Virtual memory provides a level of indirection: the kernel can intercept memory references by marking PTEs invalid or read-only, leading to page faults, and can change what addresses mean by modifying PTEs. There is a saying in computer systems that any systems problem can be solved with a level of indirection. The lazy allocation lab provided one example. This lab explores another example: copy-on write fork.
To start the lab, switch to the cow branch:
$ git fetch $ git checkout cow $ make clean
COW fork() creates just a pagetable for the child, with PTEs for user memory pointing to the parent's physical pages. COW fork() marks all the user PTEs in both parent and child as not writable. When either process tries to write one of these COW pages, the CPU will force a page fault. The kernel page-fault handler detects this case, allocates a page of physical memory for the faulting process, copies the original page into the new page, and modifies the relevant PTE in the faulting process to refer to the new page, this time with the PTE marked writeable. When the page fault handler returns, the user process will be able to write its copy of the page.
COW fork() makes freeing of the physical pages that implement user memory a little trickier. A given physical page may be referred to by multiple processes' page tables, and should be freed only when the last reference disappears.
To help you test your implementation, we've provided an xv6 program called cowtest (source in user/cowtest.c). cowtest runs various tests, but even the first will fail on unmodified xv6. Thus, initially, you will see:
$ cowtest simple: fork() failed $The "simple" test allocates more than half of available physical memory, and then fork()s. The fork fails because there is not enough free physical memory to give the child a complete copy of the parent's memory.
When you are done, your kernel should pass all the tests in both cowtest and usertests. That is:
$ cowtest simple: ok simple: ok three: zombie! ok three: zombie! ok three: zombie! ok file: ok ALL COW TESTS PASSED $ usertests ... ALL TESTS PASSED $
Here's a reasonable plan of attack.
Some hints:
>
This completes the lab. Make sure you pass all of the make
grade tests. If this lab had questions, don't forget to write up your
answers to the questions in answers-lab-name.txt. Commit your changes
(including adding answers-lab-name.txt) and type make handin in the lab
directory to hand in your lab.
Create a new file, time.txt, and put in it a single integer, the
number of hours you spent on the lab. Don't forget to git add and
git commit the file.
Submit the lab
Time spent
Submit
You will turn in your assignments using
the submission
website. You need to request once an API key from the submission
website before you can turn in any assignments or labs.
After committing your final changes to the lab, type make handin to submit your lab.
$ git commit -am "ready to submit my lab" [util c2e3c8b] ready to submit my lab 2 files changed, 18 insertions(+), 2 deletions(-) $ make handin tar: Removing leading `/' from member names Get an API key for yourself by visiting https://6828.scripts.mit.edu/2020/handin.py/ Please enter your API key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 79258 100 239 100 79019 853 275k --:--:-- --:--:-- --:--:-- 276k $make handin will store your API key in myapi.key. If you need to change your API key, just remove this file and let make handin generate it again (myapi.key must not include newline characters).
If you run make handin and you have either uncomitted changes or untracked files, you will see output similar to the following:
M hello.c ?? bar.c ?? foo.pyc Untracked files will not be handed in. Continue? [y/N]Inspect the above lines and make sure all files that your lab solution needs are tracked i.e. not listed in a line that begins with ??. You can cause git to track a new file that you create using git add filename.
If make handin does not work properly, try fixing the problem with the curl or Git commands. Or you can run make tarball. This will make a tar file for you, which you can then upload via our web interface.