
6.S081: Virtual Memory
Adam Belay

abelay@mit.edu

1

Logistics update

• Lab checkoff instructions posted on Piazza
• You will receive an email if you have a checkoff for the

first lab
• Attend office hours (virtually or physically) for checkoff

• Syscall lab due this Thursday
• Pgtbl lab assigned this Wednesday

2

Outline

• Address spaces
• Risc-V paging hardware
• Case study: xv6 VM code

3

Today’s problem

SH VI

Kernel

Protection View:

User

Kernel

4

Today’s problem

SH VI

Kernel

Protection View:

User

Kernel

Physical Memory View:

0

2^64

5

Goal: Isolation

• Each process has its own
memory
• Can read and write its own

memory
• But cannot read or write the

kernel’s memory or another
process’ memory

Physical Memory View:

0

2^64 VI

6

Solution: Introduce a level of
indirection

• Plan: Software can only read and write to virtual
memory
• Only kernel can program MMU
• MMU has a page table that maps virtual addresses

to physical
• Some virtual addresses restricted to kernel-only

CPU MMU RAM

PAVA

7

Virtual memory in Risc-V

• Supports different addressing modes:
• Sv32, Sv39, Sv48 -> number of virtual addr bits
• This class will use Sv39 (3-level page table)

• SFENCE.VMA tells CPU to check page tbl updates
• satp register points to page root (set w/CSRW)

8

Virtual memory in Risc-V (Sv39)

Virtual addresses are divided into 4-KB “pages”

Virtual Address:

012 1138

12-bit offset27-bit page number

9

Page table entries (PTE)

Physical Page Number RSV D A G U X W R V

Some important bits:
• Physical page number: Identifies 44-bit physical page

location; MMU replaces virtual bits with these physical bits
• U: If set, userspace can access this virtual address
• W: If set, the CPU can write to this virtual address
• V: If set, an entry for this virtual address exists
• RSV: Ignored by MMU

53 0

10

910

Strawman: Store PTEs in an array

How large is the array?
PPN

…
…
…
…
…
…
…
…

GET_PTE(va) = &ptes[va >> 12]

… 11

Strawman: Store PTEs in an array

How large is the array?
2^27 * 64 bits
2^27 * 8 bytes
~ 1 Gigabyte!

PPN
…
…
…
…
…
…
…
…

GET_PTE(va) = &ptes[va >> 12]

… 12

Risc-V solution: Use three levels
to save space

12-bit offset9-bit DIR
(2nd level)

9-bit TBL
(3rd level)

012 1138 21 20

13

9-bit DIR
(1st level)

30 29

Risc-V solution: Use three levels
to save space (512 entries each)

12-bit offset

012 1138 21 20

14

30 29

9-bit TBL
(3rd level)

Page Num | FLG

9-bit TBL
(2nd level)

Page Num | FLG

9-bit TBL
(1st level)

Page Num | FLGBasically
a tree!

What about a recursive mapping?

Page Num FLG

9-bit
(all 3 levels)

15

How do we program the MMU?
CPU

satp

MMU

TLB

• satp register is a pointer
to current page table
• Hardware walks page

table tree to find PTEs
• Recently used PTEs

cached in TLB

16

Page Num | FLGPage Num | FLGPage Num | FLG

9-bit TBL
(3rd level)

9-bit TBL
(2nd level)

9-bit TBL
(1st level)

More about flags

• If U is cleared, only the kernel can access
• Why is this needed?

• What happens if flag permission is violated?
• We get a page fault!
• Then what happens?

17

Handling stale entries in the TLB

• Since TLB is a cache, might contain stale entries:
• When PTEs are removed
• When PTE flags change
• When switching page roots (satp)

• Risc-V provides instruction to flush TLB
• LFENCE.VMA: flushes entire TLB or specific VA

• G flag prevents TLB flushes of a PTE
• Why is this needed?

18

What about segmentation?
• Base and bounds…
• Why not use this instead

of paging?
• Paging seems to be

favored but debate is still
ongoing
• Really powerful features

enabled by paging

0

2^64

Limit
Base

Limit

Base

Limit

Base

Physical Memory View:

19

Why use virtual memory while in
kernel?
• Isolation benefits for userspace are clear
• Practical reasons
• Hard (expensive) to turn off paging for each system call
• Hard to deal with system call arguments that straddle

page boundaries
• Difficult for kernel to support many different hardware

physical address layouts

• Reducing fragmentation
• The kernel needs to allocate memory too

20

Paging is powerful

• Copy-on-write: Focus of upcoming lab
• Enables many use cases
• Lazy memory allocation
• Runtime system optimizations
• Topic of upcoming lecture

21

22

Kernel
memory
layout

Processes in xv6

• Each process has its own page table
• Set satp to new page table root when switching

processes
• Kernel’s trampoline mapping exists in same location

in each page table

vi sh gcc

satp

Trampoline

23

Q: What permissions for
trampoline?

24

Q: What permissions for
trampoline?
• Must be X, but not W
• U and R don’t technically matter

25

How do processes allocate
memory?
void *sbrk(int n)
• n == 0: get current position
• n > 0: allocate memory
• n < 0: free memory

BRK address
Heap and Data

Trampoline

User

26

