
6.181: Q&A Labs (PGTBL)

1

Adam Belay <abelay@mit.edu>

Agenda

1. Review page table lab assignment
2. Examples of how real OSes use the features you implemented
3. Answer your questions

2

Page table lab

• Traditionally a difficult lab
• Debugging can be challenging
• Bugs in page tables can change code and data layout

• Focus is on features enabled by page tables

3

Part 1: USYSCALL

• Problem: Kernel transitions have high overheads
• Could we speed up some system calls through shared memory

between process and kernel
• Which system calls can be sped up?
• Must have no side-effects
• Returns constant value while process runs
• But value can change after entering kernel (e.g., ticks)

4

Q: Which system calls in xv6?

5

Q: Which system calls in xv6?

Best options:
• getpid() – constant value, doesn’t ever change
• uptime() – constant until next timer tick
• Each tick triggers a kernel interrupt, which updates the value

Less likely:
• File system calls if willing to map a lot of state in memory

6

USYSCALL Mapping

Heap and Data

Trampoline VA

Trapframe

USYSCALL

PTE_R | PTE_X

PTE_R | PTE_W

PTE_R | PTE_U
ugetpid()

7

Code walkthrough

8

How does Linux use USYSCALL?

• A more sophisticated mechanism called VDSO
• Idea #1: Read-only, shared memory region
• Like the lab assignment

• Idea #2: Kernel puts data and code in shared region
• Code interprets the data in the shared region
• Allows kernel to change data format over time

9

Linux VDSO methods + speed

• clock_gettime()
• getcpu()
• getpid()
• gettimeofday()

Example use case: clock_gettime()
• 1: Kernel posts time to shared region each time process is entered
• 2: VDSO code adds TSC to posted time

0 0.02 0.04 0.06 0.08 0.1

System Call

vDSO

Microseconds

10

Part 2: Printing a page table

• Goal: Print the contents of the user page table
• Save your code! Useful for debugging future labs

11

Recall user address layout (fig 3.4)

USYSCALL
Inserted here

12

User page table output
page table 0x0000000087f6b000

..0: pte 0x0000000021fd9c01 pa 0x0000000087f67000

.. ..0: pte 0x0000000021fd9801 pa 0x0000000087f66000

..0: pte 0x0000000021fda01b pa 0x0000000087f68000

..1: pte 0x0000000021fd9417 pa 0x0000000087f65000

..2: pte 0x0000000021fd9007 pa 0x0000000087f64000

..3: pte 0x0000000021fd8c17 pa 0x0000000087f63000

..255: pte 0x0000000021fda801 pa 0x0000000087f6a000

.. ..511: pte 0x0000000021fda401 pa 0x0000000087f69000

..509: pte 0x0000000021fdcc13 pa 0x0000000087f73000

..510: pte 0x0000000021fdd007 pa 0x0000000087f74000

..511: pte 0x0000000020001c0b pa 0x0000000080007000 TRAMPOLINE

TRAPFRAME
USYSCALL

Permission bits

LVL0 LVL1 PTE

Code

Guard page

Stack

Data

13

Code walkthrough

14

Part 3: Access bits

• Goal: Efficiently tell which pages were accessed
• Hardware page walker accelerates this:
• PTE_A: Was the page accessed (read or write)
• PTE_D: Is the page dirty (only write)
• HW marks these bits when walking page table

• This lab: Provide a bitmask indicating which pages were accessed

15

How is PTE_A set?

MMU

TLB

Page Walker

VA | PA
VA | PA
VA | PA

… PGTBL

PGDIRPGDIR

By the
CPU here!

16

Code walkthrough

17

How does Linux use access bits?

• Used for swapping pages to disk
• CLOCK algorithm: Scan pages, which were accessed (PTE_A marked)

since last interval?
• Least accessed pages moved to disk
• PTE_D used to detect if copy on disk is stale
• Linux does not expose this info to userspace!

18

Q: How could you detect page accesses without
access bits?

19

Q: How could you detect page access without
access bits?
• Use page faults!
• Clear PTE_V, wait for faults
• In fault handler, record fault, then set PTE_V
• Slow!

20

Example use case: Garbage collector

• Paging HW tracks which pages were modified (DIRTY)

Young Generation

Old Generation

Dirty Dirty
21

Q: How does the kernel start running C code?

22

Q: How important is it to gracefully handle
incorrect arguments?

• In general, extremely critical
• Isolation and security often depends on it
• This is one reason OSes are often insecure

23

Q: Why do kernels copy arguments?

24

Q: Why do kernels copy arguments?

• In xv6, to verify if the mapping exists and if the permissions are right
• In Linux, there is more concurrency than xv6
• What if an argument is modified after the kernel reads it?
• This is called a time-of-check time-of-use (TOCTOU) attack
• A serious security problem!
• Copying prevents the attack

25

Q: Why is free memory a linked list?

• This is one common strategy for tracking free memory
• Advantage: No extra memory needed for metadata
• Metadata stored inside free memory

• Advantage: Simple
• Disadvantage: Hard for CPU to prefetch
• Disadvantage: Hard to allocate very large chunks

26

Q: Can you explain what qemu does?

27

Q: How does myproc() work?

// Return the current struct proc *,
or zero if none.

struct proc* myproc(void)

{

 push_off();

 struct cpu *c = mycpu();

 struct proc *p = c->proc;

 pop_off();

 return p;

}

// Return this CPU's cpu
struct.

// Interrupts must be disabled.

struct cpu* mycpu(void)

{

 int id = cpuid();

 struct cpu *c = &cpus[id];

 return c;

}

28

Q: How can I access physical memory?

1. Turn off paging

2. Map physical memory into virtual memory

Q: Which one does xv6 do?

29

Other questions?

30

