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What is a virtual machine

e Simulation of a computer

* Running as an application on a host computer
* Accurate

* |solated

* Fast



Why use a virtual machine?

* To run multiple operating system (e.g. Windows
and Linux)

* To manage big machines (allocate cores and
memory at O/S granularity)

* Kernel development (e.g. like QEMU + JOS)
e Better fault isolation (defense in depth)

* To package applications with a specific kernel
version and environment

* To improve resource utilization



How accurate do we have to be?

* Must handle weird quirks in existing Oses
e Even bug-for-bug compatibility

e Must maintain isolation with malicious software
e Guest can not break out of VM!

* Must be impossible for guest to distinguish VM
from real machine

* Some VMs compromise, modifying the guest kernel
to reduce accuracy requirement



VMs are an old idea

* 1960s: IBM used VMs to share big machines
e 1970s: IBM specialized CPUs for virtualization
* 1990s: VMware repopularized VMs for x86 HW

e 2000s: AMD & Intel specialized CPUs for
virtualization



Process Architecture

firefox

ON

Hardware




VM Architecture

firefox

Guest OS CIION

OS (VMM)

Hardware

 What if the process abstraction looked just like HW?



Comparing a process and HW

Process Hardware
* Non privileged registers ¢ All registers and
and instructions instructions
* Virtual memory * Virt. mem. and MMU
e Signals * Traps and interrupts

* File system and sockets ¢ I/O devices and DMA



Can a CPU be virtualized?

Requirements to be “classically virtualizable” defined
by Popek and Goldberg in 1974:

1. Fidelity: Software on the VMM executes
identically to its execution on hardware, barring
timing effects.

2. Performance: An overwhelming majority of guest
instructions are executed by the hardware
without the intervention of the VMM.

3. Safety: The VMM manages all hardware
resources.



Why not simulation?

VMM interprets each instruction (e.g. BOCHS)
 Maintain machine state for each register

e Emulate 1/0 ports and memory

* Violates performance requirement



|[dea: Execute guest instructions
on real CPU whenever possible

* Works fine for most instructions
* E.g. add %eax, %ebx
* But privileged instructions could be harmful

* Would violate safety property



/dea: Run guest kernels at CPL 3

* Ordinary instructions work fine

* Privileged instructions should trap to VMM (general
protection fault)

* VMM can apply privileged operations on “virtual”
state, not to real hardware

* This is called “trap-and-emulate”



Trap and emulate example

e CLI / STI — enables and disables interrupts
* EFLAGS IF bit tracks current status

* VMM maintains virtual copy of EFLAGS register

* VMM controls hardware EFLAGS
* Probably leave interrupts enables even if VM runs CLI

* VMM looks at virtual EFLAGS register to decide
when to interrupt guest

* VMM must make sure guest only sees virtual
EFLAGS



What about virtual memory?

 Want to maintain illusion that each VM has dedicated
physical memory

e Guest wants to start at PA O, use all of RAM

* VMM needs to support manyguests, they can’t all
really use the same physical addresses

* |dea:

Claim RAM is smaller than real RAM

Keep paging enabled

Maintain a “shadow” copy of guest page table
Shadow maps VAs to different PA than guest requests
Real %CR3 points to shadow table

Virtual %CR3 points to guest page table
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Example:

* Guest wants guest-physical page @ 0x1000000

VMM map redirects guest-physical 0x1000000 to
host-physical 0x2000000

* VMM traps if guest changes %cr3 or writes to guest
page table

* Transfers each guest PTE to shadow page table

* Uses VMM map to translate guest-physical page
addresses in page table to host-physical addresses



Why can’t the VMM modity the
guest page table in-place?



Need shadow copy of all
privileged state

* So far discussed EFLAGS and page tables
* Also need GDT, IDT, LDTR, %CR*, etc.



Unfortunately trap-and-emulate is
not possible on x86

Two problems:

1. Some instructions behave differently in CPL 3
instead of trapping

2. Some registers leak state that reveals if the CPU is
running in CPL 3

* Violates fidelity property



x86 isn’t classically virtualizable

Problems -> CPL 3 versus CPL O:

* mov %cs, %ax

* %cs contains the CPL in its lower two bits
 popfl/pushfl

* Privileged bits, including EFLAGS.IF are masked out
* iretq

* No ring change, so doesn’t restore SS/ESP



Two possible solutions

1. Binary translation
e Rewrite offending instructions to behave correctly

2. Hardware virtualization

* CPU maintains shadow state internally and directly
executes privileged guest instructions



Strawman binary translation

* Replace all instructions that cause violations with
INT S3, which traps

* INT S3 is one byte, so can fit inside any x86
instruction without changing size/layout

* But unrealistic

 Don’t know the difference between code and data or
where instruction boundaries lie

* VMware’s solution is much more sophisticated



VMware’s binary translator

e Kernel translated dynamically like a JIT
* idea: scan only as executed, since execution reveals
instruction boundaries
* when VMM first loads guest kernel, rewrite from entry
to first jump
* Most instructions translate identically

* Need to translate instructions in chunks

e Called a basic block
e Either 12 instructions or the control flow instruction,

whichever occurs first
* Only guest kernel code is translated



Guest kernel shares address space
with VMM

* Uses segmentation to protect VMM memory

* VMM loaded at high virtual addresses, translated
guest kernel at low addresses

* Program segment limits to “truncate” address
space, preventing all segments from accessing
VMM except %GS

* What if guest kernel instruction uses %GS selector?

* %GS provides fast access to data shared between guest
kernel and VMM

* Assumption: Translated code can’t violate isolation
e Can never directly access %GS, %CR3, GDT, etc.




Why put guest kernel and VMM in
same address space?



Why put guest kernel and VMM in
same address space?

* Shared state becomes inexpensive to access
e.g. cli -> “vcpu.flags.IF:=0"

e Translated code is safe, can’t violate isolation after
translation



Translation example

 All control flow requires indirection
Original: isPrime()

mov %ecx, %edi # %ecx = %edi (a)

mov %esi, $2 # %esi = 2

cmp %esi, %ecx # is 1 >= a?

jge prime # if yes jump «——— End of basic block
C source:

int isPrime(int a) {
for (int 1 = 2; i < a; i++) {
if (a % 1 == 0) return 0;
}

return 1;



Translation example

* All control flow requires indirection
 Original: isPrime()

mov %ecx, %edi # %ecx = %edi (a)
mov %esi, $2 # %esi = 2

cmp %esi, %ecx # is 1 >= a?

jge prime # if yes jump

Translated: isPrime()’
mov %ecx, xedi # IDENT
mov %esi, $2

cmp %esi, %ecx

jge [takenAddr] # JCC
jmp [fallthrAddr]



Translation example

* Brackets represent continuations

* First time they are executed, jump into BT and
generate the next basic block

* Can elide “jmp [fallthraddr]” if it's the next address
translated

* Indirect control flow is harder

e “(jmp, call, ret) does not go to a fixed target, preventing
translation-time binding. Instead, the translated target
must be computed dynamically, e.g., with a hash table
lookup. The resulting overhead varies by workload but is
typically a single-digit percentage.” — from paper



Hardware virtualization

 CPU maintains guest-copy of privileged state in
special region called the virtual machine control
structure (VMCS)

* CPU operates in two modes
 VMX non-root mode: runs guest kernel
 VMX root mode: runs VMM

* Hardware saves and restores privileged register state to
and from the VMCS as it switches modes

* Each mode has its own separate privilege rings

* Net effect: Hardware can run most privileged guest
instructions directly without emulation



What about MMU?

* Hardware effectively maintains two page tables
 Normal page table controlled by guest kernel

* Extended page table (EPT) controlled by VMM
* EPT didn’t exist when VMware published paper
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What’s better HW or SW virt?



What’s better HW or SW virt?

e Software virtualization advantages
* Trap emulation: Most traps can be replaced with callouts

 Emulation speed: BT can generate purpose-built emulation
code, hardware traps must decode the instruction, etc.

* Callout avoidance: Sometimes BT can even inline callouts

 Hardware virtualization advantages

* Code density: Translated code requires more instructions and
larger opcodes

* Precise exceptions: BT must perform extra work to recover
guest state

e System calls: Don’t require VMM intervention



What’s better HW or SW virt?
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Figure 5. Sources of virtualization overhead in an XP boot/halt.



What’s better shadow page table
or EPT?



What’s better shadow page table
or EPT?

e EPT is faster when page table contents change
frequently
* Fewer traps

* Shadow page table is faster when page table is
stable
* Less TLB miss overhead
* One page table to walk through instead of two



Conclusion

* Virtualization transformed cloud computing, had a
tremendous impact
* Virtualization on PCs was also big, but less significant

* VMware made virtualization possible on an
architecture that couldn’t be virtualized (x86)
through BT

* Prompted Intel and AMD to change hardware,
sometimes faster, sometimes slower than BT



A decade later, what's changed?

 HW virtualization became much faster
* Fewer traps, better microcode, more dedicated logic
e Almost all CPU architectures support HW virt.
* EPT widely available

e VMMs became commoditized
e BT technology was hard to build

* VMMs based on HW virt. are much easier to implement
* Xen, KVM, HyperV, etc.

* |/O devices aren’t just emulated, they can be
exposed directly

* IOMMU provides paging protection for DMA



