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Plan for today

• Previously: Discussed filesystems
• Today: Appel and Li’s paper
• Focus is on use cases for virtual memory in user programs
• Concurrent garbage collection
• Generational garbage collection
• Concurrent checkpointing
• Data-compression paging
• Persistent stores
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What primitives do we need?

• Trap: handle page-fault traps in usermode
• Prot1: decrease the accessibility of a page
• ProtN: decrease the accessibility of N pages
• Unprot: increase the accessibility of a page
• Dirty: returns a list of dirtied pages since previous call
• Map2: map the same physical page at two different virtual addresses
• at different levels of protection
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Recall xv6 memory system calls

• sbrk(): Adjusts the size of the heap
• pgaccess(): Determines whic h pages were accessed (lab pgtbl)

Not enough functionality for Appel and Li’s paper
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What about UNIX?

• Processes manage virtual memory through higher-level abstractions
• An address space consists of a non-overlapping list of Virtual 

Memory Areas (VMAs) and a page table
• Each VMA is a contiguous range of virtual addresses that shares the 

same permissions and is backed by the same object (e.g. a file or 
anonymous memory)
• VMAs help the kernel decide how to handle page faults
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Unix: mmap()

• Maps memory into the address space
• Many flags and options

• Example: mapping a file
mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 
offset);

• Example: mapping anonymous memory
mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | 
MAP_ANONYMOUS, -1, 0);
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Unix: mprotect()

• Changes the permissions of a mapping
• PROT_READ, PROT_WRITE, and PROT_EXEC

• Example: make mapping read-only
mprotect(addr, len, PROT_READ);

• Example: make mapping trap on any access
mprotect(addr, len, PROT_NONE);
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Unix: munmap()

• Removes a mapping

• Example:
munmap(addr, len);
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Unix: sigaction()

• Configures a signal handler

• Example: get signals for memory access violations
act.sa_sigaction = handle_sigsegv;
act.sa_flags = SA_SIGINFO;
sigemptyset(&act.sa_mask);
sigaction(SIGSEGV, &act, NULL);
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Unix: Modern implementations are very complex

e.g. Additional Linux VM system calls:
1. madvise()
2. mincore()
3. mremap()
4. msync()
5. mlock()
6. mbind()
7. shmat()
8. sbrk()
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Can we support the Appel and Li Primitives in 
UNIX?
• Trap: ?
• Prot1: ?
• ProtN: ?
• Unprot: ?
• Dirty: ?
• Map2: ?
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Can we support the Appel and Li Primitives in 
UNIX?
• Trap: sigaction() and SIGSEGV
• Prot1: mprotect()
• ProtN: mprotect()
• Unprot: mprotect()
• Dirty: No! But workaround exists.
• Map2: Not directly. On modern UNIX there are ways, but not 

straightforward…

All of these ops are more expensive than simple page table updates
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Some context on memory management

• So far in this class:
• Manual memory management (e.g., kalloc() and kfree())
• Non-moving allocator -> once an item is allocated its address can’t change

• In the paper (e.g., Baker’s algorithm):
• Automatic memory management
• Tracing is used to find live objects; dead objects are then freed
• Allocator is moving -> can change the address of items while program runs
• Typically requires a managed runtime system
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Q: How could a moving allocator be better?
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Use Case: Concurrent GC

Baker’s Algorithm
• A copying (moving) garbage collector
• Divide heap into two regions: from-space and to-space
• At the start of collection, all objects are in the from-space
• Start with roots (e.g. registers and stack), copy reachable objects to 

the to-space
• A pointer is forwarded by making it point to the to-space copy of an 

old object
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Baker’s Algorithm
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Concurrency is difficult

1. Extra overhead for each pointer dereference
• Does the pointer reside in the from-space?
• If so, it must be copied to the to-space.
• Requires test and branch for every dereference!

2. Difficult to run GC and program at same time
• Race conditions between collector tracing heap and mutator threads
• Could get two copies of the same object!
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Solution: Virtual memory!
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Solution: Use virtual memory

• No mutator instruction overhead!
• Instead take a page fault whenever program accesses an object in the 

unscanned region
• If a fault happens, have the GC immediately scan just that page and “visit” all 

of its references, then UNPROT
• At most one fault per page! Compiler changes not needed!

• Fully concurrent
• A background GC thread can UNPROT pages after scanning
• Only synchronization needed is for which thread is scanning which page
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Use Case: Generational GC

• Observation: Most objects die young
• Idea: Maintain separate regions for young and old objects
• Plan: Collect young objects independently and more often
• Performance impact: Avoids tracing overhead of old generation
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Challenge: How to find live objects in young gen?

• Easy part: Start with roots like registers, stack, and global pointers

• Hard part: What if an old gen object points to a young gen object?
• We can’t trace the old gen or no speedup!
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Challenge: How to quickly find live objects in 
young gen?

• Old gen may have references to young gen!

Young Generation

Old Generation
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Solution: Use virtual memory!

• Paging HW tracks which pages were modified (DIRTY)

Young Generation

Old Generation

Dirty Dirty
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Use Case: Concurrent checkpointing 

• Checkpointing: Save the state of a running process to disk, so, in the 
event of a failure, it can be restored
• Normally, need to pause execution to save process memory
• Instead, mark entire address space read-only (PROTN), make pages 

writable after state is saved (UNPROT). Use concurrent program 
execution to prioritize which pages to save first (TRAP).
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Use case: Data compression

• Memory pages usually have low entropy
• E.g. most objects initialized to same value
• E.g. Nearby pointers share many bits
• E.g. many values are zero

• Idea: Compress memory pages
• Use PROTN to prevent access, TRAP to trigger decompression of 

pages
• Challenge: Expensive, need to compress only pages that are accessed 

infrequently (cold pages)
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Cold pages are common
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Software-Defined Far Memory in Warehouse-Scale Computers 
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Compression is effective

Software-Defined Far Memory in Warehouse-Scale Computers. Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, 
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid, Greg Thelen, 
Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan. ASPLOS 19. 33



Persistent stores

• A heap that persists from one program invocation to the next
• Paper discusses using virtual memory and mechanical disks to 

implement persistent stores
• How do we know when data has reached the store?
• What if RAM was persistent instead?
• See Persistent Memory Programming by Andy Rudoff.
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Should we use virtual memory?

• Most of these use cases could have been implemented by adding 
additional instructions instead (e.g. adding read barriers to mutator 
threads).
• Are virtual memory hacks worth it?
• Pro: Avoids complex compiler changes
• Pro: CPU provides specialized and optimized logic just for VM operations
• Con: Requires the right OS support. OS overhead can easily squander any 

benefits.
• Con: Paging hardware may not always map well to problem domain (e.g. are 

pages too large?)
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What’s changed between 1990’s and 2020’s?

• Switching address spaces is now almost free because of tagged TLBs
• But feature not exposed to userspace by any kernels…
• Do we need MAP2?

• Extended addressability doesn’t matter
• 2^52 bytes of virtual address space now possible

• New technologies
• Huge pages
• PEBS
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Huge pages

• Problem: 4KB have high translation overhead
• TLB misses have a cost, TLB has a finite capacity

• Solution: Use “huge pages instead”
• Works by using fewer translation levels in pgtbl
• In RISC-V, sizes can be 2MB, 1GB, etc.

• Pro: Much less TLB miss cost
• Con: Memory fragmentation
• Con: Could make pages too large
• Access and dirty bits are less useful
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Processor Event-based Sampling

• CPU records a masked set 
of events to a ring buffer
• Log records include target 

address
• Can be used to trace 

memory access
• Some overhead, best to 

sample (use periodically)

Core 0

Event record 0

..

..

..

..

PMU

38
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Conclusion

• Virtual memory is useful for applications, not just kernels
• But most kernels can’t expose the raw hardware performance of 

paging, too much abstraction
• Tradeoff between adding extra instructions and using virtual 

memory, often both are viable solutions
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