
6.S081: Scheduling
Adam belay <abelay@mit.edu>



Agenda today

• Previously: System calls, interrupts, page tables, 
and locks
• Today’s focus: Thread scheduling
• Uses timer interrupts (discussed before)



Why support multiple tasks?

• Time sharing: Many users/tenants
• Program structure: E.g., prime number sieve from 

Lab
• Parallel speedup on multicore hardware
• Workload consolidation: improves energy efficiency



The thread abstraction

• Simplifies programming with many tasks
• Each thread is an independent serial execution
• A thread contains a stack, registers, and a PC
• Threads expose concurrency to the OS
• Across multiple cores, each core runs a thread
• Kernel switches between threads on a core



Memory sharing w/ threads

• Xv6 kernel: threads share memory -> needs locks
• Xv6 user: one thread per process, no sharing
• Linux: multiple threads can run in a process, each 

share the same memory



Another approach: Events

• Event-driven programming
• See libevent for an example
• See epoll() for how Linux provides event notifications
• Traditionally requires ugly spaghetti code
• Modern languages (e.g., rust) make it cleaner

• Event systems are faster than threads on Linux
• But fundamentally, both have similar performance



Thread design challenges

• How to interleave many threads on few cores
• Interleaving must be transparent
• Programs shouldn’t be able to tell how when they are 

sharing cores

• Needs to save and restore thread state
• A “scheduler” decides which thread to run next
• What is a thread never blocks or yields?



Threading design space

• Preemptive vs. cooperative: Does it pause running 
threads to run other threads?
• Work conserving: Does every core stay busy when 

there is enough work to run?
• User v.s. kernel: Are scheduling mechanisms (the 

scheduler, state saving/restoring, preemption, etc.) 
implemented in userspace or kernelspace?
• Hybrid approaches are possible
• User threads are significantly faster



Threading performance goals

• Fairness: Does each thread get an equal share of 
CPU time?
• Latency: How long does a runnable thread get 

delayed?
• Tail/max latency: What is the longest possible 

delay?
• Overhead: How expensive is a context switch?

A rich literature (e.g., queuing theory) offers proof of 
performance properties for many designs



Modern CPUs are even more 
interesting
• Schedulers control frequency, clock gating
• Some cores are faster than other cores
• Using fewer cores allows for a higher frequency 

(i.e., thermal envelope is constant)
• New security bugs restrict which apps can run on 

which cores at a time
• SMT can add more parallelism within a core



Preemptive scheduling

• Timer hardware on each core fires periodically
• Kernel uses these timer interrupts to grab control 

from busy (unyielding) threads
• Kernel saves state for running thread, switches to 

different thread
• State restored later to resume (transparency)



Scheduler states

Most schedulers implemented as per-thread state 
machine:
• Running: actively using a core
• Runnable: able to run, but not using a core
• Sleeping: not able to run, not using a core



What to do with threads that 
aren’t “running”?
• Set aside state: registers, PC, memory
• No need to save/restore memory, it won’t go anywhere
• So in practice, need a save area for registers and PC

• Keep track of scheduler state of each thread
• E.g., which threads are runnable?



Threading in xv6

vi

mem

cat

mem

sh

mem

Kernel
thread

Kernel
thread

Kernel
thread

Shared mem

User

Kernel

Core Core Core



Thread switching in xv6

• Switches among threads, interleaving on cores
• Trapframe: saved user registers
• Context: saved kernel registers
• Separate scheduler thread per core
• Context switch: term for switching from one thread 

to another



Thread switching in xv6

1. User thread -> kernel thread: save user registers 
in trapframe

2. Kernel thread -> scheduler thread: save kernel 
registers in context

3. Scheduler thread -> kernel thread: restore kernel 
registers from context

4. Kernel thread -> user thread: restore user 
registers from trapframe



More about scheduler threads

• One per core, each has stack + context
• Kernel thread switch to the core’s local scheduler 

thread
• Which switches to another thread if one is RUNNABLE
• Could be the same thread too (e.g., yield())

• Why a separate scheduler stack?
• Makes it easier to handle exit()
• Gets off kernel stack, allowing another core to run the 

last thread in parallel
• Policy: Scan process table in order until runnable 

thread is found



More details

• Each core is either running the scheduler thread, 
which spins waiting for a runnable thread, or is 
running exactly one user/kernel thread
• Each thread is either running on exactly one core, 

or its registers are saved in its context+trapframe
• Threads that aren’t running have a context that will 

resume from swtch()



Proc struct

• p->trapframe: holds saved user thread’s registers
• p->context: holds saved kernel thread’s registers
• p->kstack: points to the thread’s kernel stack
• p->state: RUNNING, RUNNABLE, SLEEPING
• p->lock: protects state, and other things



Demo: Spin



Scheduler locking strategy

• yield() acquires the process’ lock
• scheduler() code looks like normal acquire/release
• In reality, scheduler acquires, yield() releases
• then yield() acquires, scheduler releases
• And so on…

• Very unusual: lock is released by different thread 
than the one that acquired it



Q: Why hold p->lock across 
swtch()?
• Could we instead drop p->lock right before swtch()?



Scheduler locking strategy

• p->lock makes multiple steps atomic
1. p->state marked runnable
2. Save registers in p->context
3. Stop using p’s kernel stack 

No other scheduler thread can start running p until 
these steps complete:



Q: Why does schedule() enable 
interrupts periodically?



Q: What is xv6’s scheduling 
policy?
• i.e., how does xv6 decide what thread to run next?
• Is this a good policy?



Q: Why are locks forbidden to be 
help before calling yield()?
• Other than p->lock
• i.e., sched() checks that noff==1



Q: Why are locks forbidden to be 
help before calling yield()?
• Suppose P1 holds L1, then yields CPU
• P2 runs, tries acquire(L1)
• P2 spins waiting, interrupts are turned off so no 

timer will occur
• DEADLOCK: P2 won’t yield, P1 can’t execute



Could we get rid of separate, per-
core scheduler thread?
• Would be faster, avoids one swtch() call



Could we get rid of separate, per-
core scheduler thread?
• Would be faster, avoids one swtch() call
• Yes!
• Scheduling loop could run on thread’s kernel stack
• What if thread is exiting?
• What if another core wants to run the thread?
• What if there are fewer threads than cores?
• All this can be dealt with, but not easy. Give it a try!



Conclusion

• xv6 provides a shared-memory thread model for 
kernel code, and a single thread per process for 
user code
• Preemption via timer interrupts
• Transparency: saves and restores registers
• Locking and stacks are a tricky issue to get right
• Next lecture: mechanisms for threads to wait for 

each other


