6.5081: Virtual Memory

Adam Belay
abelay@mit.edu

Logistics update

 Lab checkoff instructions posted on Piazza

* You will receive an email if you have a checkoff for the
first lab

e Attend office hours (virtually or physically) for checkoff
 Syscall lab due this Thursday
* Pgtbl lab assigned this Wednesday

Outline

* Address spaces
* Risc-V paging hardware
e Case study: xv6 VM code

Today’s problem

Protection View:

4)

User

Kernel

Kernel

Today’s problem

Protection View: Physical Memory View:
« N
2764
| 4 N
I
User I
N
I
Kernel]
Kernel
I
N
I

Goal: Isolation

* Each process has its own
memory

 Can read and write its own
memory

e But cannot read or write the
kernel’s memory or another
process’ memory

Physical Memory View:

2764

Solution: Introduce a level of
indirection

VA PA

* Plan: Software can only read and write to virtual
memory

* Only kernel can program MMU

* MMU has a page table that maps virtual addresses
to physical

e Some virtual addresses restricted to kernel-only

Virtual memory in Risc-V

» Supports different addressing modes:
e Sv32, Sv39, Sv48 -> number of virtual addr bits
* This class will use Sv39 (3-level page table)

* SFENCE.VMA tells CPU to check page tbl updates
* satp register points to page root (set w/CSRW)

63 60 59 44 43

| MODE (WARL) | ASID (WARL) PPN (WARL)

1 16 11

Virtual memory in Risc-V (Sv39)

Virtual addresses are divided into 4-KB “pages”

Virtual Address:

38 12 11

\ \

| |
27-bit page number 12-bit offset

53

Page table entries (PTE)

10 9

Physical Page Number RSV |D|A|G|U|XW|R

Some important bits:

* Physical page number: Identifies 44-bit physical page
location; MMU replaces virtual bits with these physical bits

* U: If set, userspace can access this virtual address
 W: If set, the CPU can write to this virtual address

* V: If set, an entry for this virtual address exists
* RSV: Ignored by MMU

Strawman: Store PTEs In an array

GET_PTE(va) = &ptes[va >> 12]

How large is the array?
PPN

Strawman: Store PTEs In an array

GET_PTE(va) = &ptes[va >> 12]

PPN

How large is the array?
2727 * 64 bits

2727 * 8 bytes

~ 1 Gigabyte!

12

Risc-V solution: Use three levels
to save space

38 30 29 21 20 12 11 0

| | | | |
| | | | |
\ A A A
| | | |
9-bit DIR 9-bit DIR O9-bit TBL 12-bit offset
(1stlevel) (2" level) (3™ level)

Risc-V solution: Use three levels
to save space (512 entries each)

38 30 29 21 20 12 11

| | | |

| | | |

\ A A A

| | |
12-bit offset

9-bit TBL 9-bit TBL 9-bit TBL
(15t level) (2nd level) (3 level)

Basica"y Page Num | FLG \ Page Num | FLG \ Page Num | FLG
a tree! | B

What about a recursive mapping?

O-bit

(all 3 levels)

Page Num

FLG

15

How do we program the MMU?

* satp register is a pointer
to current page table

* Hardware walks page
table tree to find PTEs

* Recently used PTEs
cached in TLB

9-bit TBL 9-bit TBL 9-bit TBL
(15t level) (2nd level) (37 level)

Page Num | FLG \ Page Num | FLG \ Page Num | FLG
— —

More about flags

-~
-

Meaning

Pointer to next level of page table.
Read-only page.

Reserved for future use.
Read-write page.

Execute-only page.

Read-execute page.

Reserved for future use.
Read-write-execute page.

el el =E=E==]
—_O = O = O = Ol

| Sl N o s R W S s O s

* |If Uis cleared, only the kernel can access
 Why is this needed?

* What happens if flag permission is violated?
* We get a page fault!
 Then what happens?

17

Handling stale entries in the TLB

* Since TLB is a cache, might contain stale entries:

* When PTEs are removed
* When PTE flags change
* When switching page roots (satp)

* Risc-V provides instruction to flush TLB
* LFENCE.VMA: flushes entire TLB or specific VA

» G flag prevents TLB flushes of a PTE
* Why is this needed?

What about segmentation?

e Base and bounds... Physical Memory View:
* Why not use this instead 2764
of paging?

Limit
* Paging seems to be
favored but debate is still

: Limit
ongoing
* Really powerful features -Base

enabled by paging

Base

Limit

Base

19

Why use virtual memory while in
kernel?

* |solation benefits for userspace are clear

* Practical reasons
* Hard (expensive) to turn off paging for each system call

* Hard to deal with system call arguments that straddle
page boundaries

 Difficult for kernel to support many different hardware
physical address layouts

* Reducing fragmentation
* The kernel needs to allocate memory too

Paging is powerful

* Copy-on-write: Focus of upcoming lab

* Enables many use cases
* Lazy memory allocation
* Runtime system optimizations
* Topic of upcoming lecture

Virtual Addresses

Physical Addresses

2756-1

Kernel
memory

MAXVA Trampoline AR-X
Guard page ks
Kstack 0 Unused
Guard page
Kstack 1
PHYSTOP
(0x86400000)
Free memory
Physical memory (RAM)
Kernel data
Kernel text
KERNBASE _ l
(0x80000000) Uaiead
and other 1/O devices
0x10001000 VIRTIO disk Lo 1 - SR VIRTIO disk
0x10000000 UARTO RW- s UARTO
0x0C000000 —» PLIC RW" PLIC
CLINT
0x02000000 —
Unused
boot ROM
0x1000 —=
0 —» Unused

ayout

22

Processes In Xv6

* Each process has its own page table
* Set satp to new page table root when switching

Processes

* Kernel’s trampoline mapping exists in same location

in each page tab

e

satp

Trampoline

23

Q: What permissions for
trampoline?

Q: What permissions for
trampoline?

 Must be X, but not W
* U and R don’t technically matter

How do processes allocate
memory?

void *sbrk(int n)

N ==
*nNn>0:

* nN<0:

get current position
allocate memory

free memory

BRK address s

Trampoline

User

Heap and Data

