
6.S081: Q&A Labs
Adam Belay

abelay@mit.edu



Agenda

• Review lab assignments
• Main focus: Page table lab



Page table lab

• Traditionally a difficult lab
• Debugging can be challenging
• Bugs in page tables can change code and data layout

• New version this year focuses more on features 
enabled by page tables, less on xv6 VM layout



Part 1: USYSCALL

• Problem: Kernel transitions have overheads
• Could we speed up some system calls through 

shared memory between process and kernel
• Which system calls can be sped up?
• Must have no side-effects
• Returns constant value while process runs
• But value can change after entering kernel (e.g., ticks) 



Q: Which system calls in xv6?



Q: Which system calls in xv6?

• Getpid() – constant value, doesn’t change
• Uptime() – constant until next tick
• Each tick triggers a kernel interrupt, can update value

• Fstat() – maybe possible, not likely worth it, too 
much state



USYSCALL Mapping

Heap and Data

Trampoline VA

Trapframe

USYSCALL

PTE_R | PTE_X

PTE_R | PTE_W

PTE_R | PTE_U
ugetpid()



Code walkthrough



How does Linux use USYSCALL?

• A more sophisticated mechanism called VDSO
• Idea: Read-only, shared memory region
• Exactly the same as the lab

• Idea #2: Kernel ships code into user program
• Code interprets the data in the shared region

Powerful: makes time measurement more efficient
• 1: Kernel posts time to shared region on user enter
• 2: VDSO code adds TSC to latest time



Linux VDSO methods

• clock_gettime()
• getcpu()
• getpid()
• getppid()
• gettimeofday()
• set_tid_address()



Part 2: Printing a page table

• Goal: Print the contents of the user page table
• Save your code! Useful for debugging future labs



Recall user address layout (fig 3.4)



User page table output
page table 0x0000000087f6e000

..0: pte 0x0000000021fda801 pa 0x0000000087f6a000

.. ..0: pte 0x0000000021fda401 pa 0x0000000087f69000

.. .. ..0: pte 0x0000000021fdac1f pa 0x0000000087f6b000

.. .. ..1: pte 0x0000000021fda00f pa 0x0000000087f68000

.. .. ..2: pte 0x0000000021fd9c1f pa 0x0000000087f67000

..255: pte 0x0000000021fdb401 pa 0x0000000087f6d000

.. ..511: pte 0x0000000021fdb001 pa 0x0000000087f6c000

.. .. ..509: pte 0x0000000021fdd813 pa 0x0000000087f76000

.. .. ..510: pte 0x0000000021fddc07 pa 0x0000000087f77000

.. .. ..511: pte 0x0000000020001c0b pa 0x0000000080007000 TRAMPOLINE

TRAPFRAME

USYSCALL

Permission bits

LVL0 LVL1 PTE

Code + data

Guard page
Stack



Code walkthrough



Part 3: Access bits

• Goal: Efficiently tell userspace which pages were 
accessed
• Hardware page walker accelerates this:
• PTE_A: Was the page accessed (read or write)
• PTE_D: Is the page dirty (only write)
• HW marks these bits when walking page table

• In this lab, provide a bitmask indicating which 
pages were accessed (PTE_A)



Code walkthrough



How does Linux use access bits?

• Used for swapping pages to disk
• CLOCK algorithm: Scan pages, which were accessed 

(PTE_A marked) since last interval?
• Least accessed pages moved to disk
• PTE_D used to detect if copy on disk is stale
• Linux does not expose this info to userspace!



Q: How could you detect page 
accesses without access bits?



Q: How could you detect page 
access without access bits?
• Use page faults!
• Clear PTE_V, wait for faults
• In fault handler, record fault, then set PTE_V
• Slow!



Use Case: Generational GC

• Observation: Most objects die young
• Idea: Maintain separate regions for young and old 

objects
• Plan: Collect young objects independently and 

more often
• Performance impact: Avoids tracing overhead of 

old generation



Generational GC

Young Generation

Old Generation

Promotion



Challenge: How to find live 
objects in young gen?
• Easy part: Start with roots like registers, stack, and 

global pointers
• Hard part: What if an old gen object points to a 

young gen object?
• We can’t trace the old gen or no speedup!



Challenge: How to quickly find live 
objects in young gen?

Young Generation

Old Generation

• Old gen may have references to young gen!



Solution: Use virtual memory!

Young Generation

Old Generation

• Paging HW tracks which pages were modified (DIRTY)

Dirty Dirty



Other questions?


