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I Xv6 file system

Alyssa adds the statement:

printf("bwrite %d\n", b->blockno);

to xv6’s bwrite in bio.c. She then makes a fresh fs.img, boots xv6, and runs the following command:

$ cat README > z
bwrite 3
bwrite 4
bwrite 5
bwrite 2
bwrite 33
bwrite 46
bwrite 32
bwrite 2
bwrite 3
bwrite 4
bwrite 5
bwrite 2
bwrite 45
bwrite 801
bwrite 33
bwrite 2
bwrite 3
bwrite 4
bwrite 2
bwrite 801
bwrite 33
bwrite 2
bwrite 3
bwrite 4
bwrite 5
bwrite 2
bwrite 45
bwrite 802
bwrite 33
bwrite 2
bwrite 3
bwrite 4
bwrite 2
bwrite 802
bwrite 33
bwrite 2 // XXX
$

2



Alyssa is surprised by the large number of blocks written. She looks at the source code of cat.c and
observes that cat writes 512 bytes at the time. ls reports that README is 1982 bytes large. So, cat
README > z results in 4 write system calls. The block size of the xv6 file system is 1024 bytes, so the
content of z fits in 2 file system blocks.

1. [5 points]: Explain what block 801 contains.

Answer: The first 1024 bytes of z (which is equal to the first 1024 bytes of README)

2. [5 points]: Explain briefly what block 33 contains.

Answer: It is a block of inodes, including the inode for file z.

3. [5 points]: Explain briefly the purpose of the write to block 2 at the line marked XXX.

Answer: Block 2 is the log header block. The write at XXX is setting n in the header block to zero to
indicate that the log no longer holds a valid transaction, since the transaction has been installed.
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II Lab Lock

Ben is working on parallelizing xv6’s memory allocator for 6.828’s lock lab. He modifies the kernel’s page
allocator to use per-CPU free lists, using the cpuid() function to determine which CPU the code is running
on. Following the hint in the lab text, Ben sees that cpuid()’s documentation (in proc.c) says “Must
be called with interrupts disabled, to prevent a race with the process being moved to a different CPU.” He
writes his kalloc() implementation as follows:

1 void *
2 kalloc(void)
3 {
4 struct run *r;
5
6 push_off();
7 int me = cpuid();
8 pop_off();
9 acquire(&kmem[me].lock);

10 r = kmem[me].freelist;
11 if(r)
12 kmem[me].freelist = r->next;
13 release(&kmem[me].lock);
14
15 // if r == NULL, search other CPUs’ free lists
16 // ...
17
18 // clear page and return it
19 // ...
20 }

4. [5 points]: Ben expects line 10, r = kmem[me].freelist;, to access the free list of the
CPU that the code is currently executing on. It turns out that this is not always the case. Describe a
concrete sequence of events that violate Ben’s expectation.

Answer: Line 7 gets cpuid, then after interrupts are re-enabled (line 8), there’s a clock interrupt and
the process is later scheduled to a different CPU. It then uses the cpuid it got earlier, which no longer
corresponds to the current CPU.
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5. [5 points]: How could Ben change his code so that his expectation holds, i.e. r = kmem[me].freelist;
is guaranteed to access the free list of the CPU that the code is executing on?

Answer: Move pop off() to after the release on line 13.

6. [5 points]: Alyssa points out that Ben can remove the calls to push off() (line 6) and
pop off() (line 8), even though that violates the cpuid() function’s specification. Ben modifies
xv6 and it passes all the usertests, despite the missing push off() and pop off(). Explain why
deleting these two lines doesn’t break xv6.

Answer: It’s okay to use the “wrong” cpuid because using the “right” free list is just a performance
optimization; the locking guarantees correct behavior when accessing any of the free lists.
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III Lab Syscall

The two parts of the 6.828 user-level threads and alarm lab both involve saving and restoring contexts. For
user-level threading, this happens in uthread switch, and for the alarm system call, saving the context
happens in usertrap() and restoring the context happens in sys sigreturn(). While all registers
are saved/restored for the alarm system call, this is not necessary for uthread switch, which only needs
to save sp, s0 through s11, and ra.

7. [5 points]: Explain why uthread switch can get away with not saving and restoring certain
general-purpose registers.

Answer: The main difference is that the timer interrupt for alarm is preemptive, while switching
uthreads is done cooperatively. uthread switch is called via a function call, so the compiler will
emit the code to save caller-saved registers, and so uthread switch only needs to save callee-
saved registers.
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IV xv6 i-node counts

Alyssa is implementing symbolic links in xv6, as part of the 6.828 file system lab. She observes that each
in-memory inode (struct inode in file.h) contains two similar fields: nlink and ref.

8. [5 points]: Suppose a bug accidentally changed a file’s nlink field from 2 to 1. What bad
thing(s) would happen as a result?

Answer: The fact that the file’s correct nlink is two means that it has two names. If nlink is
incorrectly set to one, then if one of the two names is removed, xv6 will delete the file’s content and
mark the i-node as free. At that point the file’s other name refers to a freed i-node, which will cause a
panic if the name is ever used. If a new unrelated file is created and is allocated the i-node, then that
other name will incorrectly refer to the unrelated new file.

9. [5 points]: Suppose a bug accidentally changed a file’s ref field from 2 to 1. What bad thing(s)
would happen as a result?

Answer: The correct value of two means that there are two open file descriptors (or current directo-
ries) that refer to the in-memory i-node. If the value is incorrectly set to one, and then one of the file
descriptors is closed, the struct inode will be marked free, and possibly re-used for a different
file. Then that other file descriptor will refer to nothing, or to the wrong file.

7



V EXT3

Recall the Linux EXT3 journaling file system from Journaling the Linux ext2fs Filesystem and Lecture 14.
The paper’s “ext2fs” is the same as EXT3.

Suppose you run the following program on Linux with EXT3:

int
main()
{

int fd;

fd = open("a", O_CREAT|O_WRONLY, 0666); // create a
if(fd < 0) exit(1);
close(fd);

fd = open("b", O_CREAT|O_WRONLY, 0666); // create b
if(fd < 0) exit(1);
close(fd);

printf("done\n");
}

The two open() system calls create files. Before you run the program, the two files did not exist.

The program prints done, so you know the file creations succeeded. Moments after the program finishes,
there’s a power failure and your computer (which has no battery) stops executing. After a while the power
comes back on, and your computer reboots and runs EXT3’s recovery code. You look for files a and b.

10. [4 points]: Which of the following situations could exist at this point?
(Circle True or False for each choice.)

• True / False Neither a nor b exists.

• True / False File a exists, but not b.

• True / False File b exists, but not a.

• True / False Both a and b exist.

Answer: True, True, False, True. The answer depends on when the power failure occurs relative to
when EXT3 writes data from its in-memory block cache to its log on disk. One possibility is that
EXT3 has written nothing at all; in that case, neither a nor b will exist. Another possibility is that
EXT3 decides to commit its log to disk after the program creates file a (but before it creates b), and
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all the log writes for the commit finish; and then the power fails; the result will be that a exists but not
b. In this scenario, the program’s system call to create b finishes but only modifies cached blocks in
RAM. Another possibility is that the power failure occurs after EXT3 commits both a and b to its log
on disk; then both will be visible. It cannot be the case that b exists but not a, because when EXT3
decides to commit, it commits all completed system calls; if the creation of file b has completed, so
must the creation of file a.
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VI RCU

Consider RCU Usage In the Linux Kernel: One Decade Later, by McKenney et al.

Suppose Figure 6’s setsockopt()were modified to copy the new options into the socket structure, rather
than changing a pointer, like this:

if (opt == IP_OPTIONS) {
memmove(sock->opts, arg, ...the correct size...);
return;

}

This modification would require that sock->opts be a buffer of the appropriate size. udp sendmsg()
remains the same.

11. [5 points]: Explain why this modification would break RCU. What kinds of problems would
it cause to udp sendmsg()?

Answer: udp sendmsg might observe a partially written sock->opts, because memmove is not
atomic.
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Ben Bitdiddle is thinking about adding RCU to his xv6 kernel, which he runs on real RISC-V hardware. His
RISC-V hardware has a timer that ticks every 10 milliseconds, and Ben sees that xv6’s kerneltrap()
causes a context switch if a timer interrupt arrives while a kernel thread is running. He reasons that
since the point of synchronize rcu() is to wait for a context switch on each CPU, he could change
synchronize rcu() to simply wait 10 milliseconds rather than schedule itself on each CPU in turn (as
in Figure 2).

12. [5 points]: Explain why Ben’s idea of waiting 10 milliseconds would break RCU.

Answer: An RCU read critical section might last more than 10 milliseconds. As a result it might still
be using an RCU-protected pointer after synchronize rcu() returns.

Alyssa is excited about Biscuit as described in The benefits and costs of writing a POSIX kernel in a high-
level language by Cutler et al. She notices that Biscuit uses RCU for its directory cache. In studying the
Biscuit code, she notices that there are no calls to synchronize rcu() (or to any similar function).

13. [5 points]: Explain why Biscuit has no need for synchronize rcu().

Answer: synchronize rcu() is used to delay freeing until nobody else has a pointer to the
object. Go’s garbage collector does this automatically.
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VII Networking lecture/reading

Consider Eliminating Receive Livelock in an Interrupt-driven Kernel, by Mogul et al, as well as Lecture 17.

Ben notices that a networking stack is failing to make much progress sending packets when it is receiving
packets at a high rate. To solve this problem, he configures the network interface card (NIC) to not generate
receive interrupts, and instead polls the receive descriptor ring during each timer tick (every millisecond).
More progress is now made in sending packets, but a new problem has appeared where some incoming
packets are dropped even at load below saturation.

14. [5 points]: Explain why packets are dropped because of this change.

Answer: Even if the CPU isn’t saturated (fully busy), the packet rate could be high enough to fill the
receive descriptor ring entirely before the next polling interval. When the ring becomes full, the NIC
drops the packets.
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VIII Virtualization

Consider A Comparison of Software and Hardware Techniques for x86 Virtualization, by Adams et al.

The designers of a new RISC-V processor want to more easily debug the state of the running CPU, so
they allow reads to the sstatus (supervisor status) register to be performed from user mode without
trapping. Normally making sstatus readable doesn’t create any problems, but suppose a trap-and-emulate
hypervisor (in supervisor mode) is running xv6 as a guest (in user mode). After running for a short time the
guest xv6 kernel panics and prints “kerneltrap: not from supervisor mode”.

Note: sret does not modify SSTATUS.SPP.

15. [5 points]: Explain why allowing sstatus to be read in user mode without trapping results
in this specific panic in the xv6 guest kernel.

Answer: kerneltrap() reads sstatus and checks SPP as a sanity check. If the guest is executing
in the kernel (in virtual supervisor mode) and an interrupt occurs, SPP should be 1. A VMM would
ordinarily trap and emulate a read to sstatus and make the SPP be 1 (the virtual CPU state). On
this incorrectly virtualized machine, the SPP bit would be 0 if the previous physical trap originated
from user mode. This is an example of violating the fidelity property from the Popek and Goldberg
virtualization requirements, as discussed in lecture.
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IX 6.828

16. [1 points]: Please indicate which of the labs you found to be the most helpful, and which the
least.

– Alarm / uthreads Answer: 18 helpful / 13 unhelpful

– Locking Answer: 11 helpful / 26 unhelpful

– File system Answer: 20 helpful / 7 unhelpful

– mmap Answer: 21 helpful / 10 unhelpful

– Networking (if you did this lab) Answer: 8 helpful / 5 unhelpful

17. [1 points]: Which paper is the best candidate for deletion in future years?

Answer:

– ext2fs: 9

– VM primitives for user programs: 16

– Exokernel: 9

– Receive livelock: 9

– Biscuit: 10

– Scalable locks: 1

– RCU: 1

– Virtualization: 20

– None: 1

End of Quiz II — Happy holidays!
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