
Using the GNU Debugger

6.828 Fall 2018

September 12, 2018

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 1 / 16

Homework solution

From bootasm.S:

Set up the stack pointer and call into C.

movl $start, %esp

call bootmain

Later, in bootmain():

// Call the entry point from the ELF header.

// Does not return!

entry = (void(*)(void))(elf->entry);

entry();

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 2 / 16

Homework solution

From bootasm.S:

Set up the stack pointer and call into C.

movl $start, %esp

call bootmain

Later, in bootmain():

// Call the entry point from the ELF header.

// Does not return!

entry = (void(*)(void))(elf->entry);

entry();

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 2 / 16

Homework solution

From bootasm.S:

Set up the stack pointer and call into C.

movl $start, %esp

call bootmain

Later, in bootmain():

// Call the entry point from the ELF header.

// Does not return!

entry = (void(*)(void))(elf->entry);

entry();

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 2 / 16

What’s on the stack?

call bootmain pushes a return address

The prologue in bootmain() makes a stack frame

push %ebp

mov %esp,%ebp

push %edi

push %esi

push %ebx

sub $0x1c,%esp

The call to entry() pushes a return address

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 3 / 16

What’s on the stack?

call bootmain pushes a return address

The prologue in bootmain() makes a stack frame

push %ebp

mov %esp,%ebp

push %edi

push %esi

push %ebx

sub $0x1c,%esp

The call to entry() pushes a return address

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 3 / 16

What’s on the stack?

call bootmain pushes a return address

The prologue in bootmain() makes a stack frame

push %ebp

mov %esp,%ebp

push %edi

push %esi

push %ebx

sub $0x1c,%esp

The call to entry() pushes a return address

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 3 / 16

What’s on the stack?

call bootmain pushes a return address

The prologue in bootmain() makes a stack frame

push %ebp

mov %esp,%ebp

push %edi

push %esi

push %ebx

sub $0x1c,%esp

The call to entry() pushes a return address

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 3 / 16

What’s on the stack?

call bootmain pushes a return address

The prologue in bootmain() makes a stack frame

push %ebp

mov %esp,%ebp

push %edi

push %esi

push %ebx

sub $0x1c,%esp

The call to entry() pushes a return address

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 3 / 16

The stack when we get to 0x0010000c
0x7c00: 0x8ec031fa not the stack!
0x7bfc: 0x00007c4d bootmain() return address
0x7bf8: 0x00000000 old ebp

0x7bf4: 0x00000000 old edi

0x7bf0: 0x00000000 old esi

0x7bec: 0x00000000 old ebx

0x7be8: 0x00000000

local vars (sub $0x1c,%esp)

0x7be4: 0x00000000

0x7be0: 0x00000000

0x7bdc: 0x00000000

0x7bd8: 0x00000000

0x7bd4: 0x00000000

0x7bd0: 0x00000000

0x7bcc: 0x00007db7 entry() return address
6.828 Fall 2018 Using the GNU Debugger September 12, 2018 4 / 16

GDB in 6.828

We provide a file called .gdbinit which automatically
sets up GDB for use with QEMU.

Must run GDB from the lab or xv6 directory

Edit ~/.gdbinit to allow other gdbinits

Use make to start QEMU with or without GDB.

With GDB: run make qemu[-nox]-gdb, then start
GDB in a second shell

Use make qemu[-nox] when you don’t need GDB

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 5 / 16

GDB in 6.828

We provide a file called .gdbinit which automatically
sets up GDB for use with QEMU.

Must run GDB from the lab or xv6 directory

Edit ~/.gdbinit to allow other gdbinits

Use make to start QEMU with or without GDB.

With GDB: run make qemu[-nox]-gdb, then start
GDB in a second shell

Use make qemu[-nox] when you don’t need GDB

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 5 / 16

GDB commands

Run help <command-name> if you’re not sure how to
use a command.

All commands may be abbreviated if unambiguous:

c = co = cont = continue

Some additional abbreviations are defined, e.g.

s = step and si = stepi

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 6 / 16

GDB commands

Run help <command-name> if you’re not sure how to
use a command.

All commands may be abbreviated if unambiguous:

c = co = cont = continue

Some additional abbreviations are defined, e.g.

s = step and si = stepi

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 6 / 16

Stepping

step runs one line of code at a time. When there is a
function call, it steps into the called function.

next does the same thing, except that it steps over
function calls.

stepi and nexti do the same thing for assembly
instructions rather than lines of code.

All take a numerical argument to specify repetition.
Pressing the enter key repeats the previous command.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 7 / 16

Stepping

step runs one line of code at a time. When there is a
function call, it steps into the called function.

next does the same thing, except that it steps over
function calls.

stepi and nexti do the same thing for assembly
instructions rather than lines of code.

All take a numerical argument to specify repetition.
Pressing the enter key repeats the previous command.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 7 / 16

Stepping

step runs one line of code at a time. When there is a
function call, it steps into the called function.

next does the same thing, except that it steps over
function calls.

stepi and nexti do the same thing for assembly
instructions rather than lines of code.

All take a numerical argument to specify repetition.
Pressing the enter key repeats the previous command.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 7 / 16

Stepping

step runs one line of code at a time. When there is a
function call, it steps into the called function.

next does the same thing, except that it steps over
function calls.

stepi and nexti do the same thing for assembly
instructions rather than lines of code.

All take a numerical argument to specify repetition.
Pressing the enter key repeats the previous command.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 7 / 16

Running

continue runs code until a breakpoint is encountered or
you interrupt it with Control-C.

finish runs code until the current function returns.

advance <location> runs code until the instruction
pointer gets to the specified location.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 8 / 16

Running

continue runs code until a breakpoint is encountered or
you interrupt it with Control-C.

finish runs code until the current function returns.

advance <location> runs code until the instruction
pointer gets to the specified location.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 8 / 16

Running

continue runs code until a breakpoint is encountered or
you interrupt it with Control-C.

finish runs code until the current function returns.

advance <location> runs code until the instruction
pointer gets to the specified location.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 8 / 16

Breakpoints

break <location> sets a breakpoint at the specified
location.

Locations can be memory addresses (“*0x7c00”) or
names (“mon backtrace”, “monitor.c:71”).

Modify breakpoints using delete, disable, enable.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 9 / 16

Breakpoints

break <location> sets a breakpoint at the specified
location.

Locations can be memory addresses (“*0x7c00”) or
names (“mon backtrace”, “monitor.c:71”).

Modify breakpoints using delete, disable, enable.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 9 / 16

Breakpoints

break <location> sets a breakpoint at the specified
location.

Locations can be memory addresses (“*0x7c00”) or
names (“mon backtrace”, “monitor.c:71”).

Modify breakpoints using delete, disable, enable.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 9 / 16

Conditional breakpoints

break <location> if <condition> sets a breakpoint
at the specified location, but only breaks if the condition
is satisfied.

cond <number> <condition> adds a condition on an
existing breakpoint.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 10 / 16

Conditional breakpoints

break <location> if <condition> sets a breakpoint
at the specified location, but only breaks if the condition
is satisfied.

cond <number> <condition> adds a condition on an
existing breakpoint.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 10 / 16

Watchpoints

Like breakpoints, but with more complicated conditions.

watch <expression> will stop execution whenever the
expression’s value changes.

watch -l <address> will stop execution whenever the
contents of the specified memory address change.

What’s the difference between wa var and wa -l &var?

rwatch [-l] <expression> will stop execution
whenever the value of the expression is read.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 11 / 16

Watchpoints

Like breakpoints, but with more complicated conditions.

watch <expression> will stop execution whenever the
expression’s value changes.

watch -l <address> will stop execution whenever the
contents of the specified memory address change.

What’s the difference between wa var and wa -l &var?

rwatch [-l] <expression> will stop execution
whenever the value of the expression is read.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 11 / 16

Watchpoints

Like breakpoints, but with more complicated conditions.

watch <expression> will stop execution whenever the
expression’s value changes.

watch -l <address> will stop execution whenever the
contents of the specified memory address change.

What’s the difference between wa var and wa -l &var?

rwatch [-l] <expression> will stop execution
whenever the value of the expression is read.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 11 / 16

Watchpoints

Like breakpoints, but with more complicated conditions.

watch <expression> will stop execution whenever the
expression’s value changes.

watch -l <address> will stop execution whenever the
contents of the specified memory address change.

What’s the difference between wa var and wa -l &var?

rwatch [-l] <expression> will stop execution
whenever the value of the expression is read.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 11 / 16

Watchpoints

Like breakpoints, but with more complicated conditions.

watch <expression> will stop execution whenever the
expression’s value changes.

watch -l <address> will stop execution whenever the
contents of the specified memory address change.

What’s the difference between wa var and wa -l &var?

rwatch [-l] <expression> will stop execution
whenever the value of the expression is read.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 11 / 16

Examining

x prints the raw contents of memory in whatever format
you specify (x/x for hexadecimal, x/i for assembly, etc).

print evaluates a C expression and prints the result as
its proper type. It is often more useful than x.

The output from p *((struct elfhdr *) 0x10000)

is much nicer than the output from x/13x 0x10000.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 12 / 16

Examining

x prints the raw contents of memory in whatever format
you specify (x/x for hexadecimal, x/i for assembly, etc).

print evaluates a C expression and prints the result as
its proper type. It is often more useful than x.

The output from p *((struct elfhdr *) 0x10000)

is much nicer than the output from x/13x 0x10000.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 12 / 16

Examining

x prints the raw contents of memory in whatever format
you specify (x/x for hexadecimal, x/i for assembly, etc).

print evaluates a C expression and prints the result as
its proper type. It is often more useful than x.

The output from p *((struct elfhdr *) 0x10000)

is much nicer than the output from x/13x 0x10000.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 12 / 16

More examining

info registers prints the value of every register.

info frame prints the current stack frame.

list <location> prints the source code of the function
at the specified location.

backtrace might be useful as you work on lab 1!

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 13 / 16

More examining

info registers prints the value of every register.

info frame prints the current stack frame.

list <location> prints the source code of the function
at the specified location.

backtrace might be useful as you work on lab 1!

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 13 / 16

More examining

info registers prints the value of every register.

info frame prints the current stack frame.

list <location> prints the source code of the function
at the specified location.

backtrace might be useful as you work on lab 1!

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 13 / 16

More examining

info registers prints the value of every register.

info frame prints the current stack frame.

list <location> prints the source code of the function
at the specified location.

backtrace might be useful as you work on lab 1!

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 13 / 16

Layouts

GDB has a text user interface that shows useful
information like code listing, disassembly, and register
contents in a curses UI.

layout <name> switches to the given layout.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 14 / 16

Other tricks

You can use the set command to change the value of a
variable during execution.

You have to switch symbol files to get function and
variable names for environments other than the kernel.
For example, when debugging JOS:
symbol-file obj/user/<name>

symbol-file obj/kern/kernel

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 15 / 16

Other tricks

You can use the set command to change the value of a
variable during execution.

You have to switch symbol files to get function and
variable names for environments other than the kernel.
For example, when debugging JOS:
symbol-file obj/user/<name>

symbol-file obj/kern/kernel

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 15 / 16

Summary

Read the fine manual! Use the help command.

GDB is tremendously powerful and we’ve only scratched
the surface today.

It is well worth your time to spend an hour learning more
about how to use it.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 16 / 16

Summary

Read the fine manual! Use the help command.

GDB is tremendously powerful and we’ve only scratched
the surface today.

It is well worth your time to spend an hour learning more
about how to use it.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 16 / 16

Summary

Read the fine manual! Use the help command.

GDB is tremendously powerful and we’ve only scratched
the surface today.

It is well worth your time to spend an hour learning more
about how to use it.

6.828 Fall 2018 Using the GNU Debugger September 12, 2018 16 / 16

