6.181: Using Virtual Memory

Adam Belay <abelay@mit.edu>

csAll

Today’s focus

Cool things you can do with virtual memory:
1. Virtual memory recap
2. Lazy page allocation

3. Better performance/efficiency
* E.g. One zero-filled page
 E.g. Copy-on-write w/ fork()

4. New features
* E.g. Memory-mapped files

Recap: Memory’s many layers of abstraction

Focus today

Garbage
RAM and Address Stack and Collection,

/O Spaces Heap ARC, or Smart
Pointers

Hardware CPU/OS Compiler/Library Language/Runtime

Recap: Key ideas for address spaces

Address spaces can have holes
Address spaces can have permissions
Combine RAM and devices

Virtual memory (today)

e N E

Cache coherence and consistency (later)

Recap: Process isolation

* Primary goal: Isolation — each process has its own address space

* But... virtual memory provides a level of indirection that allows the
kernel to do cool stuff

Kernel
Trampoline

SATP

oan

Page table entries (PTE)

63 54 53 28 27 19 18 10 9 8 7 6 5 !
Reserved PPN|[2] PPN[1] PPN|[0] RSW D|IA|[G|U
10 26 9 9 2 1 1 | 1

Figure 4.18: Sv39 page table entry.

Some important bits:

 Physical page number (PPN): Identifies 44-bit physical page
location; MMU replaces virtual bits with these physical bits

* U: If set, userspace can access this virtual address
 W: writeable, R: readable, X: executable

* V: If set, an entry for this virtual address exists

* RSW: Ignored by MMU

RISC-V page faults

* RISC-V supports 16 exceptions
* Three related to paging

* Exceptions are controlled transfers into the kernel
* Seen in previous and future lectures

 Information we might need to handle a page fault:

1. The VA that caused the fault
2. The type of violation that caused the fault
3. The instruction where the fault occurred

T
Code
SCAUSE

. 0 0 Instruction address misaligned
regil ster o 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Reserved
0 5 Load access fault
0 6 AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call
0 9-11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 S16 Recerved

STVAL register

* Contains exception-specific information

* Some exceptions don’t use it (set to zero)
* Page faults set it to the faulting address!
» Use r_stval() in xv6 to access

Gathering info to handle a pgfault

1. The VA that caused the fault?
e STVAL, or r_stval() in xv6

2. The type of violation that caused the fault?
* Encoded in SCAUSE, or r_scause() in xv6

* 12: page fault caused by an instruction fetch
* 13: page fault caused by a read
e 15: page fault cause by a write

3. The IP and privilege mode where fault occurred?
* User IP: tf->epc
* U/K: SSTATUS, or r_sstatus() & SSTATUS _SPP in xv6

Xv6 user memory layout

MAXVA —

PAGESIZE ¢

0

trampoline

trapframe

heap

argument 0

argument N

0

address of argument 0

stack

address of argument N

guard page |

address of address of
argument 0

data

argc

OXFFFFFFF

text

(empty)

>

nul-terminated string
argvl[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

Figure 3.4: Memory layout of a user process with its initial stack.

11

l[dea: On-demand page allocation

* Problem: sbrk() is old-fashioned

* Allocates memory that may never
be used

* Modern OSes allocate memory
lazily

* Insert physical pages when they’re
accessed instead of in advance

BRK address—>

Accessed

Unused

Accessed

On-demand page allocation
demo

Caveats

* Page faults below user stack are invalid
* Must not fault in pages above brk

* What about copyin() and copyout()?

* And many more caveats...

 Real kernels are difficult to build, every detail matters

Optimization: Zero pages

* Observation: In practice,
some memory is never
written to

* All memory gets initialized
to zero

* Idea: Use just one zeroed
page for all zero mappings

* Copy the zero page on
write

BRK address ===l

Zero (Read-

only)

R/W

Zero (Read-

only)

R/W

15

Feature: Stack guard pages

* Observation: Stack has a finite size
* Push too much data and it could overflow into adjacent memory

* |[dea: Install an empty mapping (PTE_V cleared) at the bottom of the
stack
* Could automatically increase stack size in page fault handler

Optimization: Copy-on-write fork()

* Observation: Fork() copies all pages in new process

* But often, exec() is called immediately after fork()
* Wasted copies

* [dea: modify fork() to mark pages copy-on-write
» All pages in both processes become read-only

* On page fault, copy page and mark R/W
* Extra PTE bits (RSV) useful for indicating COW mappings

Optimization: Demand paging

* Observation: exec() loads entire object file into memory
* Expensive, requires slow disk block access
* Maybe not all of the file will be used

* |[dea: Mark mapping as demand paged
* On page fault, read disk block and install PTE

* Challenge: What if file is larger than physical memory?

Feature: Support more virtual memory than
physical RAM

* Observation: More disk capacity than RAM

* [dea: “Page in” and out data between disk and RAM
» Use page table entries to detect when disk access is needed
» Use page table to find least recently used disk blocks to write back

* Works well when working set fits in RAM

Opportunity is large

Percentage of Cold Memory

]OO% I I I I I 1 I I

T

80%

60%

40%

20%

0%
C1 €2 €3 €4 €5 €6 :©Ff €8
Cluster Name

Software-Defined Far Memory in Warehouse-Scale Computers
Lagar-Cavilla et. Al. ASPLOS’19.

C9

C10

20

Feature: Memory-mapped files

* Normally files accessed through read(), write(), and Iseek()

* |dea: Use load and store to access file instead
* New system call mmap() can place file at location in memory
* Use memory offset to select block rather than seeking

* Any holes in file mappings require zeroed pages!

Feature: Distributed shared memory

* [dea: Use virtual memory to share physical memory between several
machines on the network

Distributed Memory

22

Translation Lookaside Buffers (TLBs)

* Virtual memory
translations are stored
in RAM

* Problem: RAM is slow!

* Imagine walking the
page table for each
memory access

e Solution: Cache the
page table (i.e.) a TLB

TLB management

* xv6 flushes entire TLB during user/kernel transitions
e Why?

e RISC-V TLB is more sophisticated in reality
* PTE_G: global TLB bits
* SATP: takes ASID number
» sfence.vma: ASID number, addr
* Large pages: 2MB and 1GB support

Virtual memory is still evolving

Recent Linux Kernel Changes:

e Support for up to 5-level page tables

e 57 virtual address bits!

* In RISCV: sv39 (3 levels), sv48 (4 levels), and sv57 (5 levels)
e Support for ASIDs

* TLB can cache multiple page tables at a time

* New isolation mechanisms like MPK
* Allows fast changes to permissions within an address space

Conclusion

* There’s no one way to use virtual memory
* Many different use cases
* Enables powerful features and optimizations

* XV6 presents one example
* It lacks many features of real OSes
 But still quite complex!

* Our goal: Teach you ideas so you can extrapolate

