
6.S081: Lab Q&A #2
Adam Belay <abelay@mit.edu>

Agenda

• Lab Q&A is an opportunity to better understand
previous labs
• Goal: Gain insights that help with future labs!

• Today’s lab: COW
• More difficult than previous labs (2-week assignment)
• First lab with race conditions

• Some discussion of how Linux does MM

Why Copy-on-write (COW)?

• A common system-level optimization
• Critical with fork() -> exec() pattern
• Prevents copying entire address space
• Recall exec() discards address space

• More general: Key to deduplication
• Use less memory by keeping a single copy of each

unique page

Recap: Need VM and page faults

• VM plan
• Mark PTE’s as read only
• Needed to avoid modifications to shared pages

• Page fault plan
• Allocate new page for PTE
• Copy old page contents to new page
• Adjust PTE to enable writes

Recap: Page table entries (PTE)

Some important bits:
• Physical page number (PPN): Identifies 44-bit physical page

location; MMU replaces virtual bits with these physical bits
• U: If set, userspace can access this virtual address
• W: writeable, R: readable, X: executable
• V: If set, an entry for this virtual address exists
• RSW: Ignored by MMU

5

Recap: Gathering info for pgfault

1. The VA that caused the fault?
• STVAL, or r_stval() in xv6

2. The type of violation that caused the fault?
• Encoded in SCAUSE, or r_scause() in xv6
• 12: page fault caused by an instruction fetch
• 13: page fault caused by a read
• 15: page fault cause by a write

3. The IP and privilege mode where fault occurred?
• User IP: tf->epc
• U/K: SSTATUS, or r_sstatus() & SSTATUS_SPP in xv6

6

COW Lab: Key modifications

1. vm.c: uvmcopy()
• Change PTE to read-only, mark COW using RSV bit

2. trap.c: usertrap()
• Add logic to handle page faults
• Add new method, cowpgflt() to handle COW faults

3. kalloc.c: throughout
• Add support for reference counting
• Add kget() to increment reference count
• Change kfree() to decrement reference count

4. vm.c: copyout()
• Call cowpgflt() to make sure we don’t write to a COW pg

COW solution
walkthrough

Linux refcounting

• kref object manages refcount
• Refcount contained within an array of struct page

struct kref { refcount_t refcount; };

void kref_init(struct kref *kref)
void kref_get(struct kref *kref)
int kref_put(struct kref *kref, void (*release)(struct
kref *kref))

https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/refcount_t
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/refcount
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref_init
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref_get
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref_put
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/release
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref
https://elixir.bootlin.com/linux/latest/source/include/linux/latest/C/ident/kref

Linux datastructures

• Vmarea list: describes virtual address layout
• One per process

• Page array: describes physical pages
• One per machine

Linux vmareas

Linux pages

• Linux maintains a giant array of page structs, one
for each page
• Similar to COW solution
• Each page has a refcount and has a lock

• Each page struct is several cachelines of metadata
in practice

