
Programming xv6 in C

1

Adam Belay <abelay@mit.edu>



Today’s agenda

• What is memory?

• C programming basics

• Logistics:
• Don’t forget to post lecture questions before each lecture (starting this Wed.).
• If you do so the night before, we’ll try to cover it in lecture
• The first lab is due this Thursday

2



Memory’s many layers of abstraction

RAM and I/O Address 
Spaces

Stack and 
Heap

Garbage 
Collection, 

ARC, or Smart 
Pointers

Hardware Language/RuntimeCompiler/LibraryCPU/OS

3



Memory’s many layers of abstraction

RAM and I/O Address 
Spaces

Stack and 
Heap

Garbage 
Collection, 

ARC, or Smart 
Pointers

Hardware Language/Runtime

Focus in most CS classes

Compiler/LibraryCPU/OS

4



Memory’s many layers of abstraction

RAM and I/O Address 
Spaces

Stack and 
Heap

Garbage 
Collection, 

ARC, or Smart 
Pointers

Hardware CPU/OS Compiler/Library Language/Runtime

Focus in 6.181

5



Memory’s many layers of abstraction

RAM and I/O Address 
Spaces

Stack and 
Heap

Garbage 
Collection, 

ARC, or Smart 
Pointers

Hardware CPU/OS Compiler/Library Language/Runtime

6



Hardware layer: RAM and I/O

CPU

RAM IO Device

Bus

Cache

• A bus transfers data between 
components in the computer
• A cache remembers data 

previously fetched from the bus
• Speeds up the CPU by reducing 

the number of bus accesses
• Q: What is an IO Device?

7



How does a bus work?

Control Line

Data Line

Address Line

RAM IO DeviceCPU

8



Memory’s many layers of abstraction

RAM and I/O Address 
Spaces

Stack and 
Heap

Garbage 
Collection, 

ARC, or Smart 
Pointers

Hardware CPU/OS Compiler/Library Language/Runtime

9



CPU/OS layer: Address Spaces

• Problem: Bus interface is too low-level to 
do anything useful!
• Idea: Represent bus as a giant array of data
• This is called an address space
• Each array element is a byte (8 bits)

The address is the array index in bytes!

…

0x00000003

0x00000002

0x00000001

0x00000000

10



How to interact with an address space?

0xF0

…

STORE 0xF0

LOAD -> 0xF0

0x00000003

0x00000002

0x00000001

0x00000000

11



Idea #1: Address spaces can have holes

• Usually address space is much larger than 
RAM
• Addresses that can be accessed are 

referred to as “mapped”
• And holes that can’t be accessed are 

“unmapped”
• Q: What happens if the CPU loads or 

stores to an unmapped region?

…

0x00000003

0x00000002

0x00000001

0x00000000

12



Idea #2: Address spaces can have permissions

R

RW

RX

R

• Read (R) -> Can load
• Write (W) -> Can store
• Execute (X) -> Can execute as code

• Q: Why have permissions?
• Q: What happens if the CPU loads or 

stores an address without permission?

…

0x00000003

0x00000002

0x00000001

0x00000000

13



Idea #3: Combine RAM and devices

Memory
(code)

Memory
(data)

IO Device

Memory
(data)

• Not as obvious as it sounds; e.g., x86 
originally put I/O in a separate address space 
from memory
• Programmer can then interact with IO 

devices through loads and stores!

• Treating code and data the same (as memory) 
is also a powerful idea, called a Von Neumann 
architecture.

…

0x00000003

0x00000002

0x00000001

0x00000000

14



More ideas not discussed today

Typical granularity for mappings is a page (4KB), not a byte

• Idea #4: Virtual memory
• Allows each process to have its own address space

• Idea #5: Cache coherence and consistency
• Allows multiple CPUs to share memory in an address space

• Will be covered in later lectures

15



Memory’s many layers of abstraction

RAM and I/O Address 
Spaces

Stack and 
Heap

Garbage 
Collection, 

ARC, or Smart 
Pointers

Hardware CPU/OS Compiler/Library Language/Runtime

16



Compiler/Library Layer: Stacks and Heaps

• Problem: An address space is also too low-level!
• How can we decide where in the array to store things?
• This problem is called memory allocation

• Two basic approaches:
1. A stack allocates memory when a function is called and frees it 

when a function returns
2. A heap manages memory that is allocated and freed independently 

of function invocations

17



Stack basics

a(args...)

Local variables

Frame pointer to top

Return address to exit()

Top of stack

FP

SP

Grows
Downward 18



Stack basics

a(args...)
↳b(args…)

Local variables

Frame pointer to top

Return address to exit()

Top of stack

FP

SP

Grows
Downward

Local variables

Frame pointer to a’s call frame

Return address to a()

19



Stack basics

a(args...)
↳b(args…)
   ↳c(args…)Local variables

Frame pointer to top

Return address to exit()

Top of stack

FP

SP

Grows
Downward

Local variables

Frame pointer to a’s call frame

Return address to a()

Local variables

Frame pointer to b’s call frame

Return address to b()

20



Heap basics

• void *malloc(size_t size)
• Allocates an object of size bytes
• Returns 0 if out of memory! Otherwise, a pointer to the object.

• void free(void *item);
• Frees an object
• Can’t be called more than once on same object

21



Using a heap

Example:
struct foo *f = malloc(sizeof(*f));
if (!f) // handle out of memory error
memset(f, 0, sizeof(*f)); // initialization
// do something with f
free(f);

22



Building a heap allocator

• Problem: Need to keep track of what regions are free and allocated in 
an array of memory (the heap)
• Turns out to be an interesting area of research even today
• Many design tensions; best solution depends on the allocation 

pattern

23



Q: When is it better to use a stack vs. a heap?

24



Q: When is it better to use a stack vs. a heap?

• Always prefer a stack, except if the object must remain valid after the 
function returns or if the object is too large!
• Why? More efficient and simpler
• Note: A stack is generally much smaller than the heap

25



Tying the stack and heap to an address space

26



Common memory management pitfalls

1. Using memory after freeing it
2. Freeing the same object more than once
3. Forgetting to initialize memory (nothing is zeroed automatically)
4. Writing beyond the end of an array (buffer overflow)
5. Forgetting to free an object (memory leak)
6. Casting an object to the wrong type
7. Forgetting to check if an allocation failed
8. Using pointers to locations on the stack (if they could return)

27



Why build an OS in C?

• Good for low-level programming
• Can manipulate address spaces directly without language abstractions
• Easy to access hardware structures and RISC-V instructions

• Kernel is in complete control of memory allocation
• In fact, you can build a memory allocator using C
• No garbage collection

• Efficient and fast: compiled, no interpreter

• Why not? Easy to write incorrect/insecure code! Limited abstractions.

28



Primitive types (RISCV-64)

• char: 1 byte
• short: 2 bytes
• int: 4 bytes
• long: 8 bytes
• long long: 8 bytes
• void *: 8 bytes (any pointer type is this size)

Qualifiers: unsigned (nonnegative), const (can’t be modified), static (only 
accessed within the file)
sizeof(type) returns the size of a type

29



Typedef declares aliases

// example: xv6 uses these to make the size of types more obvious
typedef unsigned char uint8;    // uint8 is the same as unsigned char
typedef unsigned short uint16;
typedef unsigned int  uint32;
typedef unsigned long uint64;

30



Structs combine together types

struct a {
  int foo;
};
struct b  {
  struct a bar;
  long baz;
};

Q: What will printf(“%ld”, sizeof(struct b)) print?

31



Casting

• Converts one type to another
• Example:

int foo = 10;
long bar = (long)foo;

32



Pointer arithmetic

void foo(void *ptr)
{
  void *pos = ptr + 10;         // doesn’t compile!
  void *pos = (char *)ptr + 10; // works fine
  uint64 addr = (uint64)pos;    // can convert to int
  addr += 10;
  pos = (void *)addr;           // and back again
}

33



Bitwise operations

0b10001 & 0b10000 == 0b10000
0b10001 | 0b10000 == 0b10001
0b10001 ^ 0b10000 == 0b00001
~0b1000 == 0b0111

34



Arrays

int foo[5];
int i;
for (i = 0; i < 5; i++) {
  foo[i] = i;
}

// now foo contains 0, 1, 2, 3, 4

35



What does this print?

#include <stdio.h>
int main() {
  int x[5]; 
  printf("%p\n", x);
  printf("%p\n", x+1);
  printf("%p\n", &x);
  printf("%p\n", &x+1);
  return 0;
}
Source: https://blogs.oracle.com/linux/post/the-ksplice-pointer-challenge

36

https://blogs.oracle.com/linux/post/the-ksplice-pointer-challenge


What does this print?

#include <stdio.h>
int main() {
  int x[5]; 
  printf("%p\n", x);   // equivalent to &x[0]
  printf("%p\n", x+1); // equivalent to &x[0] + 1
  printf("%p\n", &x);  // pointer to x
  printf("%p\n", &x+1);// eqv. to x + sizeof(x[5])
  return 0;
}
Source: https://blogs.oracle.com/linux/post/the-ksplice-pointer-challenge

37

https://blogs.oracle.com/linux/post/the-ksplice-pointer-challenge


Conclusion

• Many layers of abstraction in memory
• Writing an OS requires you to be aware of all of them
• C is a low-level language, so it’s good at doing this
• But many pitfalls; large potential for bugs and security problems

38


