
Virtualization
Adam	Belay	<abelay@mit.edu>

What	is	a	virtual	machine

• Simulation	of	a	computer
• Running	as	an	application	on	a	host	computer
• Accurate
• Isolated
• Fast

Why	use	a	virtual	machine?

• To	run	multiple	operating	system	(e.g.	Windows	
and	Linux)
• To	manage	big	machines	(allocate	cores	and	
memory	at	O/S	granularity)
• Kernel	development	(e.g.	like	QEMU	+	JOS)
• Better	fault	isolation	(defense	in	depth)
• To	package	applications	with	a	specific	kernel	
version	and	environment
• To	improve	resource	utilization

How	accurate	do	we	have	to	be?

• Must	handle	weird	quirks	in	existing	Oses
• Even	bug-for-bug	compatibility

• Must	maintain	isolation	with	malicious	software
• Guest	can	not	break	out	of	VM!

• Must	be	impossible	for	guest	to	distinguish	VM	
from	real	machine
• Some	VMs	compromise,	modifying	the	guest	kernel	
to	reduce	accuracy	requirement

VMs	are	an	old	idea

• 1960s:	IBM	used	VMs	to	share	big	machines
• 1970s:	IBM	specialized	CPUs	for	virtualization
• 1990s:	VMware	repopularized VMs	for	x86	HW
• 2000s:	AMD	&	Intel	specialized	CPUs	for	
virtualization

Process	Architecture

Hardware

OS

vi gcc firefox

VM	Architecture

• What	if	the	process	abstraction	looked	just	like	HW?

Hardware

OS	(VMM)

vi gcc firefox

Guest	OS

Virtual	HW

Guest	OS

Virtual	HW

Comparing	a	process	and	HW

Process
• Non	privileged	registers	
and	instructions
• Virtual	memory
• Signals
• File	system	and	sockets

Hardware
• All	registers	and	
instructions
• Virt.	mem.	and	MMU
• Traps	and	interrupts
• I/O	devices	and	DMA

Can	a	CPU	be	virtualized?

Requirements	to	be	“classically	virtualizable”	defined	
by	Popek and	Goldberg	in	1974:
1. Fidelity:	Software	on	the	VMM	executes	

identically	to	its	execution	on	hardware,	barring	
timing	effects.	

2. Performance:	An	overwhelming	majority	of	guest	
instructions	are	executed	by	the	hardware	
without	the	intervention	of	the	VMM.	

3. Safety:	The	VMM	manages	all	hardware	
resources.

Why	not	simulation?

• VMM	interprets	each	instruction	(e.g.	BOCHS)
• Maintain	machine	state	for	each	register
• Emulate	I/O	ports	and	memory
• Violates	performance requirement

Idea:	Execute	guest	instructions	
on	real	CPU	whenever	possible
• Works	fine	for	most	instructions
• E.g.	add	%eax,	%ebx
• But	privileged	instructions	could	be	harmful
• Would	violate	safety property

Idea:	Run	guest	kernels	at	CPL	3

• Ordinary	instructions	work	fine
• Privileged	instructions	should	trap	to	VMM	(general	
protection	fault)
• VMM	can	apply	privileged	operations	on	“virtual”	
state,	not	to	real	hardware
• This	is	called	“trap-and-emulate”

Trap	and	emulate	example

• CLI	/	STI	– enables	and	disables	interrupts
• EFLAGS	IF	bit	tracks	current	status
• VMM	maintains	virtual	copy	of	EFLAGS	register
• VMM	controls	hardware	EFLAGS
• Probably	leave	interrupts	enables	even	if	VM	runs	CLI

• VMM	looks	at	virtual	EFLAGS	register	to	decide	
when	to	interrupt	guest
• VMM	must	make	sure	guest	only	sees	virtual	
EFLAGS

What	about	virtual	memory?

• Want	to	maintain	illusion	that	each	VM	has	dedicated	
physical	memory
• Guest	wants	to	start	at	PA	0,	use	all	of	RAM
• VMM	needs	to	support	many	guests,	they	can’t	all	
really	use	the	same	physical	addresses
• Idea:

• Claim	RAM	is	smaller	than	real	RAM
• Keep	paging	enabled
• Maintain	a	“shadow”	copy	of	guest	page	table
• Shadow	maps	VAs	to	different	PA	than	guest	requests
• Real	%CR3	points	to	shadow	table
• Virtual	%CR3	points	to	guest	page	table

Virtualization	memory	diagram

Host	Page	Table

Host	
Virtual	
Address

Host	
Physical	
Address

Virtualization	memory	diagram

Host	Page	Table

Host	
Virtual	
Address

Host	
Physical	
Address

VMM	Map

Guest	
Virtual	
Address

Host	
Physical	
Address

Guest	PT
Guest	
Physical	
Address

Shadow	Page	Table

Guest	
Virtual	
Address

Host	
Physical	
Address

Example:

• Guest	wants	guest-physical page	@	0x1000000
• VMM	map	redirects	guest-physical 0x1000000	to	
host-physical 0x2000000
• VMM	traps	if	guest	changes	%cr3	or	writes	to	guest	
page	table
• Transfers	each	guest	PTE	to	shadow	page	table
• Uses	VMM	map	to	translate	guest-physical page	
addresses	in	page	table	to	host-physical addresses

Why	can’t	the	VMM	modify	the	
guest	page	table	in-place?

Need	shadow	copy	of	all	
privileged	state
• So	far	discussed	EFLAGS	and	page	tables
• Also	need	GDT,	IDT,	LDTR,	%CR*,	etc.

Unfortunately	trap-and-emulate	is	
not	possible	on	x86
Two	problems:
1. Some	instructions	behave	differently	in	CPL	3	

instead	of	trapping
2. Some	registers	leak	state	that	reveals	if	the	CPU	is	

running	in	CPL	3
• Violates	fidelity property

x86	isn’t	classically	virtualizable

Problems	->	CPL	3	versus	CPL	0:
• mov %cs,	%ax
• %cs contains	the	CPL	in	its	lower	two	bits

• popfl/pushfl
• Privileged	bits,	including	EFLAGS.IF	are	masked	out

• iretq
• No	ring	change,	so	doesn’t	restore	SS/ESP

Two	possible	solutions

1. Binary	translation
• Rewrite	offending	instructions	to	behave	correctly

2. Hardware	virtualization
• CPU	maintains	shadow	state	internally	and	directly	
executes	privileged	guest	instructions

Strawman	binary	translation

• Replace	all	instructions	that	cause	violations	with	
INT	$3,	which	traps
• INT	$3	is	one	byte,	so	can	fit	inside	any	x86	
instruction	without	changing	size/layout
• But	unrealistic
• Don’t	know	the	difference	between	code	and	data	or	
where	instruction	boundaries	lie
• VMware’s	solution	is	much	more	sophisticated

VMware’s	binary	translator

• Kernel	translated	dynamically	like	a	JIT
• idea:	scan	only	as	executed,	since	execution	reveals	
instruction	boundaries	
• when	VMM	first	loads	guest	kernel,	rewrite	from	entry	
to	first	jump
• Most	instructions	translate	identically

• Need	to	translate	instructions	in	chunks
• Called	a	basic	block
• Either	12	instructions	or	the	control	flow	instruction,	
whichever	occurs	first

• Only	guest	kernel	code	is	translated

Guest	kernel	shares	address	space	
with	VMM
• Uses	segmentation	to	protect	VMM	memory
• VMM	loaded	at	high	virtual	addresses,	translated	
guest	kernel	at	low	addresses
• Program	segment	limits	to	“truncate”	address	
space,	preventing	all	segments	from	accessing	
VMM	except	%GS
• What	if	guest	kernel	instruction	uses	%GS	selector?
• %GS	provides	fast	access	to	data	shared	between	guest	
kernel	and	VMM

• Assumption:	Translated	code	can’t	violate	isolation
• Can	never	directly	access	%GS,	%CR3,	GDT,	etc.

Why	put	guest	kernel	and	VMM	in	
same	address	space?

Why	put	guest	kernel	and	VMM	in	
same	address	space?
• Shared	state	becomes	inexpensive	to	access
e.g.	cli	->	“vcpu.flags.IF:=0”	
• Translated	code	is	safe,	can’t	violate	isolation	after	
translation

Translation	example
• All	control	flow	requires	indirection
Original:	isPrime()
mov %ecx, %edi # %ecx = %edi (a)
mov %esi, $2 # %esi = 2
cmp %esi, %ecx # is i >= a?
jge prime # if yes jump
…

C	source:
int isPrime(int a) {

for (int i = 2; i < a; i++) {
if (a % i == 0) return 0;

}
return 1;

}

End	of	basic	block

Translation	example
• All	control	flow	requires	indirection
• Original:	isPrime()
mov %ecx, %edi # %ecx = %edi (a)
mov %esi, $2 # %esi = 2
cmp %esi, %ecx # is i >= a?
jge prime # if yes jump
…

Translated:	isPrime()’
mov %ecx, %edi # IDENT
mov %esi, $2
cmp %esi, %ecx
jge [takenAddr] # JCC
jmp [fallthrAddr]

…

Translation	example

• Brackets	represent	continuations
• First	time	they	are	executed,	jump	into	BT	and	
generate	the	next	basic	block
• Can	elide	“jmp [fallthraddr]”	if	it’s	the	next	address	
translated
• Indirect	control	flow	is	harder
• “(jmp,	call,	ret)	does	not	go	to	a	fixed	target,	preventing	
translation-time	binding.	Instead,	the	translated	target	
must	be	computed	dynamically,	e.g.,	with	a	hash	table	
lookup.	The	resulting	overhead	varies	by	workload	but	is	
typically	a	single-digit	percentage.”	– from	paper

Hardware	virtualization

• CPU	maintains	guest-copy	of	privileged	state	in	
special	region	called	the	virtual	machine	control	
structure	(VMCS)
• CPU	operates	in	two	modes
• VMX	non-root	mode:	runs	guest	kernel
• VMX	root	mode:	runs	VMM
• Hardware	saves	and	restores	privileged	register	state	to	
and	from	the	VMCS	as	it	switches	modes
• Each	mode	has	its	own	separate	privilege	rings

• Net	effect:	Hardware	can	run	most	privileged	guest	
instructions	directly	without	emulation

What	about	MMU?

• Hardware	effectively	maintains	two	page	tables
• Normal	page	table	controlled	by	guest	kernel
• Extended	page	table	(EPT)	controlled	by	VMM
• EPT	didn’t	exist	when	VMware	published	paper

EPT

Guest	
Virtual	
Address

Host	
Physical	
Address

Guest	PT
Guest	
Physical	
Address

What’s	better	HW	or	SW	virt?

What’s	better	HW	or	SW	virt?

• Software	virtualization	advantages
• Trap	emulation:	Most	traps	can	be	replaced	with	callouts
• Emulation	speed:	BT	can	generate	purpose-built	emulation	
code,	hardware	traps	must	decode	the	instruction,	etc.

• Callout	avoidance:	Sometimes	BT	can	even	inline	callouts

• Hardware	virtualization	advantages
• Code	density:	Translated	code	requires	more	instructions	and	
larger	opcodes

• Precise	exceptions:	BT	must	perform	extra	work	to	recover	
guest	state

• System	calls:	Don’t	require	VMM	intervention

What’s	better	HW	or	SW	virt?

 0.1

 1

 10

 100

 1000

 10000

 100000

ptemoddivzeropgfaultcallretcr8wrinsyscall

CP
U

cy
cle

s
(s

m
al

le
r i

s
be

tte
r)

Native
Software VMM

Hardware VMM

Figure 4. Virtualization nanobenchmarks.

tween the two VMMs, the hardware VMM inducing approximately
4.4 times greater overhead than the software VMM. Still, this pro-
gram stresses many divergent paths through both VMMs, such as
system calls, context switching, creation of address spaces, modifi-
cation of traced page table entries, and injection of page faults.

6.3 Virtualization nanobenchmarks
To better understand the performance differences between the two
VMMs, we wrote a series of “nanobenchmarks” that each exer-
cise a single virtualization-sensitive operation. Often, the measured
operation is a single instruction long. For precise control over the
executed code, we repurposed a custom OS, FrobOS, that VMware
developed for VMM testing.
Our modified FrobOS boots, establishes a minimal runtime en-

vironment for C code, calibrates its measurement loops, and then
executes a series of virtualization-sensitive operations. The test re-
peats each operation many times, amortizing the cost of the binary
translator’s adaptations over multiple iterations. In our experience,
this is representative of guest behavior, in which adaptation con-
verges on a small fraction of poorly behaving guest instructions.
The results of these nanobenchmarks are presented in Figure 4. The
large spread of cycle counts requires the use of a logarithmic scale.

syscall. This test measures round-trip transitions from user-
level to supervisor-level via the syscall and sysret instructions.
The software VMM introduces a layer of code and an extra privi-
lege transition, requiring approximately 2000 more cycles than a
native system call. In the hardware VMM, system calls execute
without VMM intervention, so as we expect, the hardware VMM
executes system calls at native speed.

in. We execute an in instruction from port 0x80, the BIOS
POST port. Native execution accesses an off-CPU register in the
chipset, requiring 3209 cycles. The software VMM, on the other
hand, translates the in into a short sequence of instructions that
interacts with the virtual chipset model. Thus, the software VMM
executes this instruction fifteen times faster than native. The hard-
ware VMM must perform a vmm/guest round trip to complete the
I/O operation. This transition causes in to consume 15826 cycles
in the tested system.

cr8wr. %cr8 is a privileged register that determines which
pending interrupts can be delivered. Only %cr8 writes that reduce
%cr8 below the priority of the highest pending virtual interrupt
cause an exit [24]. Our FrobOS test never takes interrupts so no
%cr8 write in the test ever causes an exit. As with syscall, the
hardware VMM’s performance is similar to native. The software
VMM translates %cr8 writes into a short sequence of simple in-

 0

 2

 4

 6

 8

 10

translateptemodpgfaultcallretcr8wrin/outsyscall

O
ve

rh
ea

d
(s

ec
on

ds
)

Software VMM
Hardware VMM

Figure 5. Sources of virtualization overhead in an XP boot/halt.

structions, completing the %cr8 write in 35 cycles, about four times
faster than native.

call/ret. BT slows down indirect control flow. We target this
overhead by repeatedly calling a subroutine. Since the hardware
VMM executes calls and returns without modification, the hard-
ware VMM and native both execute the call/return pair in 11 cycles.
The software VMM introduces an average penalty of 40 cycles, re-
quiring 51 cycles.

pgfault. In both VMMs, the software MMU interposes on
both true and hidden page faults. This test targets the overheads
for true page faults. While both VMM paths are logically similar,
the software VMM (3927 cycles) performs much better than the
hardware VMM (11242 cycles). This is due mostly to the shorter
path whereby the software VMM receives control; page faults,
while by no means cheap natively (1093 cycles on this hardware),
are faster than a vmrun/exit round-trip.

divzero. Division by zero has fault semantics similar to those
of page faults, but does not invoke the software MMU. While
division by zero is uncommon in guest workloads, we include
this nanobenchmark to clarify the pgfault results. It allows us
to separate out the virtualization overheads caused by faults from
the overheads introduced by the virtual MMU. As expected, the
hardware VMM (1014 cycles) delivers near native performance
(889 cycles), decisively beating the software VMM (3223 cycles).

ptemod. Both VMMs use the shadowing technique described in
Section 2.4 to implement guest paging with trace-based coherency.
The traces induce significant overheads for PTE writes, causing
very high penalties relative to the native single cycle store. The
software VMM adaptively discovers the PTE write and translates it
into a small program that is cheaper than a trap but still quite costly.
This small program consumes 391 cycles on each iteration. The
hardware VMM enters and exits guest mode repeatedly, causing
it to perform approximately thirty times worse than the software
VMM, requiring 12733 cycles.
To place this data in context, Figure 5 shows the total over-

heads incurred by each nano-operation during a 64-bit Windows
XP Professional boot/halt. Although the pgfault nanobenchmark
has much higher cost on the hardware VMM than the software
VMM, the boot/halt workload took so few true page faults that the
difference does not affect the bottom line materially. In contrast,
the guest performed over 1 million PTE modifications, causing
high overheads for the hardware VMM. While the figure may sug-
gest that in/out dominates the execution profile of the hardware
VMM, the vast majority of these instructions originate in atypical
BIOS code that is unused after initial boot.

What’s	better	shadow	page	table	
or	EPT?

What’s	better	shadow	page	table	
or	EPT?
• EPT	is	faster	when	page	table	contents	change	
frequently
• Fewer	traps

• Shadow	page	table	is	faster	when	page	table	is	
stable
• Less	TLB	miss	overhead
• One	page	table	to	walk	through	instead	of	two

Conclusion

• Virtualization	transformed	cloud	computing,	had	a	
tremendous	impact
• Virtualization	on	PCs	was	also	big,	but	less	significant

• VMware	made	virtualization	possible	on	an	
architecture	that	couldn’t	be	virtualized	(x86)	
through	BT
• Prompted	Intel	and	AMD	to	change	hardware,	
sometimes	faster,	sometimes	slower	than	BT

A	decade	later,	what’s	changed?

• HW	virtualization	became	much	faster
• Fewer	traps,	better	microcode,	more	dedicated	logic
• Almost	all	CPU	architectures	support	HW	virt.
• EPT	widely	available

• VMMs	became	commoditized
• BT	technology	was	hard	to	build
• VMMs	based	on	HW	virt.	are	much	easier	to	implement
• Xen,	KVM,	HyperV,	etc.

• I/O	devices	aren’t	just	emulated,	they	can	be	
exposed	directly
• IOMMU	provides	paging	protection	for	DMA

