MAXLIVE generally doesn’t
know the old size, so it cannot predict how much memory
would be allocated. To avoid this problem, we annotate
the Biscuit source to declare the maximum size of slices
and maps, which required 70 annotations.

6.3.2 Handling loops
For loops where MAXLIVE cannot determine a useful
bound on the number of iterations, we supply a bound
with an annotation; there were 78 such loops. Biscuit
contains about 20 loops whose bounds cannot easily be
expressed with an annotation, or for which the worst case
is too large to be useful. Examples include retries to
handle wakeup races in poll, iterating over a directory’s
data blocks during a path component lookup, and iterating
over the pages of a user buffer in write.

We handle such loops with deep reservations. Each
loop iteration tries to reserve enough heap for just the one

94 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

iteration. If there is insufficient free heap, the loop aborts
and waits for free memory at the beginning of the system
call, retrying when memory is available. Two loops (in
exec and rename) needed code to undo changes after
an allocation failure; the others did not.

Three system calls have particularly challenging loops:
exit, fork, and exec. These calls can close many file
descriptors, either directly or on error paths, and each
close may end up updating the file system (e.g. on last
close of a deleted file). The file system writes allocate
memory, and may create entries in file system caches.
Thus, for example, an exiting process that has many file
descriptors may need a large amount of heap memory
for the one exit system call. However, in fact exit’s
memory requirements are much smaller than this: the
cache entries will be deleted if heap memory is tight, so
only enough memory is required to execute a single close.
We bound the memory use of close by using MAXLIVE
to find all allocations that may be live once close returns.
We then manually ensure that all such allocations are
either dead once close returns or are evictable cache
entries. That way exit, fork, and exec only need
to reserve enough kernel heap for one call to close.
This results in heap bounds of less than 500kB for all
system calls but rename and fork (1MB and 641kB,
respectively). The close system call is the only one we
manually analyze with the assistance of MAXLIVE.

6.3.3 Kernel threads
A final area of special treatment applies to long-running
kernel threads. An example is the filesystem logging
thread, which acts on behalf of many processes. Each
long-running kernel thread has its own kernel heap reser-
vation. Since exit must always be able to proceed when
the killer thread kills a process, kernel threads upon which
exit depends must never release their heap reservation.
For example, exit may need to free the blocks of un-
linked files when closing file descriptors and thus depends
on the filesystem logging thread. Other kernel threads,
like the ICMP packet processing thread, block and wait
for heap reservations when needed and release them when
idle.

6.3.4 Killer thread
The killer thread is woken up when a system call’s reser-
vation fails. The thread first starts a garbage collection
and waits for it to complete. If the collection doesn’t
free enough memory, the killer thread asks each cache to
free as many entries as possible, and collects again. If
that doesn’t yield enough free memory, the killer thread
finds the process with the largest total number of mapped
memory regions, file descriptors, and threads, in the as-
sumption that it is a genuine bad citizen, kills it, and again
collects. As soon as the killer thread sees that enough

memory has been freed to satisfy the waiting reservation,
it wakes up the waiting thread and goes back to sleep.

6.4 Limitations
Biscuit’s approach for handling heap exhaustion requires
that the garbage collector run successfully when there is
little or no free memory available. However, Go’s garbage
collector may need to allocate memory during a collection
in order to make progress, particularly for the work stack
of outstanding pointers to scan. We haven’t implemented
it, but Biscuit could recover from this situation by detect-
ing when the work stack is full and falling back to using
the mark bitmap as the work stack, scanning for objects
which are marked but contain unmarked pointers. This
strategy will allow the garbage collection to complete, but
will likely be slow. We expect this situation to be rare
since the work stack buffers can be preallocated for little
cost: in our experiments, the garbage collector allocates
at most 0.8% of the heap RAM for work stacks.

Because the Go collector doesn’t move objects, it
doesn’t reduce fragmentation. Hence, there might be
enough free memory but in fragments too small to sat-
isfy a large allocation. To eliminate this risk, MAXLIVE
should compute s for each size class of objects allocated
during a system call. Our current implementation doesn’t
do this yet.

6.5 Heap exhaustion summary
Biscuit borrows ideas for heap exhaustion from Linux:
the killer thread, and the idea of waiting and retrying after
the killer thread has produced free memory. Biscuit sim-
plifies the situation by using reservation checks at the start
of each system call, rather than Linux’s failure checks at
each allocation point; this means that Biscuit has less
recovery code to back out of partial system calls, and
can wait indefinitely for memory without fear of dead-
lock. Go’s static analyzability helped automate Biscuit’s
simpler approach.

7 Implementation

The Biscuit kernel is written almost entirely in Go: Fig-
ure 3 shows that it has 27,583 lines of Go, 1,546 lines of
assembly, and no C.

Biscuit provides 58 system calls, listed in Figure 4. It
has enough POSIX compatibility to run some existing
server programs (for example, NGINX and Redis).

Biscuit includes device drivers for AHCI SATA disk
controllers and for Intel 82599-based Ethernet controllers
such as the X540 10-gigabit NIC. Both drivers use DMA.
The drivers use Go’s unsafe.Pointer to access de-
vice registers and in-memory structures (such as DMA de-
scriptors) defined by device hardware, and Go’s atomic
package to control the order of these accesses. The code

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 95

Component Lang LOC

Biscuit kernel (mostly boot) asm 546
Biscuit kernel Go

Core 1700
Device drivers 4088
File system 7338
Network 4519
Other 1105
Processes 935
Reservations 749
Syscalls 5292
Virtual memory 1857
Total 27583

MaxLive Go 1299
Runtime modifications asm 1,000
Runtime modifications Go 3,200

Figure 3: Lines of code in Biscuit. Not shown are about 50,000 lines of
Go runtime and 32,000 lines of standard Go packages that Biscuit uses.

would be more concise if Go supported some kind of
memory fence.

Biscuit contains 90 uses of Go’s “unsafe” routines (ex-
cluding uses in the Go runtime). These unsafe accesses
parse and format packets, convert between physical page
numbers and pointers, read and write user memory, and
access hardware registers.

We modified the Go runtime to record the number of
bytes allocated by each goroutine (for heap reservations),
to check for runnable device handler goroutines, and to
increase the default stack size from 2kB to 8kB to avoid
stack expansion for a few common system calls.

Biscuit lives with some properties of the Go runtime
and compiler in order to avoid significantly modifying
them. The runtime does not turn interrupts off when hold-
ing locks or when manipulating a goroutine’s own private
state. Therefore, in order to avoid deadlock, Biscuit inter-
rupt handlers just set a flag indicating that a device han-
dler goroutine should wake up. Biscuit’s timer interrupt
handler cannot directly force goroutine context switches
because the runtime might itself be in the middle of a con-
text switch. Instead, Biscuit relies on Go’s pre-emption
mechanism for kernel goroutines (the Go compiler inserts
pre-emption checks in the generated code). Timer inter-
rupts do force context switches when they arrive from
user space.

Goroutine scheduling decisions and the context switch
implementation live in the runtime, not in Biscuit. One
consequence is that Biscuit does not control scheduling
policy; it inherits the runtime’s policy. Another conse-
quence is that per-process page tables are not switched
when switching goroutines, so Biscuit system call code
cannot safely dereference user addresses directly. Instead,
Biscuit explicitly translates user virtual addresses to physi-
cal addresses, and also explicitly checks page permissions.

Biscuit switches page tables if necessary before switching
to user space.

We modified the runtime in three ways to reduce de-
lays due to garbage collection. First, we disabled the
dedicated garbage collector worker threads so that ap-
plication threads don’t compete with garbage collector
threads for CPU cycles. Second, we made root marking
provide allocation credit so that an unlucky allocating
thread wouldn’t mark many roots all at once. Third, we
reduced the size of the pieces that large objects are broken
into for marking from 128kB to 10kB.

Biscuit implements many standard kernel performance
optimizations. For example, Biscuit maps the kernel text
using large pages to reduce iTLB misses, uses per-CPU
NIC transmit queues, and uses read-lock-free data struc-
tures in some performance critical code such as the direc-
tory cache and TCP polling. In general, we found that Go
did not hinder optimizations.

8 Evaluation

This section analyzes the costs and benefits of writing a
kernel in an HLL by exploring the following questions:

• To what degree does Biscuit benefit from Go’s high-
level language features? To answer, we count and
explain Biscuit’s use of these features (§8.1).

• Do C kernels have safety bugs that a high-level lan-
guage might mitigate? We evaluate whether bugs re-
ported in Linux kernel CVEs would likely apply to
Biscuit (§8.2).

• How much performance does Biscuit pay for Go’s
HLL features? We measure the time Biscuit spends
in garbage collection, bounds checking, etc., and the
delays that GC introduces (§8.4,8.5,8.6).

• What is the performance impact of using Go instead of
C? We compare nearly-identical pipe and page-fault
handler implementations in Go and C (§8.7).

• Is Biscuit’s performance in the same ballpark as Linux,
a C kernel (§8.8)?

• Is Biscuit’s reservation scheme effective at handling
kernel heap exhaustion (§8.9)?

• Can Biscuit benefit from RCU-like lock-free lookups
(§8.10)?

8.1 Biscuit’s use of HLL features
Our subjective feeling is that Go has helped us produce
clear code and helped reduce programming difficulty, pri-
marily by abstracting and automating low-level tasks.

Figure 5 shows how often Biscuit uses Go’s HLL fea-
tures, and compares with two other major Go systems:

96 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

accept bind chdir close connect dup2 execv exit
fcntl fork fstat ftruncate futex getcwd getpid getppid
getrlimit getrusage getsockopt gettid gettimeofday info kill link
listen lseek mkdir mknod mmap munmap nanosleep open
pipe2 poll pread prof pwrite read readv reboot
recvfrom recvmsg rename sendmsg sendto setrlimit setsockopt shutdown
socket socketpair stat sync threxit truncate unlink wait4
write writev

Figure 4: Biscuit’s 58 system calls.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Allocations

Maps
Slices

Channel

String

Multi-return

Closure

Finalizer

Defer

Go stm
t

Interface

Type asserts

Im
ports

C
ou

n
t/

1
K
 li

n
es

Biscuit
Golang

Moby

Figure 5: Uses of Go HLL features in the Git repositories for Biscuit,
Golang (1,140,318 lines), and Moby (1,004,300 lines) per 1,000 lines.
For data types (such as slices), the numbers indicate the number of
declarations of a variable, argument, or structure field of that type.

the Golang repository (containing Go’s compiler, run-
time, and standard packages), and Moby1, which contains
Docker’s container software and is the most starred Go
repository on Github at the time of writing. Figure 5
shows the number of times each feature is used per 1,000
lines of code. Biscuit uses Go’s HLL features about as
much as other Go systems software.

To give a sense how these HLL features can benefit
a kernel, the rest of this section provides examples of
successful uses, as well as situations where we didn’t use
them. Biscuit relies on the Go allocator and garbage col-
lector for nearly all kernel objects. Biscuit has 302 state-
ments that allocate an object from the GC-managed heap.
Some of the objects are compound (composed of multi-
ple Go objects). For example, Biscuit’s Vmregion t,
which describes a mapped region of virtual memory, has
a red/black tree of Vminfo t, which itself is compound
(e.g., when it is backed by a file). The garbage collector
eliminates the need for explicit code to free the parts of
such compound data types.

Biscuit’s only special-purpose allocator is its physi-
cal page allocator. It is used for process memory pages,
file cache pages, socket and pipe buffers, and page table
pages.

1https://github.com/moby/moby

Biscuit uses many goroutines. For example, device
drivers create long-running goroutines to handle events
such as packet arrival. Biscuit avoids goroutine creation,
however, in frequently executed code. The reason is that
the garbage collector produces pauses proportional to the
number of goroutines; these are insignificant for thou-
sands of goroutines but a problem with hundreds of thou-
sands.

The combination of threads and garbage collection is
particularly pleasing, since it avoids forcing the program-
mer to worry about delaying frees for shared objects until
the last sharing thread has finished. For example, Biscuit’s
poll system call installs a pointer to a helper object in
each file descriptor being polled. When input arrives on
a descriptor, the goroutine delivering the input uses the
helper object to wake up the polling thread. Garbage
collection eliminates races between arriving input and
freeing the helper object.

Some Biscuit objects, when the last reference to them
disappears, need to take clean-up actions before their
memory can be collected; for example, TCP connections
must run the TCP shutdown protocol. Go’s finalizers
were not convenient in these situations because of the
prohibition against cycles among objects with finalizers.
Biscuit maintains reference counts in objects that require
clean-up actions.

Biscuit uses many standard Go packages. For example,
Biscuit imports sync in 28 files and atomic packages
in 18 files. These packages provide mutexes, condition
variables, and low-level atomic memory primitives. Bis-
cuit’s MAXLIVE tool depends on Go’s code analysis pack-
ages (ssa, callgraph, and pointer).

Biscuit itself is split into 31 Go packages. Packages
allowed some code to be developed and tested in user
space. For example, we tested the file system package for
races and crash-safety in user space. The package system
also made it easy to use the file system code to create boot
disks.

8.2 Potential to reduce bugs
An HLL might help avoid problems such as memory cor-
ruption from buffer overflows. To see how this applies
to kernels, we looked at Linux execute-code bugs in the
CVE database published in 2017 [34]. There are 65 bugs

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 97

https://github.com/moby/moby

Type CVE-...

Use-after-free
or double-free

2016-10290, 2016-10288, 2016-8480,
2016-8449, 2016-8436, 2016-8392,
2016-8391, 2016-6791

Out-of-bounds
access

2017-1000251, 2017-6264, 2017-0622,
2017-0621, 2017-0620, 2017-0619,
2017-0614, 2017-0613, 2017-0612,
2017-0611, 2017-0608, 2017-0607,
2017-0521, 2017-0520, 2017-0465,
2017-0458, 2017-0453, 2017-0443,
2017-0442, 2017-0441, 2017-0440,
2017-0439, 2017-0438, 2017-0437,
2016-10289, 2016-10285, 2016-10283,
2016-8476, 2016-8421, 2016-8420,
2016-8419, 2016-6755

Figure 6: Linux kernel CVEs from 2017 that would not cause memory
corruption, code execution, or information disclosure in Biscuit.

where the patch is publicly available. For 11 bugs of the
65, we aren’t sure whether Go would have improved the
outcome. 14 of the 65 are logic bugs that could arise
as easily in Go as they do in C. Use of Go would have
improved the outcome of the remaining 40 bugs (listed in
Figure 6), based on manual inspection of the patch that
fixed the bug. The impact of some of these 40 bugs is
severe: several allow remote code execution or informa-
tion disclosure. Many of the bugs in the out-of-bounds
category would have resulted in runtime errors in Go, and
caused a panic. This is not ideal, but better than allow-
ing a code execution or information disclosure exploit.
The bugs in the use-after-free category would not have
occurred in Go, because garbage collection would obviate
them.

The Go runtime and packages that Biscuit relies on
also have bugs. There are 14 CVEs in Go published from
2016 to 2018. Two of them allow code execution (all in
go get) and two allow information gain (due to bugs in
Go’s smtp and math/big packages).

8.3 Experimental Setup
The performance experiments reported below were run on
a four-core 2.8 GHz Xeon X3460 with hyper-threading
disabled and 16 GB of memory. Biscuit uses Go version
1.10. Except where noted, the benchmarks use an in-
memory file system, rather than a disk, in order to stress
the CPU efficiency of the kernel. The in-memory file
system is the same as the disk file system, except that it
doesn’t append disk blocks to the in-memory log or call
the disk driver. The disk file system uses a Samsung 850
SSD.

The network server benchmarks have a dedicated ten-
gigabit Ethernet switch between a client and a server
machine, with no other traffic. The machines use Intel
X540 ten-gigabit network interfaces. The network inter-
faces use an interrupt coalescing period of 128 µs. The

client runs Linux.
Except when noted, Biscuit allocates 512MB of RAM

to the kernel heap. The reported fraction of CPU time
spent in the garbage collector is calculated as Ogc−Onogc

Ogc
,

where Ogc is the time to execute a benchmark with
garbage collection and Onogc is the time without garbage
collection. To measure Onogc, we reserve enough RAM
for the kernel heap that the kernel doesn’t run out of free
memory and thus never collects. This method does not
remove the cost to check, for each write, whether write
barriers are enabled.

We report the average of three runs for all figures ex-
cept maximums. Except when noted, each run lasts for
one minute, and variation in repeated runs for all measure-
ments is less than 3%.

Many of the performance experiments use three appli-
cations, all of which are kernel-intensive:

CMailbench CMailbench is a mail-server-like bench-
mark which stresses the virtual memory system via fork
and exec. The benchmark runs four server processes
and four associated clients, all on the same machine. For
each message delivery, the client forks and execs a helper;
the helper sends a 1660-byte message to its server over
a UNIX-domain socket; the server forks and execs a de-
livery agent; the delivery agent writes the message to a
new file in a separate directory for each server. Each
message involves two calls to each of fork, exec, and
rename as well as one or two calls to read, write,
open, close, fstat, unlink, and stat.

NGINX NGINX [38] (version 1.11.5) is a high-
performance web server. The server is configured with
four processes, all of which listen on the same socket
for TCP connections from clients. The server processes
use poll to wait for input on multiple connections. NG-
INX’s request log is disabled. A separate client machine
keeps 64 requests in flight; each request involves a fresh
TCP connection to the server. For each incoming connec-
tion, a server process parses the request, opens and reads
a 612-byte file, sends the 612 bytes plus headers to the
client, and closes the connection. All requests fetch the
same file.

Redis Redis (version 3.0.5) is an in-memory key/value
database. We modified it to use poll instead of select
(since Biscuit doesn’t support select). The benchmark
runs four single-threaded Redis server processes. A client
machine generates load over the network using two in-
stances of Redis’s “redis-benchmark” per Redis server
process, each of which opens 100 connections to the Re-
dis process and keeps a single GET outstanding on each
connection. Each GET requests one of 10,000 keys at
random. The values are two bytes.

98 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

8.4 HLL tax
This section investigates the performance costs of Go’s
HLL features for the three applications. Figure 7 shows
the results.

The “Tput” column shows throughput in application
requests per second.

The “Kernel time” column (fraction of time spent in
the kernel, rather than in user space) shows that the results
are dominated by kernel activity. All of the benchmarks
keep all four cores 100% busy.

The applications cause Biscuit to average between 18
and 48 MB of live data in the kernel heap. They allo-
cate transient objects fast enough to trigger dozens of
collections during each benchmark run (“GCs”). These
collections use between 1% and 3% of the total CPU time.

“Prologue cycles” are the fraction of total time used by
compiler-generated code at the start of each function that
checks whether the stack must be expanded, and whether
the garbage collector needs a stop-the-world pause. “WB
cycles” reflect compiler-generated write-barriers that take
special action when an object is modified during a con-
current garbage collection.

“Safety cycles” reports the cost of runtime checks for
nil pointers, array and slice bounds, divide by zero, and
incorrect dynamic casts. These checks occur throughout
the compiler output; we wrote a tool that finds them in
the Biscuit binary and cross-references them with CPU
time profiles.

“Alloc cycles” measures the time spent in the Go alloca-
tor, examining free lists to satisfy allocation requests (but
not including concurrent collection work). Allocation is
not an HLL-specific task, but it is one that some C kernels
streamline with custom allocators [8].

Figure 7 shows that the function prologues are the
most expensive HLL feature. Garbage collection costs
are noticeable but not the largest of the costs. On the
other hand, §8.6 shows that collection cost grows with
the amount of live data, and it seems likely that prologue
costs could be reduced.

8.5 GC delays
We measured the delays caused by garbage collection (in-
cluding interleaved concurrent work) during the execution
of NGINX, aggregated by allocator call, system call, and
NGINX request.

0.7% of heap allocator calls are delayed by collection
work. Of the delayed allocator calls, the average delay is
0.9 microseconds, and the worst case is 115 microseconds,
due to marking a large portion of the TCP connection
hashtable.

2% of system calls are delayed by collection work;
of the delayed system calls, the average delay is 1.5 mi-
croseconds, and the worst case is 574 microseconds, in-
curred by a poll system call that involved 25 allocator

calls that performed collection work.
22% of NGINX web requests are delayed by collection

work. Of the delayed requests, the average total collec-
tion delay is 1.8 microseconds (out of an average request
processing time of 45 microseconds). Less than 0.3%
of requests spend more than 100 microseconds garbage
collecting. The worst case is 582 microseconds, which
includes the worst-case system call described above.

8.6 Sensitivity to heap size
A potential problem with garbage collection is that it
consumes a fraction of CPU time proportional to the
“headroom ratio” between the amount of live data and
the amount of RAM allocated to the heap. This section
explores the effect of headroom on collection cost.

This experiment uses the CMailbench benchmark. We
artificially increased the live data by inserting two or
four million vnodes (640 or 1280 MB of live data) into
Biscuit’s vnode cache. We varied the amount of RAM
allocated to the kernel heap.

Figure 8 shows the results. The two most significant
columns are “Headroom ratio” and “GC%;” together they
show roughly the expected relationship. For example,
comparing the second and last table rows shows that in-
creasing both live data and total heap RAM, so that the
ratio remains the same, does not change the fraction of
CPU time spent collecting; the reason is that the increased
absolute amount of headroom decreases collection fre-
quency, but that is offset by the fact that doubling the live
data doubles the cost of each individual collection.

In summary, while the benchmarks in §8.4 / Figure 7
incur modest collection costs, a kernel heap with mil-
lions of live objects but limited heap RAM might spend
a significant fraction of its time collecting. We expect
that decisions about how much RAM to buy for busy
machines would include a small multiple (2 or 3) of the
expected peak kernel heap live data size.

8.7 Go versus C
This section compares the performance of code paths in
C and Go that are nearly identical except for language.
The goal is to focus on the impact of language choice on
performance for kernel code. The benchmarks involve a
small amount of code because of the need to ensure that
the C and Go versions are very similar.

The code paths are embedded in Biscuit (for Go) and
Linux (for C). We modified both to ensure that the ker-
nel code paths exercised by the benchmarks are nearly
identical. We disabled Linux’s kernel page-table isola-
tion, retpoline, address space randomization, transpar-
ent hugepages, hardened usercopy, cgroup, fair group,
and bandwidth scheduling, scheduling statistics, ftrace,
kprobes, and paravirtualization to make its code paths sim-
ilar to Biscuit. We also disabled Linux’s FS notifications,
atime and mtime updates to pipes, and replaced Linux’s

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 99

Tput Kernel Live GCs GC Prologue WB Safety Alloc
time data cycles cycles cycles cycles cycles

CMailbench 15,862 92% 34 MB 42 3% 6% 0.9% 3% 8%
NGINX 88,592 80% 48 MB 32 2% 6% 0.7% 2% 9%
Redis 711,792 79% 18 MB 30 1% 4% 0.2% 2% 7%

Figure 7: Measured costs of HLL features in Biscuit for three kernel-intensive benchmarks. “Alloc cycles” are not an HLL-specific cost, since C
code has significant allocation costs as well.

Live Total Headroom Tput GC% GCs
(MB) (MB) ratio (msg/s)

640 960 0.66 10,448 34% 43
640 1280 0.50 12,848 19% 25
640 1920 0.33 14,430 9% 13

1280 2560 0.50 13,041 18% 12

Figure 8: CMailbench throughput on Biscuit with different kernel heap
sizes. The columns indicate live heap memory; RAM allocated to the
heap; the ratio of live heap memory to heap RAM; the benchmark’s
throughput on Biscuit; the fraction of CPU cycles (over all four cores)
spent garbage collecting; and the number of collections.

scheduler and page allocator with simple versions, like
Biscuit’s. The benchmarks allocate no heap memory in
steady-state, so Biscuit’s garbage collector is not invoked.

8.7.1 Ping-pong

The first benchmark is “ping-pong” over a pair of pipes
between two user processes. Each process takes turns
performing five-byte reads and writes to the other pro-
cess. Both processes are pinned to the same CPU in order
to require the kernel to context switch between them.
The benchmark exercises core kernel tasks: system calls,
sleep/wakeup, and context switch.

We manually verified the similarity of the steady-state
kernel code paths (1,200 lines for Go, 1,786 lines for C,
including many comments and macros which compile
to nothing). The CPU-time profiles for the two showed
that time was spent in near-identical ways. The ten most
expensive instructions match: saving and restoring SSE
registers on context switch, entering and exiting the kernel,
wrmsr to restore the thread-local-storage register, the copy
to/from user memory, atomic instructions for locks, and
swapgs.

The results are 465,811 round-trips/second for Go and
536,193/second for C; thus C is 15% faster than Go on
this benchmark. The benchmark spends 91% and 93% of
its time in the kernel (as opposed to user space) for Go
and C, respectively. A round trip takes 5,259 instructions
for Go and 4,540 for C. Most of the difference is due to
HLL features: 250, 200, 144, and 112 instructions per
round-trip for stack expansion prologues, write barrier,
bounds, and nil pointer/type checks, respectively.

Biscuit Linux Ratio

CMailbench (mem) 15,862 17,034 1.07
CMailbench (SSD) 254 252 0.99
NGINX 88,592 94,492 1.07
Redis 711,792 775,317 1.09

Figure 9: Application throughput of Biscuit and Linux. “Ratio” is the
Linux to Biscuit throughput ratio.

8.7.2 Page-faults
The second Go-versus-C benchmark is a user-space pro-
gram that repeatedly calls mmap() to map 4 MB of zero-
fill-on-demand 4096-byte pages, writes a byte on each
page, and then unmaps the memory. Both kernels initially
map the pages lazily, so that each write generates a page
fault, in which the kernel allocates a physical page, zeroes
it, adds it to the process page table, and returns. We ran
the benchmark on a single CPU on Biscuit and Linux and
recorded the average number of page-faults per second.

We manually verified the similarity of the steady-state
kernel code: there are about 480 and 650 lines of code for
Biscuit and Linux, respectively. The benchmark spends
nearly the same amount of time in the kernel on both
kernels (85% on Biscuit and 84% on Linux). We verified
with CPU-time profiles that the top five most expensive
instructions match: entering the kernel on the page-fault,
zeroing the newly allocated page, the userspace store after
handling the fault, saving registers, and atomics for locks.

The results are 731 nanoseconds per page-fault for
Go and 695 nanoseconds for C; C is 5% faster on this
benchmark. The two implementations spend much of
their time in three ways: entering the kernel’s page-fault
handler, zeroing the newly allocated page, and returning
to userspace. These operations use 21%, 22%, and 15%
of CPU cycles for Biscuit and 21%, 20%, and 16% of
CPU cycles for Linux, respectively.

These results give a feel for performance differences
due just to choice of language. They don’t involve garbage
collection; for that, see §8.4 and §8.6.

8.8 Biscuit versus Linux
To get a sense of whether Biscuit’s performance is in the
same ballpark as a high-performance C kernel, we report
the performance of Linux on the three applications of §8.4.
The applications make the same system calls on Linux
and on Biscuit. These results cannot be used to conclude

100 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

Li
ve

 d
a
ta

 s
iz

e
 (

M
B

)

Time (s)

Figure 10: The amount of live data (in red) in the kernel heap during
the first 35 seconds of the heap exhaustion experiment. The blue line
indicates the RAM allocated to the kernel heap (512MB). The four
vertical black lines indicate the points at which the killer thread killed
the abusive child process.

much about performance differences due to Biscuit’s use
of Go, since Linux includes many features that Biscuit
omits, and Linux may sacrifice some performance on
these benchmarks in return for better performance in other
situations (e.g., large core counts or NUMA).

We use Debian 9.4 with Linux kernel 4.9.82. We in-
creased Linux’s performance by disabling some costly
features: kernel page-table isolation, retpoline, address
space randomization, transparent hugepages, TCP selec-
tive ACKs, and SYN cookies. We replaced glibc with
musl (nearly doubling the performance of CMailbench on
Linux) and pinned the application threads to CPUs when
it improves the benchmark’s performance. We ran CMail-
bench in two configurations: one using an in-memory
file system and the other using an SSD file system (tmpfs
and ext-4 on Linux, respectively). The benchmarks use
100% of all cores on both Biscuit and Linux, except for
CMailbench (SSD), which is bottlenecked by the SSD.
The proportion of time each benchmark spends in the
kernel on Linux is nearly the same as on Biscuit (differing
by at most two percentage points).

Figure 9 presents the results: Linux achieves up to 10%
better performance than Biscuit. The “HLL taxes” identi-
fied in §8.4 contribute to the results, but the difference in
performance is most likely due to the fact that the two ker-
nels have different designs and amounts of functionality.
It took effort to make Biscuit achieve this level of perfor-
mance. Most of the work was in understanding why Linux
was more efficient than Biscuit, and then implementing
similar optimizations in Biscuit. These optimizations had
little to do with the choice of language, but were for the
most part standard kernel optimizations (e.g., avoiding
lock contention, avoiding TLB flushes, using better data
structures, adding caches).

8.9 Handling kernel heap exhaustion
This experiment demonstrates two things. First, that the
system calls of a good citizen process do not fail when
executing concurrently with an application that tries to
exhaust the kernel heap. Second, that Biscuit’s heap RAM
reservations aren’t too conservative: that the reservations
allow most of the heap RAM to be used before forcing
system calls to wait.

The experiment involves two programs. An abusive
program repeatedly forks a child and waits for it. The
child creates many non-contiguous memory mappings,
which cause the kernel to allocate many heap objects
describing the mappings. These objects eventually cause
the kernel heap to approach fullness, at which point the
out-of-memory killer kills the child. Meanwhile, a well-
behaved program behaves like a UNIX mail daemon: it
repeatedly delivers dozens of messages and then sleeps
for a few seconds. This process complains and exits if any
of its system calls returns an unexpected error. The kernel
has 512MB of RAM allocated to its heap. The programs
run for 25 minutes, and we record the amount of live data
in the kernel heap at the end of every garbage collection.

Figure 10 shows the first 35 seconds of the experiment.
Each red cross indicates the amount of live kernel heap
data after a GC. The blue line at the top corresponds to
512MB. The four vertical lines show the times at which
the out-of-memory killer killed the abusive program’s
child process.

Biscuit allows the live data in its heap to grow to about
500 MB, or 97% of the heap RAM. The main reason that
live data does not reach 512 MB is that the reservation for
the file system logger thread is 6 MB, more than the thread
actually uses. When the child is killed, it takes a couple
seconds to release the kernel heap objects describing its
many virtual memory mappings. The system calls of the
good citizen process wait for reservations hundreds of
thousands of times, but none return an error.

8.10 Lock-free lookups
This section explores whether read-lock-free data struc-
tures in Go increase parallel performance.

C kernels often use read-lock-free data structures to
increase performance when multiple cores read the data.
The goal is to allow reads without locking or dirtying
cache lines, both of which are expensive when there is
contention. However, safely deleting objects from a data
structure with lock-free readers requires the deleter to
defer freeing memory that a thread might still be reading.
Linux uses read-copy update (RCU) to delay such frees,
typically until all cores have performed a thread context
switch; coupled with a rule that readers not hold refer-
ences across context switch, this ensures safety [32, 33].
Linux’s full set of RCU rules is complex; see “Review
Checklist for RCU patches” [31].

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 101

Directory cache Tput

Lock-free lookups 15,862 msg/s
Read-locked lookups 14,259 msg/s

Figure 11: The performance of CMailbench with two versions of Bis-
cuit’s directory cache, one read-lock-free and one using read locks.

Garbage collection automates the freeing decision, sim-
plifying use of read-lock-free data structures and increas-
ing the set of situations in which they can safely be
used (e.g. across context switches). However, HLLs
and garbage collection add their own overheads, so it is
worth exploring whether read-lock-free data structures
nevertheless increase performance.

In order to explore this question, we wrote two variants
of a directory cache for Biscuit, one that is read-lock-free
and one with read-locks. Both versions use an array of
buckets as a hash table, each bucket containing a singly-
linked list of elements. Insert and delete lock the relevant
bucket, create new versions of list elements to be inserted
or updated, and modify next pointers to refer to the new
elements. The read-lock-free version of lookup simply
traverses the linked list.2 The read-locked version first
read-locks the bucket (forbidding writers but allowing
other readers) and then traverses the list. We use CMail-
bench for the benchmark since it stresses creation and
deletion of entries in the directory cache. The file system
is in-memory, so there is no disk I/O.

Figure 11 shows the throughput of CMailbench using
the read-lock-free directory cache and the read-locked
directory cache. The read-lock-free version provides an
11% throughput increase: use of Go does not eliminate
the performance advantage of read-lock-free data in this
example.

9 Discussion and future work

Should one write a kernel in Go or in C? We have no
simple answer, but we can make a few observations. For
existing large kernels in C, the programming cost of con-
version to Go would likely outweigh the benefits, particu-
larly considering investment in expertise, ecosystem, and
development process. The question makes more sense for
new kernels and similar projects such as VMMs.

If a primary goal is avoiding common security pitfalls,
then Go helps by avoiding some classes of security bugs
(see §8.2). If the goal is to experiment with OS ideas, then
Go’s HLL features may help rapid exploration of different
designs (see §8.1). If CPU performance is paramount,
then C is the right answer, since it is faster (§8.4, §8.5).
If efficient memory use is vital, then C is also the right

2We used Go’s atomic package to prevent re-ordering of memory
reads and writes; it is not clear that this approach is portable.

answer: Go’s garbage collector needs a factor of 2 to 3 of
heap headroom to run efficiently (see §8.6).

We have found Go effective and pleasant for kernel
development. Biscuit’s performance on OS-intensive ap-
plications is good (about 90% as fast as Linux). Achieving
this performance usually involved implementing the right
optimizations; Go versus C was rarely an issue.

An HLL other than Go might change these considera-
tions. A language without a compiler as good as Go’s, or
whose design was more removed from the underlying ma-
chine, might perform less well. On the other hand, a lan-
guage such as Rust that avoids garbage collection might
provide higher performance as well as safety, though per-
haps at some cost in programmability for threaded code.

There are some Biscuit-specific issues we would like
to explore further. We would like Biscuit to expand and
contract the RAM used for the heap dynamically. We
would like to modify the Go runtime to allow Biscuit
to control scheduling policies. We would like to scale
Biscuit to larger numbers of cores. Finally, we would
like to explore if Biscuit’s heap reservation scheme could
simplify the implementation of C kernels.

10 Conclusions

Our subjective experience using Go to implement the Bis-
cuit kernel has been positive. Go’s high-level language
features are helpful in the context of a kernel. Examina-
tion of historical Linux kernel bugs due to C suggests that
a type- and memory-safe language such as Go might avoid
real-world bugs, or handle them more cleanly than C.
The ability to statically analyze Go helped us implement
defenses against kernel heap exhaustion, a traditionally
difficult task.

The paper presents measurements of some of the perfor-
mance costs of Biscuit’s use of Go’s HLL features, on a
set of kernel-intensive benchmarks. The fraction of CPU
time consumed by garbage collection and safety checks
is less than 15%. The paper compares the performance of
equivalent kernel code paths written in C and Go, finding
that the C version is about 15% faster.

We hope that this paper helps readers to make a deci-
sion about whether to write a new kernel in C or in an
HLL.

Acknowledgements

We thank Nickolai Zeldovich, PDOS, Austin Clements,
the anonymous reviewers, and our shepherd, Liuba Shrira,
for their feedback. This research was supported by NSF
award CSR-1617487.

102 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] A. Anagnostopoulos. gopher-os, 2018. https:
//github.com/achilleasa/gopher-os.

[2] J. Armstrong. Erlang. Commun. ACM, 53(9):68–75,
Sept. 2010.

[3] G. Back and W. C. Hsieh. The KaffeOS Java run-
time system. ACM Trans. Program. Lang. Syst.,
27(4):583–630, July 2005.

[4] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and
J. Lepreau. Techniques for the design of Java op-
erating systems. In In Proceedings of the 2000
Usenix Annual Technical Conference, pages 197–
210. USENIX Association, 2000.

[5] H. G. Baker, Jr. List processing in real time on a
serial computer. Commun. ACM, 21(4):280–294,
Apr. 1978.

[6] F. J. Ballesteros. The Clive operating system, 2014.
http://lsub.org/ls/clive.html.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and C. Cham-
bers. Extensibility, safety and performance in the
SPIN operating system. In Proceedings of the
15th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 267–284, Copper Mountain,
CO, Dec. 1995.

[8] J. Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proceedings of the
USENIX Summer Conference, 1994.

[9] J. Corbet. The too small to fail memory-allocation
rule. from https://lwn.net/Articles/
627419/, Dec 2014.

[10] J. Corbet. Revisiting too small to fail. from https:
//lwn.net/Articles/723317/, May 2017.

[11] D Language Foundation. D programming language,
2017. https://dlang.org/.

[12] D. Evans. cs4414: Operating Systems, 2014. http:
//www.rust-class.org/.

[13] D. Frampton, S. M. Blackburn, P. Cheng, R. J.
Garner, D. Grove, J. E. B. Moss, and S. I. Sali-
shev. Demystifying magic: High-level low-level
programming. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’09, pages 81–90,
New York, NY, USA, 2009. ACM.

[14] C. M. Geschke, J. H. Morris, Jr., and E. H. Satterth-
waite. Early experience with Mesa. SIGOPS Oper.
Syst. Rev., Apr. 1977.

[15] Google. The Go Programming Language, 2017.
https://golang.org/.

[16] Google. gvisor, 2018. https://github.com/
google/gvisor.

[17] R. D. Greenblatt, T. F. Knight, J. T. Holloway, and
D. A. Moon. A LISP machine. In Proceedings of
the Fifth Workshop on Computer Architecture for
Non-numeric Processing, CAW ’80, pages 137–138,
New York, NY, USA, 1980. ACM.

[18] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach.
A principled approach to operating system construc-
tion in Haskell. In Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional
Programming, ICFP ’05, pages 116–128, New York,
NY, USA, 2005. ACM.

[19] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu,
and T. von Eicken. Implementing multiple protec-
tion domains in Java. In Proceedings of the 1998
USENIX Annual Technical Conference, pages 259–
270, 1998.

[20] M. Hertz and E. Berger. Quantifying the perfor-
mance of garbage collection vs. explicit memory
management. In ACM OOPSLA, 2005.

[21] R. Hudson. Go GC: Prioritizing low latency and sim-
plicity. from https://blog.golang.org/
go15gc, Aug 2015.

[22] G. C. Hunt and J. R. Larus. Singularity: Re-
thinking the software stack. In Proceedings of the
21st ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 37–49, Stevenson, WA, Oct.
2007.

[23] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fahndrich, C. Hawblitzel, O. Hod-
son, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi,
T. Wobber, and B. Zill. An overview of the Singu-
larity project. Technical Report MSR-TR-2005-135,
Microsoft, Redmond, WA, Oct. 2005.

[24] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer.
The Collie: A Wait-free Compacting Collector. In
Proceedings of the 2012 International Symposium
on Memory Management, ISMM ’12, pages 85–96,
Beijing, China, 2012. ACM.

[25] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 103

https://github.com/achilleasa/gopher-os
https://github.com/achilleasa/gopher-os
http://lsub.org/ls/clive.html
https://lwn.net/Articles/627419/
https://lwn.net/Articles/627419/
https://lwn.net/Articles/723317/
https://lwn.net/Articles/723317/
https://dlang.org/
http://www.rust-class.org/
http://www.rust-class.org/
https://golang.org/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://blog.golang.org/go15gc
https://blog.golang.org/go15gc

of C. In Proceedings of the General Track of the
Annual Conference on USENIX Annual Technical
Conference, ATEC ’02, pages 275–288, Berkeley,
CA, USA, 2002. USENIX Association.

[26] A. Levy, M. P. Andersen, B. Campbell, D. Culler,
P. Dutta, B. Ghena, P. Levis, and P. Pannuto. Own-
ership is theft: Experiences building an embedded
OS in Rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems,
PLOS ’15, pages 21–26, New York, NY, USA, 2015.
ACM.

[27] A. Levy, B. Campbell, B. Ghena, D. B. Giffin,
P. Pannuto, P. Dutta, and P. Levis. Multiprogram-
ming a 64kb computer safely and efficiently. In
Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 234–251, New
York, NY, USA, 2017. ACM.

[28] A. Light. Reenix: implementing a Unix-like operat-
ing system in Rust, Apr. 2015.

[29] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), pages 461–472, Houston, TX, Mar. 2013.

[30] B. McCloskey, D. F. Bacon, P. Cheng, and D. Grove.
Staccato: A Parallel and Concurrent Real-time
Compacting Garbage Collector for Multiprocessors.
Technical report, IBM, 2008.

[31] P. McKenney. Review list for RCU patches.
https://www.kernel.org/doc/
Documentation/RCU/checklist.txt.

[32] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole.
RCU usage in the Linux kernel: One decade later.
2012.

[33] P. E. McKenney and J. D. Slingwine. Read-copy up-
date: Using execution history to solve concurrency
problems. In Parallel and Distributed Computing
and Systems, pages 509–518, 1998.

[34] MITRE Corporation. CVE Linux Ker-
nel Vulnerability Statistics, 2018. http:
//www.cvedetails.com/product/47/
Linux-Linux-Kernel.html?vendor_
id=33.

[35] J. Mogul. Eliminating receive livelock in an
interrupt-driven kernel. In USENIX 1996 Annual
Technical Conference, January 1996.

[36] Mozilla research. The Rust Programming Lan-
guage, 2017. https://doc.rust-lang.
org/book/.

[37] G. Nelson, editor. Systems Programming with
Modula-3. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1991.

[38] NGINX. Nginx, 2018. https://www.nginx.
com/.

[39] P. Oppermann. Writing an OS in Rust, 2017. http:
//os.phil-opp.com/.

[40] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall,
and G. Muller. Faults in Linux: Ten years later.
In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI,
pages 305–318, New York, NY, USA, 2011. ACM.

[41] W. M. Petullo, W. Fei, J. A. Solworth, and P. Gavlin.
Ethos’ deeply integrated distributed types. In IEEE
Security and Privacy Workshop on LangSec, May
2014.

[42] D. Picheta. Nim in action, 2017. http://
nim-lang.org/.

[43] J. Rafkind, A. Wick, J. Regehr, and M. Flatt. Precise
Garbage Collection for C. In Proceedings of the 9th
International Symposium on Memory Management,
ISMM ’09, Dublin, Ireland, June 2009. ACM.

[44] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch,
P. McJones, H. Murray, and S. Purcell. Pilot: An
operating system for a personal computer. In Pro-
ceedings of the 7th ACM Symposium on Operating
Systems Principles (SOSP), Pacific Grove, CA, 1979.
ACM.

[45] M. Schroeder and M. Burrows. Performance of
Firefly RPC. In Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles, SOSP
’89, pages 83–90, New York, NY, USA, 1989. ACM.

[46] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address san-
ity checker. In Proceedings of the 2012 USENIX
Annual Technical Conference, Boston, MA, 2012.
USENIX.

[47] A. S. Tanenbaum. Modern Operating Systems. Pear-
son Prentice Hall, 2008.

[48] W. Teitelman. The Cedar programming environ-
ment: A midterm report and examination. Technical
Report CSL-83-11, Xerox PARC, 1984.

104 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.kernel.org/doc/Documentation/RCU/checklist.txt
https://www.kernel.org/doc/Documentation/RCU/checklist.txt
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://www.nginx.com/
https://www.nginx.com/
http://os.phil-opp.com/
http://os.phil-opp.com/
http://nim-lang.org/
http://nim-lang.org/

[49] C. P. Thacker and L. C. Stewart. Firefly: a multi-
processor workstation. In Proceedings of the 2nd
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems (ASPLOS). ACM, Apr. 1987.

[50] Ticki. Redox - Your Next(Gen) OS, 2017. https:
//doc.redox-os.org/book/.

[51] L. Torvalds. http://harmful.cat-v.org/
software/c++/linus, Jan 2004.

[52] T. Yang, M. Hertz, E. Berger, S. Kaplan, and J. E. B.
Moss. Automatic heap sizing: Taking real memory
into account. In ACM ISMM, 2004.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 105

https://doc.redox-os.org/book/
https://doc.redox-os.org/book/
http://harmful.cat-v.org/software/c++/linus
http://harmful.cat-v.org/software/c++/linus

