Virtualization

Adam Belay <abelay@mit.edu>

What is a virtual machine

e Simulation of a computer

* Running as an application on a host computer
* Accurate

* |solated

* Fast

Why use a virtual machine?

* To run multiple operating system (e.g. Windows
and Linux)

* To manage big machines (allocate cores and
memory at O/S granularity)

* Kernel development (e.g. like QEMU + JOS)
e Better fault isolation (defense in depth)

* To package applications with a specific kernel
version and environment

* To improve resource utilization

How accurate do we have to be?

* Must handle weird quirks in existing Oses
e Even bug-for-bug compatibility

e Must maintain isolation with malicious software
e Guest can not break out of VM!

* Must be impossible for guest to distinguish VM
from real machine

* Some VMs compromise, modifying the guest kernel
to reduce accuracy requirement

VMs are an old idea

* 1960s: IBM used VMs to share big machines
e 1970s: IBM specialized CPUs for virtualization
* 1990s: VMware repopularized VMs for x86 HW

e 2000s: AMD & Intel specialized CPUs for
virtualization

Process Architecture

firefox

ON

Hardware

VM Architecture

firefox

Guest OS CIION

OS (VMM)

Hardware

 What if the process abstraction looked just like HW?

Comparing a process and HW

Process Hardware
* Non privileged registers ¢ All registers and
and instructions instructions
* Virtual memory * Virt. mem. and MMU
e Signals * Traps and interrupts

* File system and sockets ¢ I/O devices and DMA

Can a CPU be virtualized?

Requirements to be “classically virtualizable” defined
by Popek and Goldberg in 1974:

1. Fidelity: Software on the VMM executes
identically to its execution on hardware, barring
timing effects.

2. Performance: An overwhelming majority of guest
instructions are executed by the hardware
without the intervention of the VMM.

3. Safety: The VMM manages all hardware
resources.

Why not simulation?

VMM interprets each instruction (e.g. BOCHS)
 Maintain machine state for each register

e Emulate 1/0 ports and memory

* Violates performance requirement

|[dea: Execute guest instructions
on real CPU whenever possible

* Works fine for most instructions
* E.g. add %eax, %ebx
* But privileged instructions could be harmful

* Would violate safety property

/dea: Run guest kernels at CPL 3

* Ordinary instructions work fine

* Privileged instructions should trap to VMM (general
protection fault)

* VMM can apply privileged operations on “virtual”
state, not to real hardware

* This is called “trap-and-emulate”

Trap and emulate example

e CLI / STI — enables and disables interrupts
* EFLAGS IF bit tracks current status

* VMM maintains virtual copy of EFLAGS register

* VMM controls hardware EFLAGS
* Probably leave interrupts enables even if VM runs CLI

* VMM looks at virtual EFLAGS register to decide
when to interrupt guest

* VMM must make sure guest only sees virtual
EFLAGS

What about virtual memory?

 Want to maintain illusion that each VM has dedicated
physical memory

e Guest wants to start at PA O, use all of RAM

* VMM needs to support manyguests, they can’t all
really use the same physical addresses

* |dea:

Claim RAM is smaller than real RAM

Keep paging enabled

Maintain a “shadow” copy of guest page table
Shadow maps VAs to different PA than guest requests
Real %CR3 points to shadow table

Virtual %CR3 points to guest page table

Virtualization memory diagram

Host Host
virt! SIS Phsica
Address Address

Virtualization memory diagram

Host Host
Virtual Host Page Table Physical
Address Address

Guest Guest Host
Virtual m Physical Physical
Address Address Address

Guest Host
virtl TS Phsica
Address Address

Example:

* Guest wants guest-physical page @ 0x1000000

VMM map redirects guest-physical 0x1000000 to
host-physical 0x2000000

* VMM traps if guest changes %cr3 or writes to guest
page table

* Transfers each guest PTE to shadow page table

* Uses VMM map to translate guest-physical page
addresses in page table to host-physical addresses

Why can’t the VMM modity the
guest page table in-place?

Need shadow copy of all
privileged state

* So far discussed EFLAGS and page tables
* Also need GDT, IDT, LDTR, %CR*, etc.

Unfortunately trap-and-emulate is
not possible on x86

Two problems:

1. Some instructions behave differently in CPL 3
instead of trapping

2. Some registers leak state that reveals if the CPU is
running in CPL 3

* Violates fidelity property

x86 isn’t classically virtualizable

Problems -> CPL 3 versus CPL O:

* mov %cs, %ax

* %cs contains the CPL in its lower two bits
 popfl/pushfl

* Privileged bits, including EFLAGS.IF are masked out
* iretq

* No ring change, so doesn’t restore SS/ESP

Two possible solutions

1. Binary translation
e Rewrite offending instructions to behave correctly

2. Hardware virtualization

* CPU maintains shadow state internally and directly
executes privileged guest instructions

Strawman binary translation

* Replace all instructions that cause violations with
INT S3, which traps

* INT S3 is one byte, so can fit inside any x86
instruction without changing size/layout

* But unrealistic

 Don’t know the difference between code and data or
where instruction boundaries lie

* VMware’s solution is much more sophisticated

VMware’s binary translator

e Kernel translated dynamically like a JIT
* idea: scan only as executed, since execution reveals
instruction boundaries
* when VMM first loads guest kernel, rewrite from entry
to first jump
* Most instructions translate identically

* Need to translate instructions in chunks

e Called a basic block
e Either 12 instructions or the control flow instruction,

whichever occurs first
* Only guest kernel code is translated

Guest kernel shares address space
with VMM

* Uses segmentation to protect VMM memory

* VMM loaded at high virtual addresses, translated
guest kernel at low addresses

* Program segment limits to “truncate” address
space, preventing all segments from accessing
VMM except %GS

* What if guest kernel instruction uses %GS selector?

* %GS provides fast access to data shared between guest
kernel and VMM

* Assumption: Translated code can’t violate isolation
e Can never directly access %GS, %CR3, GDT, etc.

Why put guest kernel and VMM in
same address space?

Why put guest kernel and VMM in
same address space?

* Shared state becomes inexpensive to access
e.g. cli -> “vcpu.flags.IF:=0"

e Translated code is safe, can’t violate isolation after
translation

Translation example

 All control flow requires indirection
Original: isPrime()

mov %ecx, %edi # %ecx = %edi (a)

mov %esi, $2 # %esi = 2

cmp %esi, %ecx # is 1 >= a?

jge prime # if yes jump «——— End of basic block
C source:

int isPrime(int a) {
for (int 1 = 2; i < a; i++) {
if (a % 1 == 0) return 0;
}

return 1;

Translation example

* All control flow requires indirection
 Original: isPrime()

mov %ecx, %edi # %ecx = %edi (a)
mov %esi, $2 # %esi = 2

cmp %esi, %ecx # is 1 >= a?

jge prime # if yes jump

Translated: isPrime()’
mov %ecx, xedi # IDENT
mov %esi, $2

cmp %esi, %ecx

jge [takenAddr] # JCC
jmp [fallthrAddr]

Translation example

* Brackets represent continuations

* First time they are executed, jump into BT and
generate the next basic block

* Can elide “jmp [fallthraddr]” if it's the next address
translated

* Indirect control flow is harder

e “(jmp, call, ret) does not go to a fixed target, preventing
translation-time binding. Instead, the translated target
must be computed dynamically, e.g., with a hash table
lookup. The resulting overhead varies by workload but is
typically a single-digit percentage.” — from paper

Hardware virtualization

 CPU maintains guest-copy of privileged state in
special region called the virtual machine control
structure (VMCS)

* CPU operates in two modes
 VMX non-root mode: runs guest kernel
 VMX root mode: runs VMM

* Hardware saves and restores privileged register state to
and from the VMCS as it switches modes

* Each mode has its own separate privilege rings

* Net effect: Hardware can run most privileged guest
instructions directly without emulation

What about MMU?

* Hardware effectively maintains two page tables
 Normal page table controlled by guest kernel

* Extended page table (EPT) controlled by VMM
* EPT didn’t exist when VMware published paper

Guest Guest Host
Virtualm Physical “Physical
Address Address Address

What’s better HW or SW virt?

What’s better HW or SW virt?

e Software virtualization advantages
* Trap emulation: Most traps can be replaced with callouts

 Emulation speed: BT can generate purpose-built emulation
code, hardware traps must decode the instruction, etc.

* Callout avoidance: Sometimes BT can even inline callouts

 Hardware virtualization advantages

* Code density: Translated code requires more instructions and
larger opcodes

* Precise exceptions: BT must perform extra work to recover
guest state

e System calls: Don’t require VMM intervention

What’s better HW or SW virt?

1 O T ! ! !

Softwarle VMM ——
Hardware VMM =

Overhead (seconds)

syscall in/out cr8wr callret pgfault ptemod translate

Figure 5. Sources of virtualization overhead in an XP boot/halt.

What’s better shadow page table
or EPT?

What’s better shadow page table
or EPT?

e EPT is faster when page table contents change
frequently
* Fewer traps

* Shadow page table is faster when page table is
stable
* Less TLB miss overhead
* One page table to walk through instead of two

Conclusion

* Virtualization transformed cloud computing, had a
tremendous impact
* Virtualization on PCs was also big, but less significant

* VMware made virtualization possible on an
architecture that couldn’t be virtualized (x86)
through BT

* Prompted Intel and AMD to change hardware,
sometimes faster, sometimes slower than BT

A decade later, what's changed?

 HW virtualization became much faster
* Fewer traps, better microcode, more dedicated logic
e Almost all CPU architectures support HW virt.
* EPT widely available

e VMMs became commoditized
e BT technology was hard to build

* VMMs based on HW virt. are much easier to implement
* Xen, KVM, HyperV, etc.

* |/O devices aren’t just emulated, they can be
exposed directly

* IOMMU provides paging protection for DMA

